Journal articles on the topic 'Hot carrier solar cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hot carrier solar cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Ikeri, H. I., A. I. Onyia, and F. N. Kalu. "Hot carrier exploitation strategies and model for efficient solar cell applications." Chalcogenide Letters 18, no. 11 (November 2021): 745–57. http://dx.doi.org/10.15251/cl.2021.1811.745.
Full textConibeer, Gavin, Robert Patterson, Lunmei Huang, Jean-Francois Guillemoles, Dirk Kőnig, Santosh Shrestha, and Martin A. Green. "Modelling of hot carrier solar cell absorbers." Solar Energy Materials and Solar Cells 94, no. 9 (September 2010): 1516–21. http://dx.doi.org/10.1016/j.solmat.2010.01.018.
Full textKonovalov, Igor, and Vitali Emelianov. "Hot carrier solar cell as thermoelectric device." Energy Science & Engineering 5, no. 3 (June 2017): 113–22. http://dx.doi.org/10.1002/ese3.159.
Full textSogabe, Tomah, Kodai Shiba, and Katsuyoshi Sakamoto. "Hydrodynamic and Energy Transport Model-Based Hot-Carrier Effect in GaAs pin Solar Cell." Electronic Materials 3, no. 2 (May 11, 2022): 185–200. http://dx.doi.org/10.3390/electronicmat3020016.
Full textKönig, D., Y. Takeda, and B. Puthen-Veettil. "Technology-compatible hot carrier solar cell with energy selective hot carrier absorber and carrier-selective contacts." Applied Physics Letters 101, no. 15 (October 8, 2012): 153901. http://dx.doi.org/10.1063/1.4757979.
Full textWürfel, P., A. S. Brown, T. E. Humphrey, and M. A. Green. "Particle conservation in the hot-carrier solar cell." Progress in Photovoltaics: Research and Applications 13, no. 4 (2005): 277–85. http://dx.doi.org/10.1002/pip.584.
Full textKönig, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil, and Gavin Conibeer. "Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber." Japanese Journal of Applied Physics 51 (October 22, 2012): 10ND02. http://dx.doi.org/10.1143/jjap.51.10nd02.
Full textKönig, Dirk, Yasuhiko Takeda, Binesh Puthen-Veettil, and Gavin Conibeer. "Lattice-Matched Hot Carrier Solar Cell with Energy Selectivity Integrated into Hot Carrier Absorber." Japanese Journal of Applied Physics 51, no. 10S (October 1, 2012): 10ND02. http://dx.doi.org/10.7567/jjap.51.10nd02.
Full textBoyer-Richard, Soline, Fei Fan, Nicolas Chevalier, Antoine Létoublon, Alexandre Beck, Karine Tavernier, Shalu Rani, et al. "Preliminary study of selective contacts for hot carrier solar cells." EPJ Photovoltaics 15 (2024): 38. http://dx.doi.org/10.1051/epjpv/2024031.
Full textFerry, D. K. "In search of a true hot carrier solar cell." Semiconductor Science and Technology 34, no. 4 (March 20, 2019): 044001. http://dx.doi.org/10.1088/1361-6641/ab0bc3.
Full textKonovalov, I., V. Emelianov, and R. Linke. "Hot carrier solar cell with semi infinite energy filtering." Solar Energy 111 (January 2015): 1–9. http://dx.doi.org/10.1016/j.solener.2014.10.028.
Full textConibeer, G. J., D. König, M. A. Green, and J. F. Guillemoles. "Slowing of carrier cooling in hot carrier solar cells." Thin Solid Films 516, no. 20 (August 2008): 6948–53. http://dx.doi.org/10.1016/j.tsf.2007.12.102.
Full textLi, Mingjie, Jianhui Fu, Qiang Xu, and Tze Chien Sum. "Slow Hot‐Carrier Cooling in Halide Perovskites: Prospects for Hot‐Carrier Solar Cells." Advanced Materials 31, no. 47 (January 2, 2019): 1802486. http://dx.doi.org/10.1002/adma.201802486.
Full textPiccone, Ashley. "Combining hot-carrier and multijunction solar cells increases efficiency, lowers cost." Scilight 2022, no. 21 (May 27, 2022): 211106. http://dx.doi.org/10.1063/10.0009522.
Full textChung, Simon, Santosh Shrestha, Xiaoming Wen, Yu Feng, Neeti Gupta, Hongze Xia, Pyng Yu, Jau Tang, and Gavin Conibeer. "Hafnium nitride for hot carrier solar cells." Solar Energy Materials and Solar Cells 144 (January 2016): 781–86. http://dx.doi.org/10.1016/j.solmat.2014.10.011.
Full textHirst, L. C., M. P. Lumb, R. Hoheisel, C. G. Bailey, S. P. Philipps, A. W. Bett, and R. J. Walters. "Spectral sensitivity of hot carrier solar cells." Solar Energy Materials and Solar Cells 120 (January 2014): 610–15. http://dx.doi.org/10.1016/j.solmat.2013.10.003.
Full textKönig, Dirk, and Yao Yao. "Practical concept of an all-optical hot carrier solar cell." Japanese Journal of Applied Physics 54, no. 8S1 (July 2, 2015): 08KA03. http://dx.doi.org/10.7567/jjap.54.08ka03.
Full textFarrell, D. J., Y. Takeda, K. Nishikawa, T. Nagashima, T. Motohiro, and N. J. Ekins-Daukes. "A hot-carrier solar cell with optical energy selective contacts." Applied Physics Letters 99, no. 11 (September 12, 2011): 111102. http://dx.doi.org/10.1063/1.3636401.
Full textLimpert, S., S. Bremner, and H. Linke. "Reversible electron–hole separation in a hot carrier solar cell." New Journal of Physics 17, no. 9 (September 21, 2015): 095004. http://dx.doi.org/10.1088/1367-2630/17/9/095004.
Full textConibeer, Gavin, Santosh Shrestha, Shujuan Huang, Robert Patterson, Hongze Xia, Yu Feng, Pengfei Zhang, et al. "Hot carrier solar cell absorber prerequisites and candidate material systems." Solar Energy Materials and Solar Cells 135 (April 2015): 124–29. http://dx.doi.org/10.1016/j.solmat.2014.11.015.
Full textSambur, Justin. "(Invited) Energy Level Alignment and Hot Carrier Extraction in Monolayer Semiconductor Photoelectrochemical Cells." ECS Meeting Abstracts MA2023-01, no. 13 (August 28, 2023): 1300. http://dx.doi.org/10.1149/ma2023-01131300mtgabs.
Full textCao, Wenkai, Zewen Zhang, Rob Patterson, Yuan Lin, Xiaoming Wen, Binesh Puthen Veetil, Pengfei Zhang, et al. "Quantification of hot carrier thermalization in PbS colloidal quantum dots by power and temperature dependent photoluminescence spectroscopy." RSC Advances 6, no. 93 (2016): 90846–55. http://dx.doi.org/10.1039/c6ra20165b.
Full textSambur, Justin, Rachelle Austin, Yusef Farah, and Amber Krummel. "(Invited) Energy Level Alignment at Monolayer MoS2/Electrolyte Interfaces." ECS Meeting Abstracts MA2022-01, no. 12 (July 7, 2022): 864. http://dx.doi.org/10.1149/ma2022-0112864mtgabs.
Full textKonovalov, Igor, and Bernd Ploss. "Modeling of hot carrier solar cell with semi-infinite energy filtering." Solar Energy 185 (June 2019): 59–63. http://dx.doi.org/10.1016/j.solener.2019.04.050.
Full textKamide, K. "Current–voltage curves and operational stability in hot-carrier solar cell." Journal of Applied Physics 127, no. 18 (May 14, 2020): 183102. http://dx.doi.org/10.1063/5.0002934.
Full textSambur, Justin, Rachelle Austin, Rafael Almaraz, Amber Krummel, Andres Montoya-Castillo, Tom Sayer, and Justin Toole. "(Invited) Photoelectrochemistry of Monolayer 2D Semiconductors: Quantifying Band Gap Renormalization Effects and Hot Carrier Extraction." ECS Meeting Abstracts MA2024-01, no. 12 (August 9, 2024): 1015. http://dx.doi.org/10.1149/ma2024-01121015mtgabs.
Full textZhang, Yu, ChiYung Yam, and George C. Schatz. "Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells." Journal of Physical Chemistry Letters 7, no. 10 (May 5, 2016): 1852–58. http://dx.doi.org/10.1021/acs.jpclett.6b00879.
Full textConibeer, G. J., C. W. Jiang, D. König, S. Shrestha, T. Walsh, and M. A. Green. "Selective energy contacts for hot carrier solar cells." Thin Solid Films 516, no. 20 (August 2008): 6968–73. http://dx.doi.org/10.1016/j.tsf.2007.12.031.
Full textKönig, D., K. Casalenuovo, Y. Takeda, G. Conibeer, J. F. Guillemoles, R. Patterson, L. M. Huang, and M. A. Green. "Hot carrier solar cells: Principles, materials and design." Physica E: Low-dimensional Systems and Nanostructures 42, no. 10 (September 2010): 2862–66. http://dx.doi.org/10.1016/j.physe.2009.12.032.
Full textShrestha, Santosh K., Pasquale Aliberti, and Gavin J. Conibeer. "Energy selective contacts for hot carrier solar cells." Solar Energy Materials and Solar Cells 94, no. 9 (September 2010): 1546–50. http://dx.doi.org/10.1016/j.solmat.2009.11.029.
Full textTakeda, Yasuhiko, Tadashi Ito, Tomoyoshi Motohiro, Dirk König, Santosh Shrestha, and Gavin Conibeer. "Hot carrier solar cells operating under practical conditions." Journal of Applied Physics 105, no. 7 (April 2009): 074905. http://dx.doi.org/10.1063/1.3086447.
Full textTakeda, Yasuhiko. "Intermediate‐band effect in hot‐carrier solar cells." Progress in Photovoltaics: Research and Applications 27, no. 6 (March 27, 2019): 528–39. http://dx.doi.org/10.1002/pip.3129.
Full textAšmontas, Steponas, Oleksandr Masalskyi, Ihor Zharchenko, Algirdas Sužiedėlis, and Jonas Gradauskas. "Some Aspects of Hot Carrier Photocurrent across GaAs p-n Junction." Inorganics 12, no. 6 (June 20, 2024): 174. http://dx.doi.org/10.3390/inorganics12060174.
Full textLimpert, Steven C., and Stephen P. Bremner. "Hot carrier extraction using energy selective contacts and its impact on the limiting efficiency of a hot carrier solar cell." Applied Physics Letters 107, no. 7 (August 17, 2015): 073902. http://dx.doi.org/10.1063/1.4928750.
Full textBehaghel, B., R. Tamaki, H.-L. Chen, P. Rale, L. Lombez, Y. Shoji, A. Delamarre, et al. "A hot-carrier assisted InAs/AlGaAs quantum-dot intermediate-band solar cell." Semiconductor Science and Technology 34, no. 8 (July 17, 2019): 084001. http://dx.doi.org/10.1088/1361-6641/ab23d0.
Full textWang, Gang, Li Ping Liao, Ahmed Mourtada Elseman, Yan Qing Yao, Chun Yan Lin, Wei Hu, De Bei Liu, et al. "An internally photoemitted hot carrier solar cell based on organic-inorganic perovskite." Nano Energy 68 (February 2020): 104383. http://dx.doi.org/10.1016/j.nanoen.2019.104383.
Full textFarrell, Daniel J., Hassanet Sodabanlu, Yunpeng Wang, Masakazu Sugiyama, and Yoshitaka Okada. "Can a Hot-Carrier Solar Cell also be an Efficient Up-converter?" IEEE Journal of Photovoltaics 5, no. 2 (March 2015): 571–76. http://dx.doi.org/10.1109/jphotov.2014.2373817.
Full textCalderón-Muñoz, Williams R., and Cristian Jara-Bravo. "Hydrodynamic modeling of hot-carrier effects in a PN junction solar cell." Acta Mechanica 227, no. 11 (January 14, 2016): 3247–60. http://dx.doi.org/10.1007/s00707-015-1538-5.
Full textGupta, Ritesh Kant, Rabindranath Garai, Mohammad Adil Afroz, and Parameswar Krishnan Iyer. "Regulating active layer thickness and morphology for high performance hot-casted polymer solar cells." Journal of Materials Chemistry C 8, no. 24 (2020): 8191–98. http://dx.doi.org/10.1039/d0tc00822b.
Full textWang, Junyi, Youlin Wang, Xiaohang Chen, Jincan Chen, and Shanhe Su. "Hot carrier-based near-field thermophotovoltaics with energy selective contacts." Applied Physics Letters 122, no. 12 (March 20, 2023): 122203. http://dx.doi.org/10.1063/5.0143300.
Full textAšmontas, S., J. Gradauskas, A. Sužiedėlis, A. Šilėnas, E. Širmulis, V. Švedas, V. Vaičikauskas, and O. Žalys. "Hot carrier impact on photovoltage formation in solar cells." Applied Physics Letters 113, no. 7 (August 13, 2018): 071103. http://dx.doi.org/10.1063/1.5043155.
Full textFerry, D. K., S. M. Goodnick, V. R. Whiteside, and I. R. Sellers. "Challenges, myths, and opportunities in hot carrier solar cells." Journal of Applied Physics 128, no. 22 (December 14, 2020): 220903. http://dx.doi.org/10.1063/5.0028981.
Full textWatanabe, Daiki, Naofumi Kasamatsu, Yukihiro Harada, and Takashi Kita. "Hot-carrier solar cells using low-dimensional quantum structures." Applied Physics Letters 105, no. 17 (October 27, 2014): 171904. http://dx.doi.org/10.1063/1.4900947.
Full textLuque, Antonio, and Antonio Martí. "Electron–phonon energy transfer in hot-carrier solar cells." Solar Energy Materials and Solar Cells 94, no. 2 (February 2010): 287–96. http://dx.doi.org/10.1016/j.solmat.2009.10.001.
Full textLe Bris, Arthur, Jean Rodiere, Clément Colin, Stéphane Collin, Jean-Luc Pelouard, Rubén Esteban, Marine Laroche, Jean-Jacques Greffet, and Jean-François Guillemoles. "Hot Carrier Solar Cells: Controlling Thermalization in Ultrathin Devices." IEEE Journal of Photovoltaics 2, no. 4 (October 2012): 506–11. http://dx.doi.org/10.1109/jphotov.2012.2207376.
Full textGiteau, Maxime, Daniel Suchet, Stéphane Collin, Jean-François Guillemoles, and Yoshitaka Okada. "Detailed balance calculations for hot-carrier solar cells: coupling high absorptivity with low thermalization through light trapping." EPJ Photovoltaics 10 (2019): 1. http://dx.doi.org/10.1051/epjpv/2019001.
Full textChen, Yuzhong, Yujie Li, Yida Zhao, Hongzhi Zhou, and Haiming Zhu. "Highly efficient hot electron harvesting from graphene before electron-hole thermalization." Science Advances 5, no. 11 (November 2019): eaax9958. http://dx.doi.org/10.1126/sciadv.aax9958.
Full textChen Shuhan, 陈舒涵, 刘晓春 Liu Xiaochun, 王丽娜 Wang Lina, and 弓爵 Gong Jue. "钙钛矿材料在热载流子太阳能电池中的研究进展." Laser & Optoelectronics Progress 60, no. 13 (2023): 1316021. http://dx.doi.org/10.3788/lop230819.
Full textKahmann, Simon, and Maria A. Loi. "Hot carrier solar cells and the potential of perovskites for breaking the Shockley–Queisser limit." Journal of Materials Chemistry C 7, no. 9 (2019): 2471–86. http://dx.doi.org/10.1039/c8tc04641g.
Full textGradauskas, J., O. Masalskyi, S. Asmontas, A. Suziedelis, A. Rodin, and I. Zharchenko. "HOT CARRIER PHOTOCURRENT AS AN INTRINSIC LOSS IN A SINGLE JUNCTION SOLAR CELL." Ukrainian Journal of Physical Optics 25, no. 1 (2024): 01106–12. http://dx.doi.org/10.3116/16091833/ukr.j.phys.opt.2024.01106.
Full text