Academic literature on the topic 'Human activity monitoring'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Human activity monitoring.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Human activity monitoring"
Fiore, Loren, Duc Fehr, Robot Bodor, Andrew Drenner, Guruprasad Somasundaram, and Nikolaos Papanikolopoulos. "Multi-Camera Human Activity Monitoring." Journal of Intelligent and Robotic Systems 52, no. 1 (January 29, 2008): 5–43. http://dx.doi.org/10.1007/s10846-007-9201-6.
Full textMaenaka, Kazusuke. "Human Activity Monitoring with MEMS Technology." IEEJ Transactions on Sensors and Micromachines 134, no. 12 (2014): 372–77. http://dx.doi.org/10.1541/ieejsmas.134.372.
Full textVettier, Benoit, and Catherine Garbay. "Abductive Agents for Human Activity Monitoring." International Journal on Artificial Intelligence Tools 23, no. 01 (February 2014): 1440002. http://dx.doi.org/10.1142/s0218213014400028.
Full textMAENAKA, Kazusuke. "Human Activity Monitoring System by MEMS Devices." Journal of The Institute of Electrical Engineers of Japan 132, no. 3 (2012): 148–51. http://dx.doi.org/10.1541/ieejjournal.132.148.
Full textNii, Manabu, Yoshihiro Kakiuchi, Kazunobu Takahama, Kazusuke Maenaka, Kohei Higuchi, and Takayuki Yumoto. "Human Activity Monitoring Using Fuzzified Neural Networks." Procedia Computer Science 22 (2013): 960–67. http://dx.doi.org/10.1016/j.procs.2013.09.180.
Full textFonollosa, Jordi, Irene Rodriguez-Lujan, Abhijit V. Shevade, Margie L. Homer, Margaret A. Ryan, and Ramón Huerta. "Human activity monitoring using gas sensor arrays." Sensors and Actuators B: Chemical 199 (August 2014): 398–402. http://dx.doi.org/10.1016/j.snb.2014.03.102.
Full textZhongna Zhou, Xi Chen, Yu-Chia Chung, Zhihai He, T. X. Han, and J. M. Keller. "Activity Analysis, Summarization, and Visualization for Indoor Human Activity Monitoring." IEEE Transactions on Circuits and Systems for Video Technology 18, no. 11 (November 2008): 1489–98. http://dx.doi.org/10.1109/tcsvt.2008.2005612.
Full textMaenaka, Kazusuke. "Miniaturized Human Activity Monitoring System with MEMS Technology." Journal of The Japan Institute of Electronics Packaging 23, no. 5 (August 1, 2020): 331–36. http://dx.doi.org/10.5104/jiep.23.331.
Full textWashino, Fumihiro, Yuki Matsumoto, Tomoya Tanaka, Koji Sonoda, Kensuke Kanda, Takayuki Fujita, and Kazusuke Maenaka. "Low Power ASIC for Monitoring Human Motion Activity." IEEJ Transactions on Sensors and Micromachines 135, no. 5 (2015): 178–83. http://dx.doi.org/10.1541/ieejsmas.135.178.
Full textFujita, Takayuki, Jun Okada, Sayaka Okochi, Kohei Higuchi, and Kazusuke Maenaka. "Autonomous Environmental Sensing System for Human Activity Monitoring." Journal of Advanced Computational Intelligence and Intelligent Informatics 15, no. 3 (May 20, 2011): 383–88. http://dx.doi.org/10.20965/jaciii.2011.p0383.
Full textDissertations / Theses on the topic "Human activity monitoring"
TOKALA, SAI SUJIT, and RANADEEP ROKALA. "HUMAN ACTIVITY MONITORING USING SMARTPHONE." Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2566.
Full textI denna modell har vi utvecklat en algoritm för aktivitetsklassificeringoch energiförbrukning uppskattning , vilket hjälper oss i övervakningen daglig mänsklig aktivitet med större noggrannhet . Resultaten valideras med standard energiförbrukning teknik och aktivitetsklassificeringsvideoobservationer. Vi vill att denna modell ska integreras i smarta mobiltelefoner för att ge slutanvändaren en vänlig atmosfär utan att lägga några komplicerade funktioner för hantering av utrustningen . Denna modell är mycket användbart i klinisk uppföljning av patienterna , kommer det att hjälpa oss att övervaka gamla , sjuka och utvecklingsstörda personens aktivitetsidentifiering och hjälper oss i nära övervakning av patienterna men fysiskt att vara borta från dem . Våra bärbara MEMS baserade treaxlig accelerometer system baserat smartphone kompatibel algoritm tillsammans med andra fysiologiska övervakningsparametrarkommer att ge korrekt övervakning rörelse och energiförbrukning uppskattning för klinisk analys . Denna modell är användbar för analys och övervakning av grupp -och enskilda individer , vilket kommer att leda till att spåra deras rörelser och en framgångsrik räddningsaktion för att rädda dem från dödliga sjukdomar och förebygga risker när de är skadade . Framtida arbete kommer att vara kontinuerlig övervakning av ämnen enskild aktivitet tillsammans med gruppaktivitet . Identifiera hållning övergång av olika aktiviteter i en kort tid som att springa till sittande , sittande till stående , står att krypa etc.
0091-7660885577
Wusk, Grace Caroline. "Psychophysiological Monitoring of Crew State for Extravehicular Activity." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103386.
Full textDoctor of Philosophy
A spacewalk is one of the most important and physically and mentally challenging tasks that astronauts complete. With next-generation missions to the Moon and Mars, exploration spacewalks will challenge astronauts in reduced-weight environments (1/6 and 1/3 Earth's gravity) with longer, more frequent spacewalks and with less help from mission control. To keep astronauts safe while exploring there is a need to better understand astronaut health and performance (physical and mental) during spacewalks. With knowledge of how astronauts will respond to high workload and stressful events, we can plan missions and design tools that can best assist them during spacewalks on the Moon and Mars when help from Earth mission control is limited. Traditional tools of quantifying mental state are not suitable for real-time assessment during spacewalks. Current methods, including subjective surveys and performance-based computer tests, require time and attention to complete and cannot assess real-time operations. The focus of this dissertation is to create a psychophysiological monitoring tool to measure mental workload during a virtual reality (VR) spacewalk. Psychophysiological monitoring uses physiological measures, like heart rate and breathing rate, to predict psychological state, like high workload or stress. Physiological signals were recorded using commercial wearable devices in two human research studies, one at Virginia Tech and one at NASA Johnson Space Center. With machine learning, computer models can be trained to recognize patterns in physiological measures for different psychological states. Once a model is trained, it can be tested on new data to predict mental workload. To train and test the models, participants in the studies completed high and low workload versions of the VR task. The VR task was specifically designed for this study to simulate and measure performance during a mentally-challenging spacewalk scenario. The participants walked at their own pace on a treadmill while wearing a VR headset to move along a virtual lunar surface, while balancing their time and resources. They were also responsible for identifying and recalling flags along their virtual path. Ultimately, this work tests the limits of extending laboratory psychophysiological monitoring to more realistic environments using wearable devices, and of generalizing predictive models across participants, times, and tasks. This work paves the way for future field studies and real-time implementation to close the loop between human and automation.
Rajkumar, Reuben Sajith. "Monitoring Human Activity Patterns in Linnaean Botanical Gardens using Machine Learning." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-449230.
Full textGillman, Mark Daniel. "Interpreting human activity from electrical consumption data through non-intrusive load monitoring." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90136.
Full text50
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 155-160).
Non-intrusive load monitoring (NILM) has three distinct advantages over today's smart meters. First, it offers accountability. Few people know where their kWh's are going. Second, it is a maintenance tool. Signs of wear are detectable through their electrical signal. Third, it provides awareness of human activity within a network. Each device has an electrical fingerprint, and specific devices imply associated human actions. From voltage and current measurements at a single point on the network, non-intrusive load monitoring (NILM) disaggregates appliance-level information. This information is available remotely in bandwidth-constrained environments. Four real-world field tests at military micro grids and commercial buildings demonstrate the utility of the NILM in reducing electrical demand, enabling condition-based maintenance, and inferring human activity from electrical activity.
by Mark Daniel Gillman.
S.M.
Tun, Min Han. "Virtual image sensors to track human activity in a smart house." Curtin University of Technology, School of Computing, 2007. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=17557.
Full textThese algorithms are capable of adapting to the change, however, the quality of the segmentation is very poor during the adaptation phase. In this thesis, a framework to suppress these false positives is introduced. Image properties such as edges and textures are utilised to reduce the amount of false positives during adaptation phase. The framework is built on the idea of sequential pattern recognition. In any background modelling algorithm, the importance of multiple image features as well as different spatial scales cannot be overlooked. Failure to focus attention on these two factors will result in difficulty to detect and reduce false alarms caused by rapid light change and other conditions. The use of edge features in false alarm suppression is also explored. Edges are somewhat more resistant to environmental changes in video scenes. The assumption here is that regardless of environmental changes, such as that of illumination change, the edges of the objects should remain the same. The edge based approach is tested on several videos containing rapid light changes and shows promising results. Texture is then used to analyse video images and remove false alarm regions. Texture gradient approach and Laws Texture Energy Measures are used to find and remove false positives. It is found that Laws Texture Energy Measure performs better than the gradient approach. The results of using edges, texture and different combination of the two in false positive suppression are also presented in this work. This false positive suppression framework is applied to a smart house senario that uses cameras to model ”virtual sensors” to detect interactions of occupants with devices. Results show the accuracy of virtual sensors compared with the ground truth is improved.
Mar, Therese Frances. "The effects of physical activity and gender on the toxicokinetics of toluene in human volunteers /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8441.
Full textTurner, Tyler Norman. "Effects of Human Land Use on the Activity, Diversity, and Distribution of Native Bats." Bowling Green State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1522839181353869.
Full textWesteyn, Tracy Lee. "Child's play: activity recognition for monitoring children's developmental progress with augmented toys." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34697.
Full textMokhlespour, Esfahani Mohammad Iman. "Development and Assessment of Smart Textile Systems for Human Activity Classification." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/97249.
Full textPHD
Tsitsoulis, Athanasios. "A Methodology for Extracting Human Bodies from Still Images." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1389793781.
Full textBooks on the topic "Human activity monitoring"
Section, Minnesota Dept of Human Services Community Services Evaluation. Community Services Evaluation Section social services monitoring activity report. [St. Paul: Minnesota Dept. of Human Services, 1990.
Find full textHuman behavior recognition technologies: Intelligent applications for monitoring and security. Hershey, PA: Information Science Reference, 2013.
Find full textHodakov, Viktor. Natural environment and human activity. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1194879.
Full textInsincere commitments: Human rights treaties, abusive states, and citizen activism. Washington D.C: Georgetown University Press, 2012.
Find full textSeidman, G. Beyond the boycott: Labor rights, human rights, and transnational activism. New York: Russell Sage Foundation, 2007.
Find full textSeidman, G. Beyond the boycott: Labor rights, human rights, and transnational activism. New York, NY: Russell Sage Foundation, 2006.
Find full textGrabe, Shelly, ed. Women's Human Rights. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190614614.001.0001.
Full textSutter, Raoul, Peter W. Kaplan, and Donald L. Schomer. Historical Aspects of Electroencephalography. Edited by Donald L. Schomer and Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0001.
Full textGathii, James Thuo. The East African Court of Justice. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198795582.003.0003.
Full textBeyond the Boycott: Labor Rights, Human Rights, and Transnational Activism (American Sociological Association's Rose Series in Sociology). Russell Sage Foundation Publications, 2007.
Find full textBook chapters on the topic "Human activity monitoring"
Billah, Mohammad Saad, Md Atiqur Rahman Ahad, and Upal Mahbub. "Signal Processing for Contactless Monitoring." In Contactless Human Activity Analysis, 113–44. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68590-4_4.
Full textMahbub, Upal, Tauhidur Rahman, and Md Atiqur Rahman Ahad. "Contactless Human Monitoring: Challenges and Future Direction." In Contactless Human Activity Analysis, 335–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68590-4_12.
Full textZhang, Daqing, Kai Niu, Jie Xiong, Fusang Zhang, and Shengjie Li. "Location Independent Vital Sign Monitoring and Gesture Recognition Using Wi-Fi." In Contactless Human Activity Analysis, 185–202. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68590-4_7.
Full textKröse, Ben, Tim van Oosterhout, and Tim van Kasteren. "Activity Monitoring Systems in Health Care." In Computer Analysis of Human Behavior, 325–46. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-994-9_12.
Full textLeon, Javier Lamar, Raúl Alonso, Edel Garcia Reyes, and Rocio Gonzalez Diaz. "Topological Features for Monitoring Human Activities at Distance." In Activity Monitoring by Multiple Distributed Sensing, 40–51. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13323-2_4.
Full textVugic, Domagoj, Åsa Ehlén, and Aura Carreira. "Monitoring Homologous Recombination Activity in Human Cells." In Homologous Recombination, 115–26. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0644-5_9.
Full textSang, Vu Ngoc Thanh, Nguyen Duc Thang, Vo Van Toi, Nguyen Duc Hoang, and Truong Quang Dang Khoa. "Human Activity Recognition and Monitoring Using Smartphones." In IFMBE Proceedings, 481–85. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11776-8_119.
Full textTani, T., K. Kida, H. Yamamoto, and J. Kimura. "Reflexes Evoked in Various Human Muscles During Voluntary Activity." In Spinal Cord Monitoring and Electrodiagnosis, 226–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75744-0_30.
Full textSidorov, Konstantin V., Natalya I. Bodrina, and Natalya N. Filatova. "Monitoring Human Cognitive Activity Through Biomedical Signal Analysis." In Advances in Neural Computation, Machine Learning, and Cognitive Research IV, 309–15. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60577-3_37.
Full textKoul, Shiban Kishen, and Richa Bharadwaj. "Wearable Technology for Human Activity Monitoring and Recognition." In Lecture Notes in Electrical Engineering, 191–218. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3973-9_7.
Full textConference papers on the topic "Human activity monitoring"
Rafiq, Azhar, Xiaoming Zhao, Cosmin Boanca, Esther Hughes, and Ronald Merrell. "Human Systems Monitoring during Extravehicular Activity." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-2206.
Full textGabriel, Iana Vasile, and Petre Anghelescu. "Vibration monitoring system for human activity detection." In 2015 7th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). IEEE, 2015. http://dx.doi.org/10.1109/ecai.2015.7301184.
Full textUddin, Mostafa, Ahmed Salem, Ilho Nam, and Tamer Nadeem. "Wearable Sensing Framework for Human Activity Monitoring." In the 2015 workshop. New York, New York, USA: ACM Press, 2015. http://dx.doi.org/10.1145/2753509.2753513.
Full textWijayasekara, D., and M. Manic. "Human machine interaction via brain activity monitoring." In 2013 6th International Conference on Human System Interactions (HSI). IEEE, 2013. http://dx.doi.org/10.1109/hsi.2013.6577809.
Full textSriwan, Jakkrit, and Wannarat Suntiamorntut. "Human activity monitoring system based on WSNs." In 2015 12th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE, 2015. http://dx.doi.org/10.1109/jcsse.2015.7219804.
Full textMitsou, Alexandros, Evaggelos Spyrou, and Theodoros Giannakopoulos. "Multimodal Workplace Monitoring for Human Activity Recognition." In PCI 2021: 25th Pan-Hellenic Conference on Informatics. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3503823.3503862.
Full textFujita, Takayuki, Kentaro Masaki, Fumiaki Suzuki, and Kazusuke Maenaka. "Wireless MEMS Sensing System for Human Activity Monitoring." In 2007 IEEE/ICME International Conference on Complex Medical Engineering. IEEE, 2007. http://dx.doi.org/10.1109/iccme.2007.4381768.
Full textSebestyen, Gheorghe, Ionut Stoica, and Anca Hangan. "Human activity recognition and monitoring for elderly people." In 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing (ICCP). IEEE, 2016. http://dx.doi.org/10.1109/iccp.2016.7737171.
Full textUslu, Gamze, Ozgur Altun, and Sebnem Baydere. "A Bayesian approach for indoor human activity monitoring." In 2011 11th International Conference on Hybrid Intelligent Systems (HIS 2011). IEEE, 2011. http://dx.doi.org/10.1109/his.2011.6122126.
Full textSharma, Annapurna, Young-Dong Lee, and Wan-Young Chung. "High Accuracy Human Activity Monitoring Using Neural Network." In 2008 Third International Conference on Convergence and Hybrid Information Technology (ICCIT). IEEE, 2008. http://dx.doi.org/10.1109/iccit.2008.394.
Full textReports on the topic "Human activity monitoring"
Willis, C., F. Jorgensen, S. A. Cawthraw, H. Aird, S. Lai, M. Chattaway, I. Lock, E. Quill, and G. Raykova. A survey of Salmonella, Escherichia coli (E. coli) and antimicrobial resistance in frozen, part-cooked, breaded or battered poultry products on retail sale in the United Kingdom. Food Standards Agency, May 2022. http://dx.doi.org/10.46756/sci.fsa.xvu389.
Full text