Academic literature on the topic 'Human Cartilage Matrix Protein (hCMP)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Human Cartilage Matrix Protein (hCMP).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Human Cartilage Matrix Protein (hCMP)"

1

Kao, Yu-Hsien, Kun-Lieh Wu, Yuan-Kun Tu, Shwu Jen Chang, Chin Chang Yang, Chi-Yen Shen, Chih-Hsin Hung, and Shyh-Ming Kuo. "DEVELOPING AND ASSESSING AN IMMUNOCHROMATOGRAPHIC STRIP FOR DETECTING OSTEOARTHRITIS BASED ON URINE CARTILAGE OLIGOMERIC MATRIX PROTEINS." Biomedical Engineering: Applications, Basis and Communications 26, no. 06 (December 2014): 1450072. http://dx.doi.org/10.4015/s1016237214500720.

Full text
Abstract:
An immunochromatographic strip was developed using a gold nanoparticle-conjugated monoclonal antibody to detect cartilage oligomeric matrix protein (COMP) in human urine. The monoclonal antibody anti-hCOMP produced from the hybridoma cell clone, hCOMP, is specific to osteoarthritis (OA), and polycolonal antibodies against COMP proteins were conjugated using a gold nanoparticle (approximately 40 nm) to enable detection. The preliminary test results of the proposed biomarker-prepared strip showed a positive correlation with those obtained using Western-blot assay to urinal COMP and exhibited a reliable detection range from 50 to 400 ng. The visual detection limit of the prepared test strip was 50 ng. The test results of OA patients showed consistent diagnostic agreement compared with clinical X-ray radiography. Thus, based on the detection of COMP from urine, the proposed immunoassay method is suitable for screening and noninvasively diagnosing OA.
APA, Harvard, Vancouver, ISO, and other styles
2

Adorable, L., and J. Litang. "Blood serum human cartilage oligomeric matrix protein (hCOMP) concentration in closed kinematic chain exercises and physiological cyclic loading using enzyme-linked immunosorbent assay (ELISA)." Annals of Physical and Rehabilitation Medicine 61 (July 2018): e458-e459. http://dx.doi.org/10.1016/j.rehab.2018.05.1069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mundlos, S., and B. Zabel. "Developmental expression of human cartilage matrix protein." Developmental Dynamics 199, no. 3 (March 1994): 241–52. http://dx.doi.org/10.1002/aja.1001990308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

DiCesare, Paul E., Matthias Mörgelin, Cathy S. Carlson, Subhalakshmi Pasumarti, and Mats Paulsson. "Cartilage oligomeric matrix protein: Isolation and characterization from human articular cartilage." Journal of Orthopaedic Research 13, no. 3 (May 1995): 422–28. http://dx.doi.org/10.1002/jor.1100130316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Loeser, R., C. S. Carlson, H. Tulli, W. G. Jerome, L. Miller, and R. Wallin. "Articular-cartilage matrix γ-carboxyglutamic acid-containing protein. Characterization and immunolocalization." Biochemical Journal 282, no. 1 (February 15, 1992): 1–6. http://dx.doi.org/10.1042/bj2820001.

Full text
Abstract:
Matrix gamma-carboxyglutamic acid (Gla)-containing protein (MGP) was found to be present in articular cartilage by Western-blot analysis of guanidinium chloride extracts of human and bovine cartilage and was further localized by immunohistochemical studies on human and monkey specimens. In newborn articular cartilage MGP was present diffusely throughout the matrix, whereas in growth-plate cartilage it was seen mainly in late hypertrophic and calcifying-zone chondrocytes. In adult articular cartilage MGP was present primarily in chondrocytes and the pericellular matrix. Immunoelectron microscopy studies revealed an association between MGP and vesicular structures with an appearance consistent with matrix vesicles. MGP may be an important regulator of cartilage calcification because of its localization in cartilage and the known affinity of Gla-containing proteins for Ca2+ and hydroxyapatite.
APA, Harvard, Vancouver, ISO, and other styles
6

Di Cesare, Paul E., Cathy S. Carlson, Elliot S. Stollerman, Frank S. Chen, Michael Leslie, and Roberto Perris. "Expression of cartilage oligomeric matrix protein by human synovium." FEBS Letters 412, no. 1 (July 21, 1997): 249–52. http://dx.doi.org/10.1016/s0014-5793(97)00789-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Newton, Gail, Stanislawa Weremowicz, Cynthia C. Morton, Neal G. Copeland, Debra J. Gilbert, Nancy A. Jenkins, and Jack Lawler. "Characterization of Human and Mouse Cartilage Oligomeric Matrix Protein." Genomics 24, no. 3 (December 1994): 435–39. http://dx.doi.org/10.1006/geno.1994.1649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kwak, Yoon Hae, Jae Young Roh, Ki Seok Lee, Hui Wan Park, and Hyun Woo Kim. "Altered Synthesis of Cartilage-Specific Proteoglycans by Mutant Human Cartilage Oligomeric Matrix Protein." Clinics in Orthopedic Surgery 1, no. 4 (2009): 181. http://dx.doi.org/10.4055/cios.2009.1.4.181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Posey, Karen L., Sherri Davies, Elise S. Bales, Richard Haynes, Linda J. Sandell, and Jacqueline T. Hecht. "In vivo human Cartilage Oligomeric Matrix Protein (COMP) promoter activity." Matrix Biology 24, no. 8 (December 2005): 539–49. http://dx.doi.org/10.1016/j.matbio.2005.07.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nguyen, Q., G. Murphy, C. E. Hughes, J. S. Mort, and P. J. Roughley. "Matrix metalloproteinases cleave at two distinct sites on human cartilage link protein." Biochemical Journal 295, no. 2 (October 15, 1993): 595–98. http://dx.doi.org/10.1042/bj2950595.

Full text
Abstract:
The actions of human recombinant stromelysins-1 and -2, collagenase, gelatinases A and B and matrilysin on neonatal human proteoglycan aggregates were examined. With the exception of gelatinase B, aggrecan was degraded extensively by most metalloproteinases studied, whereas link protein showed only limited proteolysis. Sequencing studies of modified link protein components revealed that stromelysins-1 and -2, gelatinases A and B and collagenase cleaved specifically between His16 and Ile17, and matrilysin, stromelysin-2 and gelatinase A cleaved between Leu25 and Leu26. Cleavage at the former bond generated a link protein component with the same N-terminus as that isolated from newborn human cartilage. Based on previously determined in situ cleavage sites it is evident that matrix metalloproteinases are not solely responsible for the accumulation of link protein degradation products in adult human cartilage, indicating that additional proteolytic agents are involved in the normal catabolism of human cartilage matrix.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Human Cartilage Matrix Protein (hCMP)"

1

Wong, Kevin L. "Caveolae and Caveolin-1 are important for Vitamin D signalling." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37086.

Full text
Abstract:
The most active form of Vitamin D, 1alpha,25(OH)2D3, modulates cells via receptor mediated mechanisms. While studies have elucidated the pathway via the classical nuclear Vitamin D Receptor (VDR), little is known about the membrane-associated Vitamin D Receptor (ERp60). Caveolae and its characteristic protein Caveolin-1 have been involved in many signaling pathways due to its specific structure and physical configuration. Other studies have shown that many components of the Vitamin D pathway have been found in caveolae. This study hypothesizes that caveolae and Caveolin-1 are important for the effects of 1,25 Vitamin D signaling via ERp60. Research up to date have shown that in rat and mouse growth zone chondrocytes, cells deprived of intact caveolae either through disruption through beta-Cyclodextrin or genetic knockout do not exhibit the characteristic responses to Vitamin D through ERp60 when compared to chondrocytes with functional caveolae. Studies using immunofluorescence co-localization and caveolae fractionation have shown that ERp60 is localized in the caveolae domains. Cellular fractionation was also performed to examine the localization of the ERp60 receptor in lipid rafts and caveolae. Histology and transmission electron microscopy were also used to examine the physiological importance of caveolae and Caveolin-1 in growth plate morphology and cellular characteristics.
APA, Harvard, Vancouver, ISO, and other styles
2

Clauditz, Till S. "Cartilage oligomeric matrix protein in der Pathogenese der Arthrosis deformans." Doctoral thesis, 2007. http://hdl.handle.net/11858/00-1735-0000-0006-AF2F-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shakibaei, M., C. Csaki, S. Nebrich, and A. Mobasheri. "Resveratrol suppresses interleukin-1beta-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritis." 2008. http://hdl.handle.net/10454/6181.

Full text
Abstract:
Osteoarthritis is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective on pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Resveratrol is a phytoalexin stilbene produced naturally by plants including red grapes, peanuts and various berries. Recent research in various cell models has demonstrated that resveratrol is safe and has potent anti-inflammatory properties. However, its potential for treating arthritic conditions has not been explored. In this study we provide experimental evidence that resveratrol inhibits the expression of VEGF, MMP-3, MMP-9 and COX-2 in human articular chondrocytes stimulated with the pro-inflammatory cytokine IL-1beta. Since these gene products are regulated by the transcription factor NF-kappaB, we investigated the effects of resveratrol on IL-1beta-induced NF-kappaB signaling pathway. Resveratrol, like N-Ac-Leu-Leu-norleucinal (ALLN) suppressed IL-1beta-induced proteasome function and the degradation of IkappaBalpha (an inhibitor of NF-kappaB) without affecting IkappaBalpha kinase activation, IkappaBalpha-phosphorylation or IkappaBalpha-ubiquitination which suppressed nuclear translocation of the p65 subunit of NF-kappaB and its phosphorylation. Furthermore, we observed that resveratrol as well as ALLN inhibited IL-1beta-induced apoptosis, caspase-3 activation and PARP cleavage in human articular chondrocytes. In summary, our results suggest that resveratrol suppresses apoptosis and inflammatory signaling through its actions on the NF-kappaB pathway in human chondrocytes. We propose that resveratrol should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Human Cartilage Matrix Protein (hCMP)"

1

Skiba, Grzegorz. Fizjologiczne, żywieniowe i genetyczne uwarunkowania właściwości kości rosnących świń. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 2020. http://dx.doi.org/10.22358/mono_gs_2020.

Full text
Abstract:
Bones are multifunctional passive organs of movement that supports soft tissue and directly attached muscles. They also protect internal organs and are a reserve of calcium, phosphorus and magnesium. Each bone is covered with periosteum, and the adjacent bone surfaces are covered by articular cartilage. Histologically, the bone is an organ composed of many different tissues. The main component is bone tissue (cortical and spongy) composed of a set of bone cells and intercellular substance (mineral and organic), it also contains fat, hematopoietic (bone marrow) and cartilaginous tissue. Bones are a tissue that even in adult life retains the ability to change shape and structure depending on changes in their mechanical and hormonal environment, as well as self-renewal and repair capabilities. This process is called bone turnover. The basic processes of bone turnover are: • bone modeling (incessantly changes in bone shape during individual growth) following resorption and tissue formation at various locations (e.g. bone marrow formation) to increase mass and skeletal morphology. This process occurs in the bones of growing individuals and stops after reaching puberty • bone remodeling (processes involve in maintaining bone tissue by resorbing and replacing old bone tissue with new tissue in the same place, e.g. repairing micro fractures). It is a process involving the removal and internal remodeling of existing bone and is responsible for maintaining tissue mass and architecture of mature bones. Bone turnover is regulated by two types of transformation: • osteoclastogenesis, i.e. formation of cells responsible for bone resorption • osteoblastogenesis, i.e. formation of cells responsible for bone formation (bone matrix synthesis and mineralization) Bone maturity can be defined as the completion of basic structural development and mineralization leading to maximum mass and optimal mechanical strength. The highest rate of increase in pig bone mass is observed in the first twelve weeks after birth. This period of growth is considered crucial for optimizing the growth of the skeleton of pigs, because the degree of bone mineralization in later life stages (adulthood) depends largely on the amount of bone minerals accumulated in the early stages of their growth. The development of the technique allows to determine the condition of the skeletal system (or individual bones) in living animals by methods used in human medicine, or after their slaughter. For in vivo determination of bone properties, Abstract 10 double energy X-ray absorptiometry or computed tomography scanning techniques are used. Both methods allow the quantification of mineral content and bone mineral density. The most important property from a practical point of view is the bone’s bending strength, which is directly determined by the maximum bending force. The most important factors affecting bone strength are: • age (growth period), • gender and the associated hormonal balance, • genotype and modification of genes responsible for bone growth • chemical composition of the body (protein and fat content, and the proportion between these components), • physical activity and related bone load, • nutritional factors: – protein intake influencing synthesis of organic matrix of bone, – content of minerals in the feed (CA, P, Zn, Ca/P, Mg, Mn, Na, Cl, K, Cu ratio) influencing synthesis of the inorganic matrix of bone, – mineral/protein ratio in the diet (Ca/protein, P/protein, Zn/protein) – feed energy concentration, – energy source (content of saturated fatty acids - SFA, content of polyun saturated fatty acids - PUFA, in particular ALA, EPA, DPA, DHA), – feed additives, in particular: enzymes (e.g. phytase releasing of minerals bounded in phytin complexes), probiotics and prebiotics (e.g. inulin improving the function of the digestive tract by increasing absorption of nutrients), – vitamin content that regulate metabolism and biochemical changes occurring in bone tissue (e.g. vitamin D3, B6, C and K). This study was based on the results of research experiments from available literature, and studies on growing pigs carried out at the Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences. The tests were performed in total on 300 pigs of Duroc, Pietrain, Puławska breeds, line 990 and hybrids (Great White × Duroc, Great White × Landrace), PIC pigs, slaughtered at different body weight during the growth period from 15 to 130 kg. Bones for biomechanical tests were collected after slaughter from each pig. Their length, mass and volume were determined. Based on these measurements, the specific weight (density, g/cm3) was calculated. Then each bone was cut in the middle of the shaft and the outer and inner diameters were measured both horizontally and vertically. Based on these measurements, the following indicators were calculated: • cortical thickness, • cortical surface, • cortical index. Abstract 11 Bone strength was tested by a three-point bending test. The obtained data enabled the determination of: • bending force (the magnitude of the maximum force at which disintegration and disruption of bone structure occurs), • strength (the amount of maximum force needed to break/crack of bone), • stiffness (quotient of the force acting on the bone and the amount of displacement occurring under the influence of this force). Investigation of changes in physical and biomechanical features of bones during growth was performed on pigs of the synthetic 990 line growing from 15 to 130 kg body weight. The animals were slaughtered successively at a body weight of 15, 30, 40, 50, 70, 90, 110 and 130 kg. After slaughter, the following bones were separated from the right half-carcass: humerus, 3rd and 4th metatarsal bone, femur, tibia and fibula as well as 3rd and 4th metatarsal bone. The features of bones were determined using methods described in the methodology. Describing bone growth with the Gompertz equation, it was found that the earliest slowdown of bone growth curve was observed for metacarpal and metatarsal bones. This means that these bones matured the most quickly. The established data also indicate that the rib is the slowest maturing bone. The femur, humerus, tibia and fibula were between the values of these features for the metatarsal, metacarpal and rib bones. The rate of increase in bone mass and length differed significantly between the examined bones, but in all cases it was lower (coefficient b <1) than the growth rate of the whole body of the animal. The fastest growth rate was estimated for the rib mass (coefficient b = 0.93). Among the long bones, the humerus (coefficient b = 0.81) was characterized by the fastest rate of weight gain, however femur the smallest (coefficient b = 0.71). The lowest rate of bone mass increase was observed in the foot bones, with the metacarpal bones having a slightly higher value of coefficient b than the metatarsal bones (0.67 vs 0.62). The third bone had a lower growth rate than the fourth bone, regardless of whether they were metatarsal or metacarpal. The value of the bending force increased as the animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. The rate of change in the value of this indicator increased at a similar rate as the body weight changes of the animals in the case of the fibula and the fourth metacarpal bone (b value = 0.98), and more slowly in the case of the metatarsal bone, the third metacarpal bone, and the tibia bone (values of the b ratio 0.81–0.85), and the slowest femur, humerus and rib (value of b = 0.60–0.66). Bone stiffness increased as animals grew. Regardless of the growth point tested, the highest values were observed for the humerus, tibia and femur, smaller for the metatarsal and metacarpal bone, and the lowest for the fibula and rib. Abstract 12 The rate of change in the value of this indicator changed at a faster rate than the increase in weight of pigs in the case of metacarpal and metatarsal bones (coefficient b = 1.01–1.22), slightly slower in the case of fibula (coefficient b = 0.92), definitely slower in the case of the tibia (b = 0.73), ribs (b = 0.66), femur (b = 0.59) and humerus (b = 0.50). Bone strength increased as animals grew. Regardless of the growth point tested, bone strength was as follows femur > tibia > humerus > 4 metacarpal> 3 metacarpal> 3 metatarsal > 4 metatarsal > rib> fibula. The rate of increase in strength of all examined bones was greater than the rate of weight gain of pigs (value of the coefficient b = 2.04–3.26). As the animals grew, the bone density increased. However, the growth rate of this indicator for the majority of bones was slower than the rate of weight gain (the value of the coefficient b ranged from 0.37 – humerus to 0.84 – fibula). The exception was the rib, whose density increased at a similar pace increasing the body weight of animals (value of the coefficient b = 0.97). The study on the influence of the breed and the feeding intensity on bone characteristics (physical and biomechanical) was performed on pigs of the breeds Duroc, Pietrain, and synthetic 990 during a growth period of 15 to 70 kg body weight. Animals were fed ad libitum or dosed system. After slaughter at a body weight of 70 kg, three bones were taken from the right half-carcass: femur, three metatarsal, and three metacarpal and subjected to the determinations described in the methodology. The weight of bones of animals fed aa libitum was significantly lower than in pigs fed restrictively All bones of Duroc breed were significantly heavier and longer than Pietrain and 990 pig bones. The average values of bending force for the examined bones took the following order: III metatarsal bone (63.5 kg) <III metacarpal bone (77.9 kg) <femur (271.5 kg). The feeding system and breed of pigs had no significant effect on the value of this indicator. The average values of the bones strength took the following order: III metatarsal bone (92.6 kg) <III metacarpal (107.2 kg) <femur (353.1 kg). Feeding intensity and breed of animals had no significant effect on the value of this feature of the bones tested. The average bone density took the following order: femur (1.23 g/cm3) <III metatarsal bone (1.26 g/cm3) <III metacarpal bone (1.34 g / cm3). The density of bones of animals fed aa libitum was higher (P<0.01) than in animals fed with a dosing system. The density of examined bones within the breeds took the following order: Pietrain race> line 990> Duroc race. The differences between the “extreme” breeds were: 7.2% (III metatarsal bone), 8.3% (III metacarpal bone), 8.4% (femur). Abstract 13 The average bone stiffness took the following order: III metatarsal bone (35.1 kg/mm) <III metacarpus (41.5 kg/mm) <femur (60.5 kg/mm). This indicator did not differ between the groups of pigs fed at different intensity, except for the metacarpal bone, which was more stiffer in pigs fed aa libitum (P<0.05). The femur of animals fed ad libitum showed a tendency (P<0.09) to be more stiffer and a force of 4.5 kg required for its displacement by 1 mm. Breed differences in stiffness were found for the femur (P <0.05) and III metacarpal bone (P <0.05). For femur, the highest value of this indicator was found in Pietrain pigs (64.5 kg/mm), lower in pigs of 990 line (61.6 kg/mm) and the lowest in Duroc pigs (55.3 kg/mm). In turn, the 3rd metacarpal bone of Duroc and Pietrain pigs had similar stiffness (39.0 and 40.0 kg/mm respectively) and was smaller than that of line 990 pigs (45.4 kg/mm). The thickness of the cortical bone layer took the following order: III metatarsal bone (2.25 mm) <III metacarpal bone (2.41 mm) <femur (5.12 mm). The feeding system did not affect this indicator. Breed differences (P <0.05) for this trait were found only for the femur bone: Duroc (5.42 mm)> line 990 (5.13 mm)> Pietrain (4.81 mm). The cross sectional area of the examined bones was arranged in the following order: III metatarsal bone (84 mm2) <III metacarpal bone (90 mm2) <femur (286 mm2). The feeding system had no effect on the value of this bone trait, with the exception of the femur, which in animals fed the dosing system was 4.7% higher (P<0.05) than in pigs fed ad libitum. Breed differences (P<0.01) in the coross sectional area were found only in femur and III metatarsal bone. The value of this indicator was the highest in Duroc pigs, lower in 990 animals and the lowest in Pietrain pigs. The cortical index of individual bones was in the following order: III metatarsal bone (31.86) <III metacarpal bone (33.86) <femur (44.75). However, its value did not significantly depend on the intensity of feeding or the breed of pigs.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Human Cartilage Matrix Protein (hCMP)"

1

Ponist, Silvester, Katarina Pruzinska, and Katarina Bauerova. "Inflammation in the Pathogenesis of Rheumatoid Arthritis and in Experimental Arthritis: Evaluation of Combinations of Carnosic Acid and Extract of Rhodiola rosea L. with Methotrexate." In Inflammation [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99073.

Full text
Abstract:
The host immune response generates the pro-inflammatory immune response as a protective measure against invading pathogens, allergens, and/or trauma. However, dysregulated and chronic inflammation may result in secondary damage to tissues and immune pathology to the host. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease which primarily involves synovial inflammation, joint pain, immobility, and stiffness. Increased infiltration of inflammatory immune cells and fibroblast-like synoviocytes into joints, form pannus and small blood vessels that lead to synovium and cartilage destruction. In this chapter we will focus on the role of inflammatory cytokines (IL-1β, IL-6 and IL-17), chemokine monocyte chemotactic protein-1 and matrix metalloproteinase-9 in the pathogenesis of experimental arthritis in animals and in human RA. Further, we will be discussing about methotrexate’s (cornerstone of anti-rheumatic therapy) immune suppressing activity, anti-inflammatory properties of carnosic acid and extract of Rhodiola rosea L., and their innovative combination treatments with methotrexate in rat adjuvant arthritis.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Human Cartilage Matrix Protein (hCMP)"

1

Cortes, Daniel H., Woojin M. Han, Lachlan J. Smith, and Dawn M. Elliott. "Extra-Fibrilar Matrix Properties of Human Annulus Fibrosus are Location and Age Dependent." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80536.

Full text
Abstract:
Aging and degeneration of the intervertebral discs are cell mediated processes that include biochemical, mechanical and structural changes. Although these processes are similar, disc degeneration is defined as an accelerated aging process that results in a detriment in the function of the disc. Biochemical changes include protein cross-linking, proteoglycan depletion and changes on collagen type. These compositional changes are related to changes in the mechanical properties of the disc and its tissues. For instance, it has been shown that an increase of protein cross-linking by glycation or genipin treatment causes an increase of the stiffness in disc tissues [1,2]. On the other hand, a decrease on the amount of proteoglycan has been shown to cause a decrease on tissue stiffness due to a reduction of the osmotic pressure [3,4]. However, during aging and degeneration, these two processes occur simultaneously with opposing effects on the mechanical properties of the tissue. Consequently, it is important to analyze these effects separately. Additionally, many multiphasic models for soft charged tissues, such articular cartilage and intervertebral disc, also consider the ionic phases separately from non-charged solids. Although multiphasic models for the disc have been used in the past, the mechanical properties of the non-charged extra-fibrillar matrix (EFM) have not been measured directly.
APA, Harvard, Vancouver, ISO, and other styles
2

Bian, Liming, Robert L. Mauck, and Jason A. Burdick. "Dynamic Compressive Loading and Crosslinking Density Influence the Chondrogenic and Hypertrophic Differentiation of Human Mesenchymal Stem Cells Seeded in Hyaluronic Acid Hydrogels." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80048.

Full text
Abstract:
While hyaluronic acid (HA) hydrogels provide a stable 3D environment that is conducive to the chondrogenesis of mesenchymal stem cells (MSCs) in the presence of growth factors [1], the neocartilage that is formed remains inferior to native tissue, even after long culture durations. Additionally, MSCs eventually transit into a hypertrophic phenotype after chondrogenic induction, resulting in the calcification of the ECM after ectopic transplantation [2]. From a material design perspective, variation in the HA hydrogel scaffold crosslinking density via changes in the HA macromer concentration can influence chondrogenesis of MSCs and neocartilage formation [3]. Recent studies have also demonstrated that dynamic compression enhances the expression of chondrogenic markers and cartilage matrix synthesis by MSCs encapsulated in various hydrogels, including agarose [4], alginate [5] and fibrin [6]. Furthermore, mechanical signals also regulate growth plate and articular cartilage chondrocyte hypertrophy via the IHH-PTHrP (India hedgehog, Parathyroid hormone-related protein) pathway [7]. In contrast to biologically inert scaffold materials, HA is capable of interacting with cells (including MSCs) via cell surface receptors (CD44, CD54, and CD168) [8; 9]. Therefore the objectives of this study were to (i) evaluate the effects of both hydrogel crosslinking and dynamic compressive loading on (i) chondrogenesis and cartilage matrix production/distribution of human MSCs encapsulated in HA gels and (ii) hypertrophic differentiation of human MSCs using an in vitro MSC hypertrophy model [10].
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Minwook, Jason A. Burdick, and Robert L. Mauck. "Influence of Chondrocyte Zone on Co-Cultures With Mesenchymal Stem Cells in HA Hydrogels for Cartilage Tissue Engineering." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80859.

Full text
Abstract:
Mesenchymal stem cells (MSCs) are an attractive cell type for cartilage tissue engineering in that they can undergo chondrogenesis in a variety of 3D contexts [1]. Focused efforts in MSC-based cartilage tissue engineering have recently culminated in the formation of biologic materials possessing biochemical and functional mechanical properties that match that of the native tissue [2]. These approaches generally involve the continuous or intermittent application of pro-chondrogenic growth factors during in vitro culture. For example, in one recent study, we showed robust construct maturation in MSC-seeded hyaluronic acid (HA) hydrogels transiently exposed to high levels of TGF-β3 [3]. Despite the promise of this approach, MSCs are a multipotent cell type and retain a predilection towards hypertrophic phenotypic conversion (i.e., bone formation) when removed from a pro-chondrogenic environment (e.g., in vivo implantation). Indeed, even in a chondrogenic environment, many MSC-based cultures express pre-hypertrophic markers, including type X collagen, MMP13, and alkaline phosphatase [4]. To address this issue, recent studies have investigated co-culture of human articular chondrocytes and MSCs in both pellet and hydrogel environments. Chondrocytes appear to enhance the initial efficiency of MSC chondrogenic conversion, as well as limit hypertrophic changes in some instances (potentially via secretion of PTHrP and/or other factors) [5–7]. While these findings are intriguing, articular cartilage has a unique depth-dependent morphology including zonal differences in chondrocyte identity. Ng et al. showed that zonal chondrocytes seeded in a bi-layered agarose hydrogel construct can recreate depth-dependent cellular and mechanical heterogeneity, suggesting that these identities are retained with transfer to 3D culture systems [8]. Further, Cheng et al. showed that differences in matrix accumulation and hypertrophy in zonal chondrocytes was controlled by bone morphogenic protein [9]. To determine whether differences in zonal chondrocyte identity influences MSC fate decisions, we evaluated functional properties and phenotypic stability in photocrosslinked hyaluronic acid (HA) hydrogels using distinct, zonal chondrocyte cell fractions co-cultured with bone marrow derived MSCs.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography