Academic literature on the topic 'Host identity protocol'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Host identity protocol.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Host identity protocol"

1

Malik, Gaurav, and Anshul Anand. "Real Study of Host Identity Protocol." International Journal of Computer Trends and Technology 11, no. 5 (May 25, 2014): 231–33. http://dx.doi.org/10.14445/22312803/ijctt-v11p149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Levä, Tapio, Miika Komu, Ari Keränen, and Sakari Luukkainen. "Adoption barriers of network layer protocols: The case of host identity protocol." Computer Networks 57, no. 10 (July 2013): 2218–32. http://dx.doi.org/10.1016/j.comnet.2012.11.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ben Jemaa, Maher, Nahla Abid, Maryline Laurent-Maknavicius, and Hakima Chaouchi. "Experimental Measurements of Host Identity Protocol for Mobile Nodes' Networks." Journal of Computer Systems, Networks, and Communications 2009 (2009): 1–6. http://dx.doi.org/10.1155/2009/383517.

Full text
Abstract:
The role of Internet Protocol (IP) is becoming more and more problematic especially with the new requirements of mobility and multihoming. Host Identity protocol (HIP) defines a new protocol between the network and transport layers in order to provide a better management to those requirements. The protocol defines a new namespace based on cryptographic identifiers which enable the IP address roles dissociation. Those new identifiers identify hosts rather than IP addresses. Because HIP is a quite recent protocol, we propose to present an experimental evaluation of its basic characteristics.
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Shuigen, Huachun Zhou, Yajuan Qin, and Hongke Zhang. "SHIP: Cross-layer mobility management scheme based on Session Initiation Protocol and Host Identity Protocol." Telecommunication Systems 42, no. 1-2 (June 12, 2009): 5–15. http://dx.doi.org/10.1007/s11235-009-9164-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Faigl, Zoltán, and Miklós Telek. "Modeling the signaling overhead in Host Identity Protocol-based secure mobile architectures." Journal of Industrial & Management Optimization 11, no. 3 (2015): 887–920. http://dx.doi.org/10.3934/jimo.2015.11.887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bokor, László, Zoltán Faigl, and Sándor Imre. "Survey and Evaluation of Advanced Mobility Management Schemes in the Host Identity Layer." International Journal of Wireless Networks and Broadband Technologies 3, no. 1 (January 2014): 34–59. http://dx.doi.org/10.4018/ijwnbt.2014010103.

Full text
Abstract:
This paper is committed to give an overview of the Host Identity Protocol (HIP), to introduce the basic ideas and the main paradigms behind it, and to make an exhaustive survey of mobility management schemes in the Host Identity Layer. The authors' goal is to show how HIP emerges from the list of potential alternatives with its wild range of possible usability, complex feature set and power to create a novel framework for future Mobile Internet architectures. In order to achieve this, the authors also perform an extensive simulation evaluation of four selected mobility solutions in the Host Identity Layer: the standard HIP mobility/multihoming (RFC5206), a micromobility solution (µHIP), a network mobility management scheme (HIP-NEMO) and a proactive, cross-layer optimized, distributed proposal designed for flat architectures (UFA-HIP).
APA, Harvard, Vancouver, ISO, and other styles
7

Hossain, Mahmud, and Ragib Hasan. "P-HIP: A Lightweight and Privacy-Aware Host Identity Protocol for Internet of Things." IEEE Internet of Things Journal 8, no. 1 (January 1, 2021): 555–71. http://dx.doi.org/10.1109/jiot.2020.3009024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nikander, Pekka, Andrei Gurtov, and Thomas R. Henderson. "Host Identity Protocol (HIP): Connectivity, Mobility, Multi-Homing, Security, and Privacy over IPv4 and IPv6 Networks." IEEE Communications Surveys & Tutorials 12, no. 2 (2010): 186–204. http://dx.doi.org/10.1109/surv.2010.021110.00070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Porambage, Pawani, An Braeken, Pardeep Kumar, Andrei Gurtov, and Mika Ylianttila. "CHIP: Collaborative Host Identity Protocol with Efficient Key Establishment for Constrained Devices in Internet of Things." Wireless Personal Communications 96, no. 1 (April 29, 2017): 421–40. http://dx.doi.org/10.1007/s11277-017-4176-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Chan Haeng, and Ji Su Park. "A Design for SDN-Based Identifier–Locator Separation Architecture on IoT Networks." Applied Sciences 10, no. 6 (March 21, 2020): 2144. http://dx.doi.org/10.3390/app10062144.

Full text
Abstract:
In upcoming smart urban environments, various things can be interconnected, and the Internet of Things (IoT) can be used to construct a safer and more convenient urban environment. Things in the IoT need an addressing system that can uniquely identify each one; internet protocol (IP) addresses can be used for this purpose. The IP address the two roles of an identifier and a locator. However, this binding has problems related to mobility and multihoming, and it is hard to deploy on a legacy IP system because of some limitations of sensor devices. To solve the problem, we propose a design for software-defined networking (SDN)-based identifier–locator separation architecture on IoT networks. In the proposed scheme, Internet Protocol version 6(IPv6)-based addresses are used for the identifiers and locators. The network is partitioned into a host identity domain for local routing and an IP domain for global routing. The host identity domain operates as an overlaid network over the IP domain, and it makes the unrouteable identifiers routable with a distributed hash table (DHT)-based routing strategy. For the evaluation of the proposed scheme, a packet forwarding cost and signaling cost model is calculated, and the results show that the proposed scheme is conjugable to an IoT network environment.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Host identity protocol"

1

MAEKAWA, Keiji. "A Location Privacy Protection Framework with Mobility Using Host Identity Protocol." Kyoto University, 2009. http://hdl.handle.net/2433/71165.

Full text
Abstract:
Mobility is a key element of the future Internet. The location privacy problem is one of the problems involved in mobility. A great benefit of universally available access to the Internet might bring a risk such that a user’s location is traceable by others. Most of the mobility protocols define a mechanism of informing the correspondents of location change, in order to realize mobility. Therefore, the correspondents and eavesdroppers on the path will notice a movement and its destination. The problem changes its situation, according to the node from which the location of a mobile node should be concealed. We classify the nodes into two types: correspondents or onlookers on the path. In addition, we often assume there are some trustworthy nodes on the path. There are some existing researches on this problem, e.g. HIP Location Privacy Framework by Matos et al. and BLIND by Ylitalo and Nikander. They showed that it is possible to conceal location from a correspondents and a part of onlookers by introducing a trustworthy helper node, and especially when mobility is not needed at all, from all the onlookers, too. In this research, we have proposed a new framework using Host Identity Protocol (HIP), and with it we showed that it is also possible to protect location privacy from all other nodes in IP communication with mobility. We take advantage of the notable feature of HIP that public keys are used as host identifiers, so that our framework gives a way to separate IDs for mobility from those for end-to-end communication. We constructed an extensional mobility management protocol of BLIND, and discussed a trade-off in terms of efficiency and operational cost.
モビリティ技術は今後のインターネットの発展を考える上で重要な位置を占める要素である.モビリティと深く関連する問題のひとつとして,ロケーションプライバシ問題がある.あらゆる場所からインターネットへアクセスが可能となる利便性の裏には,ユーザの位置を第三者に追跡されるリスクがつきまとう.多くの場合,モビリティプロトコルでは通信相手に自身の移動を知らせることによってモビリティを実現する.そのため通信相手や盗聴者が移動ノードの位置の変化およびその移動先を知ることになる.この問題はユーザの位置情報を誰に対して秘匿するかによって状況が異なる.秘匿対象として通信相手と通信経路上の第三者の二種類を考え,さらに後者の一部に信頼できるノードを仮定する場合がある.この問題に対する従来研究としてMatos らによるHIP Location PrivacyFramework やYlitalo らによるBLIND などがあり,信頼できる補助ノードを導入することで通信相手や一部の盗聴者に対する位置の秘匿が可能であることや,モビリティを考慮しない状況に限れば,通信相手および通信経路上の全ノードに対する位置の秘匿が可能であることが知られている.本研究において我々はHost Identity Protocol (HIP) を使った新たな手法を提案し,ネットワーク間の移動を伴うIP 通信においても,すべての対象に対するロケーションプライバシの保護が可能であることを示した.我々の手法では,公開鍵がホストの識別子として使われるというHIP の特徴を活用し,移動用のID と通信用のID とを分離する.これに基づいてBLINDに対してモビリティ管理を行うための拡張プロトコルを構成し,モビリティとロケーションプライバシの両立に伴う通信効率や運用コストとのトレードオフについて考察した.
Kyoto University (京都大学)
0048
修士
修士(情報学)
APA, Harvard, Vancouver, ISO, and other styles
2

Liyanage, M. (Madhusanka). "Enhancing security and scalability of Virtual Private LAN Services." Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526213767.

Full text
Abstract:
Abstract Ethernet based VPLS (Virtual Private LAN Service) is a transparent, protocol independent, multipoint L2VPN (Layer 2 Virtual Private Network) mechanism to interconnect remote customer sites over IP (Internet Protocol) or MPLS (Multiprotocol Label Switching) based provider networks. VPLS networks are now becoming attractive in many Enterprise applications, such as DCI (data center interconnect), voice over IP (VoIP) and videoconferencing services due to their simple, protocol-independent and cost efficient operation. However, these new VPLS applications demand additional requirements, such as elevated security, enhanced scalability, optimum utilization of network resources and further reduction in operational costs. Hence, the motivation of this thesis is to develop secure and scalable VPLS architectures for future communication networks. First, a scalable secure flat-VPLS architecture is proposed based on a Host Identity Protocol (HIP). It contains a session key-based security mechanism and an efficient broadcast mechanism that increase the forwarding and security plane scalability of VPLS networks. Second, a secure hierarchical-VPLS architecture is proposed to achieve control plane scalability. A novel encrypted label-based secure frame forwarding mechanism is designed to transport L2 frames over a hierarchical VPLS network. Third, a novel Distributed Spanning Tree Protocol (DSTP) is designed to maintain a loop free Ethernet network over a VPLS network. With DSTP it is proposed to run a modified STP (Spanning Tree Protocol) instance in each remote segment of the VPLS network. In addition, two Redundancy Identification Mechanisms (RIMs) termed Customer Associated RIMs (CARIM) and Provider Associated RIMs (PARIM) are used to mitigate the impact of invisible loops in the provider network. Lastly, a novel SDN (Software Defined Networking) based VPLS (Soft-VPLS) architecture is designed to overcome tunnel management limitations in legacy secure VPLS architectures. Moreover, three new mechanisms are proposed to improve the performance of legacy tunnel management functions: 1) A dynamic tunnel establishment mechanism, 2) a tunnel resumption mechanism and 3) a fast transmission mechanism. The proposed architecture utilizes a centralized controller to command VPLS tunnel establishment based on real-time network behavior. Hence, the results of the thesis will help for more secure, scalable and efficient system design and development of VPLS networks. It will also help to optimize the utilization of network resources and further reduction in operational costs of future VPLS networks
Tiivistelmä Ethernet-pohjainen VPLS (Virtual Private LAN Service) on läpinäkyvä, protokollasta riippumaton monipisteverkkomekanismi (Layer 2 Virtual Private Network, L2VPN), jolla yhdistetään asiakkaan etäkohteet IP (Internet Protocol)- tai MPLS (Multiprotocol Label Switching) -yhteyskäytäntöön pohjautuvien palveluntarjoajan verkkojen kautta. VPLS-verkoista on yksinkertaisen protokollasta riippumattoman ja kustannustehokkaan toimintatapansa ansiosta tullut kiinnostavia monien yrityssovellusten kannalta. Tällaisia sovelluksia ovat esimerkiksi DCI (Data Center Interconnect), VoIP (Voice over IP) ja videoneuvottelupalvelut. Uusilta VPLS-sovelluksilta vaaditaan kuitenkin uusia asioita, kuten parempaa tietoturvaa ja skaalautuvuutta, optimaalista verkkoresurssien hyödyntämistä ja käyttökustannusten pienentämistä entisestään. Tämän väitöskirjan tarkoituksena onkin kehittää turvallisia ja skaalautuvia VPLS-arkkitehtuureja tulevaisuuden tietoliikenneverkoille. Ensin väitöskirjassa esitellään skaalautuva ja turvallinen flat-VPLS-arkkitehtuuri, joka perustuu Host Identity Protocol (HIP) -protokollaan. Seuraavaksi käsitellään istuntoavaimiin perustuvaa tietoturvamekanismia ja tehokasta lähetysmekanismia, joka parantaa VPLS-verkkojen edelleenlähetyksen ja tietoturvatason skaalautuvuutta. Tämän jälkeen esitellään turvallinen, hierarkkinen VPLS-arkkitehtuuri, jolla saadaan aikaan ohjaustason skaalautuvuus. Väitöskirjassa kuvataan myös uusi salattu verkkotunnuksiin perustuva tietokehysten edelleenlähetysmekanismi, jolla L2-kehykset siirretään hierarkkisessa VPLS-verkossa. Lisäksi väitöskirjassa ehdotetaan uuden Distributed Spanning Tree Protocol (DSTP) -protokollan käyttämistä vapaan Ethernet-verkkosilmukan ylläpitämiseen VPLS-verkossa. DSTP:n avulla on mahdollista ajaa muokattu STP (Spanning Tree Protocol) -esiintymä jokaisessa VPLS-verkon etäsegmentissä. Väitöskirjassa esitetään myös kaksi Redundancy Identification Mechanism (RIM) -mekanismia, Customer Associated RIM (CARIM) ja Provider Associated RIM (PARIM), joilla pienennetään näkymättömien silmukoiden vaikutusta palveluntarjoajan verkossa. Viimeiseksi ehdotetaan uutta SDN (Software Defined Networking) -pohjaista VPLS-arkkitehtuuria (Soft-VPLS) vanhojen turvallisten VPLS-arkkitehtuurien tunnelinhallintaongelmien poistoon. Näiden lisäksi väitöskirjassa ehdotetaan kolmea uutta mekanismia, joilla voidaan parantaa vanhojen arkkitehtuurien tunnelinhallintatoimintoja: 1) dynaaminen tunnelinluontimekanismi, 2) tunnelin jatkomekanismi ja 3) nopea tiedonsiirtomekanismi. Ehdotetussa arkkitehtuurissa käytetään VPLS-tunnelin luomisen hallintaan keskitettyä ohjainta, joka perustuu reaaliaikaiseen verkon käyttäytymiseen. Tutkimuksen tulokset auttavat suunnittelemaan ja kehittämään turvallisempia, skaalautuvampia ja tehokkaampia VLPS järjestelmiä, sekä auttavat hyödyntämään tehokkaammin verkon resursseja ja madaltamaan verkon operatiivisia kustannuksia
APA, Harvard, Vancouver, ISO, and other styles
3

Herborn, Stephen Electrical Engineering &amp Telecommunications Faculty of Engineering UNSW. "PACMAN: a personal-network centric approach to context and mobility aware networking." Awarded by:University of New South Wales. Electrical Engineering and Telecommunications, 2006. http://handle.unsw.edu.au/1959.4/31217.

Full text
Abstract:
Users (or software agents) are served by multiple networked terminal devices, each of which may in turn have multiple network interfaces. This multi-homing at both ???user??? and ???device??? level presents new opportunities for mobility handling. Mobility may be handled by switching ongoing application data streams between devices, by utilising intermediary adaptation or connectivity enhancement services, or both. However this requires middleware support that is not provided by current systems. This thesis presents a set of integrated solutions to enable this kind of mobility handling, based on concept of Personal Networks (PN). Personal Networks (PN) consist of dynamic conglomerations of terminal and service devices tasked to facilitate the delivery of information to and from a single focal point, which may be a human user or software agent. This concept creates the potential to view mobility handling as a path selection problem, since there may be multiple valid terminal device and service proxy configurations that can successfully carry a given communication session from one PN to another PN. Depending on context, it may be necessary to switch between paths. To this end, this thesis proposes and evaluates a set of inter-dependent mechanisms to facilitate the discovery and use of different candidate end-to-end paths. The proposal comprises mechanisms for secure inter-device mobility using delegated cryptographic identifiers, autonomous service proxy selection and composition, and distributed resolution of cryptographic identifiers to lower layer addresses.
APA, Harvard, Vancouver, ISO, and other styles
4

Tritilanunt, Suratose. "Protocol engineering for protection against denial-of-service attacks." Thesis, Queensland University of Technology, 2009. https://eprints.qut.edu.au/26277/1/Suratose_Tritilanunt_Thesis.pdf.

Full text
Abstract:
Denial-of-service attacks (DoS) and distributed denial-of-service attacks (DDoS) attempt to temporarily disrupt users or computer resources to cause service un- availability to legitimate users in the internetworking system. The most common type of DoS attack occurs when adversaries °ood a large amount of bogus data to interfere or disrupt the service on the server. The attack can be either a single-source attack, which originates at only one host, or a multi-source attack, in which multiple hosts coordinate to °ood a large number of packets to the server. Cryptographic mechanisms in authentication schemes are an example ap- proach to help the server to validate malicious tra±c. Since authentication in key establishment protocols requires the veri¯er to spend some resources before successfully detecting the bogus messages, adversaries might be able to exploit this °aw to mount an attack to overwhelm the server resources. The attacker is able to perform this kind of attack because many key establishment protocols incorporate strong authentication at the beginning phase before they can iden- tify the attacks. This is an example of DoS threats in most key establishment protocols because they have been implemented to support con¯dentiality and data integrity, but do not carefully consider other security objectives, such as availability. The main objective of this research is to design denial-of-service resistant mechanisms in key establishment protocols. In particular, we focus on the design of cryptographic protocols related to key establishment protocols that implement client puzzles to protect the server against resource exhaustion attacks. Another objective is to extend formal analysis techniques to include DoS- resistance. Basically, the formal analysis approach is used not only to analyse and verify the security of a cryptographic scheme carefully but also to help in the design stage of new protocols with a high level of security guarantee. In this research, we focus on an analysis technique of Meadows' cost-based framework, and we implement DoS-resistant model using Coloured Petri Nets. Meadows' cost-based framework is directly proposed to assess denial-of-service vulnerabil- ities in the cryptographic protocols using mathematical proof, while Coloured Petri Nets is used to model and verify the communication protocols using inter- active simulations. In addition, Coloured Petri Nets are able to help the protocol designer to clarify and reduce some inconsistency of the protocol speci¯cation. Therefore, the second objective of this research is to explore vulnerabilities in existing DoS-resistant protocols, as well as extend a formal analysis approach to our new framework for improving DoS-resistance and evaluating the performance of the new proposed mechanism. In summary, the speci¯c outcomes of this research include following results; 1. A taxonomy of denial-of-service resistant strategies and techniques used in key establishment protocols; 2. A critical analysis of existing DoS-resistant key exchange and key estab- lishment protocols; 3. An implementation of Meadows's cost-based framework using Coloured Petri Nets for modelling and evaluating DoS-resistant protocols; and 4. A development of new e±cient and practical DoS-resistant mechanisms to improve the resistance to denial-of-service attacks in key establishment protocols.
APA, Harvard, Vancouver, ISO, and other styles
5

Tritilanunt, Suratose. "Protocol engineering for protection against denial-of-service attacks." Queensland University of Technology, 2009. http://eprints.qut.edu.au/26277/.

Full text
Abstract:
Denial-of-service attacks (DoS) and distributed denial-of-service attacks (DDoS) attempt to temporarily disrupt users or computer resources to cause service un- availability to legitimate users in the internetworking system. The most common type of DoS attack occurs when adversaries °ood a large amount of bogus data to interfere or disrupt the service on the server. The attack can be either a single-source attack, which originates at only one host, or a multi-source attack, in which multiple hosts coordinate to °ood a large number of packets to the server. Cryptographic mechanisms in authentication schemes are an example ap- proach to help the server to validate malicious tra±c. Since authentication in key establishment protocols requires the veri¯er to spend some resources before successfully detecting the bogus messages, adversaries might be able to exploit this °aw to mount an attack to overwhelm the server resources. The attacker is able to perform this kind of attack because many key establishment protocols incorporate strong authentication at the beginning phase before they can iden- tify the attacks. This is an example of DoS threats in most key establishment protocols because they have been implemented to support con¯dentiality and data integrity, but do not carefully consider other security objectives, such as availability. The main objective of this research is to design denial-of-service resistant mechanisms in key establishment protocols. In particular, we focus on the design of cryptographic protocols related to key establishment protocols that implement client puzzles to protect the server against resource exhaustion attacks. Another objective is to extend formal analysis techniques to include DoS- resistance. Basically, the formal analysis approach is used not only to analyse and verify the security of a cryptographic scheme carefully but also to help in the design stage of new protocols with a high level of security guarantee. In this research, we focus on an analysis technique of Meadows' cost-based framework, and we implement DoS-resistant model using Coloured Petri Nets. Meadows' cost-based framework is directly proposed to assess denial-of-service vulnerabil- ities in the cryptographic protocols using mathematical proof, while Coloured Petri Nets is used to model and verify the communication protocols using inter- active simulations. In addition, Coloured Petri Nets are able to help the protocol designer to clarify and reduce some inconsistency of the protocol speci¯cation. Therefore, the second objective of this research is to explore vulnerabilities in existing DoS-resistant protocols, as well as extend a formal analysis approach to our new framework for improving DoS-resistance and evaluating the performance of the new proposed mechanism. In summary, the speci¯c outcomes of this research include following results; 1. A taxonomy of denial-of-service resistant strategies and techniques used in key establishment protocols; 2. A critical analysis of existing DoS-resistant key exchange and key estab- lishment protocols; 3. An implementation of Meadows's cost-based framework using Coloured Petri Nets for modelling and evaluating DoS-resistant protocols; and 4. A development of new e±cient and practical DoS-resistant mechanisms to improve the resistance to denial-of-service attacks in key establishment protocols.
APA, Harvard, Vancouver, ISO, and other styles
6

Gurkas, Aydin Gulsum Zeynep. "IP mobility enhancements for heterogeneous wireless networks." Thesis, Evry, Institut national des télécommunications, 2014. http://www.theses.fr/2014TELE0006/document.

Full text
Abstract:
Au cours des dernières décennies, le besoin pour des communications multimédia en mobilité est devenu indéniable dans les réseaux de type IP, ainsi la gestion de la mobilité et la continuité de session est depuis plusieurs années un problème de recherche très important aussi bien pour le milieu académique qu’industriel. Comme l'hétérogénéité des réseaux d’accès est en perpétuelle évolution, l'intégration des différents types de réseaux sans fil au niveau de la couche IP est devenue un domaine de recherche difficile et inévitable. L'un des problèmes les plus importants liés à l'exécution de la gestion de la mobilité concerne le fait que la couche d'application souffre de la modification d'adresses IP au cours du mouvement du nœud mobile alors que celle-ci construit sa session sur la base de l’adresse IP de connexion au réseau. Une nouvelle approche d'amélioration de la prise en charge de la mobilité propose de séparer l'identification de session et l'identification de l’emplacement ou l’attachement au réseau. Donc, par la séparation de ces deux concepts, les sessions ne sont pas identifiés par les adresses IP qui elles sont dynamiques puisque la mobilité dans le réseau impose le changement d’adresse IP, mais les nouveaux identificateurs uniques qui définissent un nœud et qui ne change pas à cause de la mobilité ce qui offrirait une stabilité pour le niveau applicatif. Selon ces concepts, Host Identity Protocol (HIP) est l'une des solutions dominantes en recherches qui est proposé par l'IETF et l’IRTF. Dans cette thèse, le protocole HIP est principalement examiné et de nouvelles améliorations de la mobilité sur la base de ce protocole ont été conçues et mises en place
Over the last decades, with rapid and tremendous growth of IP networks in mobile and wireless environments, mobility management and session continuity has become a more important issue. As the heterogeneity increases in network environments and gradual spread of Internet of Things wave, the integration of different types of wireless networks in the IP layer became a challenging and inevitable research area. One of the most important issues related to mobility management is related to the fact that the application layer suffers from the changing of IP addresses during the movement of the mobile node. It is expected the network layer and above layers to be aware of movement of mobile nodes. New wave in the improvement ideas on this concept is separating the session identification and the location identification. This avoids the applications to suffer when the IP address changes during the mobility. This new approach needs to introduce a new layer in the TCP/IP protocol stack, on top of the IP layer that will handle the new identifiers correspondent with the current IP address or new complete architecture designs which are inheriting locator/identifier separation idea. According to these concepts, Host Identity Protocol (HIP) is one of the dominant and prominent researches that is proposed by IETF and IRTF. This protocol proposes to solve the locator/identifier split problem by also including the security support. In this thesis, predominantly HIP protocol is examined and new mobility enhancements based on this protocol have been designed and introduced
APA, Harvard, Vancouver, ISO, and other styles
7

Wen, Wen. "Energy Efficient Secure Key Management Schemes for WSNs and IoT." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35257.

Full text
Abstract:
Secret sharing is critical to most applications making use of security and remains one of the most challenging research areas in modern cryptography. In this thesis, we propose a novel efficient multi-secret sharing scheme based on the Chinese remainder theorem (CRT) with two verification methods, while the previous works are mostly based on the Lagrange polynomial. Key management schemes play an important role in communication security in Wireless Sensor Networks (WSNs). While the previous works mainly targeting on two different types of WSNs: distributed and hieratical, in this thesis, we propose our flexible WSN key management scheme, which is based on (n,t,n) multi-secret sharing technique, to provide a key management solution for heterogeneous architecture. The powerful key managers are responsible for most of the communicational and computational workload. They can provide Peer-to-Peer pair-wise keys for a pair of sensors to establish a secure communication session, and in the same time, they can also form communication clusters as cluster heads according to different application requirements. Internet of Things (IoT) becomes more and more popular and practical in recent years. Considering the diversity of the devices and the application scenarios, it is extremely hard to couple two devices or sub-networks with different communication and computation resources. In this thesis, we propose novel key agreement schemes based on (n,t,n) multi-secret sharing techniques for IoT in order to achieve light weighted key exchange while using Host Identity Protocol (HIP). We refer the new schemes as HIP-MEXs with different underlying multi-secret sharing techniques. We analyzed the computational and communication costs of the extremely resource constrained device which is referred to as Initiator, and CRT based HIP-MEX successfully outsource the heavy workload to the proxy, which are considered more powerful, when establishing new secret key.
APA, Harvard, Vancouver, ISO, and other styles
8

So, Yick Hon Joseph, and joseph so@rmit edu au. "Wireless IP Network Mobility Management: Advancing from Mobile IP to HIP-Based Network." RMIT University. Electrical and Computer Engineering, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20090507.123036.

Full text
Abstract:
Wireless networking introduces a whole range of challenges to the traditional TCP/IP network. In particular, IP address the issue of overloading because IP addresses are used as a network locator and an end point identity in the different layers in an OSI model. Even though Mobile IP is widely deployed, it has significant problems relating to performance and security. The Host Identity Protocol (HIP) provides secure mobility management by solving the IP address overloading from another angle. It restructures the TCP/IP model and introduces a new layer and a new namespace. The performance of HIP has proven to be better than Mobile IP and also opens a range of new research opportunities. This dissertation proposes and analyses a new step-stone solution from the Mobile IP-based network into a HIP-based network. The main advantage of this new solution is that much less change is required to the operating system kernel of the end point compared to a full HIP implementation. The new step-stone solution allows Mobile IP to use some HIP features to provide better security and handover performance. This dissertation also proposes several new and novel HIP-based wireless communication network architectures. An HIP-based heterogeneous wireless network architecture and handover scheme has been proposed and analysed. These schemes limit the HIP signalling in the wireless network if no communication to external networks is needed. Beside the network architecture modification, the hybrid Session Initial Protocol (SIP) and HIP-based Voice over IP (VoIP) scheme is proposed and analysed. This novel scheme improves the handover latency and security. This dissertation also proposes and analyses a new and novel extension to HIP, a HIP-based micro-mobility management, micro-HIP (mHIP). mHIP provides a new secure framework for micro-mobility management. It is a more complete HIP-based micro-mobility solution than any other proposed in existing studies. mHIP improves the intra-domain handover performance, the security, and the distribution of load in the intra-domain handover signalling. The new work presented opens up a number of very interesting research opportunities.
APA, Harvard, Vancouver, ISO, and other styles
9

Namal, S. (Suneth). "Enhanced communication security and mobility management in small-cell networks." Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526206370.

Full text
Abstract:
Abstract Software-Defined Networks (SDN) focus on addressing the challenges of increased complexity and unified communication, for which the conventional networks are not optimally suited due to their static architecture. This dissertation discusses the methods about how to enhance communication security and mobility management in small-cell networks with IEEE 802.11 backhaul. Although 802.11 has become a mission-critical component of enterprise networks, in many cases it is not managed with the same rigor as the wired networks. 802.11 networks are thus in need of undergoing the same unified management as the wired networks. This dissertation also addresses several new issues from the perspective of mobility management in 802.11 backhaul. Due to lack of built-in quality of service support, IEEE 802.11 experiences serious challenges in meeting the demands of modern services and applications. 802.11 networks require significantly longer duration in association compared to what the real-time applications can tolerate. To optimise host mobility in IEEE 802.11, an extension to the initial authentication is provided by utilising Host Identity Protocol (HIP) based identity attributes and Elliptic Curve Cryptography (ECC) based session key generation. Finally, this dissertation puts forward the concept of SDN based cell mobility and network function virtualization, its counterpart. This is validated by introducing a unified SDN and cognitive radio architecture for harmonized end-to-end resource allocation and management presented at the end
Tiivistelmä Ohjelmisto-ohjatut verkot (SDN) keskittyvät ratkaisemaan haasteita liittyen kasvaneeseen verkkojen monimutkaisuuteen ja yhtenäiseen kommunikaatioon, mihin perinteiset verkot eivät staattisen rakenteensa vuoksi sovellu. Väitöskirja käsittelee menetelmiä, joilla kommunikaation turvallisuutta ja liikkuvuuden hallintaa voidaan parantaa IEEE 802.11 langattomissa piensoluverkoissa. Vaikkakin 802.11 on muodostunut avainkomponentiksi yritysverkoissa, monissa tapauksissa sitä ei hallinnoida yhtä täsmällisesti kuin langallista verkkoa. 802.11 verkoissa on näin ollen tarve samantyyppiselle yhtenäiselle hallinnalle, kuin langallisissa verkoissa on. Väitöskirja keskittyy myös moniin uusiin liikkuvuuden hallintaan liittyviin ongelmiin 802.11 verkoissa. Johtuen sisäänrakennetun yhteyden laatumäärittelyn (QoS) puuttumisesta, IEEE 802.11 verkoille on haasteellista vastata modernien palvelujen ja sovellusten vaatimuksiin. 802.11 verkot vaativat huomattavasti pidemmän ajan verkkoon liittymisessä, kuin reaaliaikasovellukset vaativat. Työssä on esitelty laajennus alustavalle varmennukselle IEEE 802.11-standardiin isäntälaitteen liikkuvuuden optimoimiseksi, joka hyödyntää Host Identity Protocol (HIP)-pohjaisia identiteettiominaisuuksia sekä elliptisten käyrien salausmenetelmiin (ECC) perustuvaa istunnon avaimen luontia. Lopuksi työssä esitellään ohjelmisto-ohjattuihin verkkoihin pohjautuva solujen liikkuvuuden konsepti, sekä siihen olennaisesti liittyvä verkon virtualisointi. Tämä validoidaan esittelemällä yhtenäinen SDN:ään ja kognitiiviseen radioon perustuva arkkitehtuuri harmonisoidulle päästä päähän resurssien varaamiselle ja hallinnoinnille, joka esitellään lopussa
APA, Harvard, Vancouver, ISO, and other styles
10

Wernberg, Max. "Security and Privacy of Controller Pilot Data Link Communication." Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-156337.

Full text
Abstract:
Newly implemented technologies within the aviation lack, according to recent studies, built in security measures to protect them against outside interference. In this thesis we study the security and privacy status of the digital wireless Controller Pilot Data Link Communication (CPDLC) used in air traffic management alongside other systems to increase the safety and traffic capacity of controlled airspaces. The findings show that CPDCL is currently insecure and exposed to attacks. Any solutions to remedy this must adhere to its low levels of performance. Elliptical Curve Cryptography, Protected ACARS and Host Identity Protocol have been identified as valid solutions to the system’s security drawbacks and all three are possible to implement in the present state of CPDLC.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Host identity protocol"

1

Gurtov, Andrei. Host Identity Protocol (HIP). Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470772898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Host Identity Protocol (HIP): Towards the secure mobile Internet. Chichester, West Sussex, England: Wiley, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gurtov, Andrei. Host Identity Protocol: Towards the Secure Mobile Internet. Wiley & Sons, Limited, John, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gurtov, Andrei. Host Identity Protocol: Towards the Secure Mobile Internet. Wiley & Sons, Incorporated, John, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Host identity protocol"

1

Salmela, Patrik, and Jan Melén. "Host Identity Protocol Proxy." In Communications in Computer and Information Science, 126–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75993-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heer, Tobias. "Introduction to Network Security." In Host Identity Protocol (HIP), 11–42. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470772898.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heer, Tobias. "Lightweight HIP." In Host Identity Protocol (HIP), 117–59. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470772898.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tschofenig, Hannes, Andrei Gurtov, Jukka Ylitalo, Aarthi Nagarajan, and Murugaraj Shanmugam. "Traversing Middleboxes with the Host Identity Protocol." In Information Security and Privacy, 17–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11506157_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kuptsov, Dmitriy, and Andrei Gurtov. "SAVAH: Source Address Validation with Host Identity Protocol." In Security and Privacy in Mobile Information and Communication Systems, 190–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04434-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

MacFarlane, Stuart A., and Joachim F. Uhrig. "Yeast Two-Hybrid Assay to Identify Host–Virus Interactions." In Plant Virology Protocols, 649–72. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-102-4_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhu, Xiaohong, and S. P. Dinesh-Kumar. "Virus-Induced Gene Silencing as a Tool to Identify Host Genes Affecting Viral Pathogenicity." In Plant Virology Protocols, 641–48. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-102-4_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vidalain, Pierre-Olivier, Yves Jacob, Marne C. Hagemeijer, Louis M. Jones, Grégory Neveu, Jean-Pierre Roussarie, Peter J. M. Rottier, Frédéric Tangy, and Cornelis A. M. de Haan. "A Field-Proven Yeast Two-Hybrid Protocol Used to Identify Coronavirus–Host Protein–Protein Interactions." In Coronaviruses, 213–29. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2438-7_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Base Protocol." In Host Identity Protocol (HIP), 51–65. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470772898.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Appendix A: Installing and Using HIP." In Host Identity Protocol (HIP), 279–84. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470772898.app1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Host identity protocol"

1

"HOST IDENTITY PROTOCOL PROXY." In 2nd International Conference on E-business and Telecommunication Networks. SciTePress - Science and and Technology Publications, 2005. http://dx.doi.org/10.5220/0001409002220230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Xin, and Xin-sheng Ji. "Host Identity Protocol—Realizing the separation of the location and host identity." In 2008 International Conference on Information and Automation (ICIA). IEEE, 2008. http://dx.doi.org/10.1109/icinfa.2008.4608098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Qin, Yajuan, and Shuigen Yang. "Extending Host Identity Protocol with Paging." In 2009 WASE International Conference on Information Engineering (ICIE). IEEE, 2009. http://dx.doi.org/10.1109/icie.2009.195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sääskilahti, Juha, and Mikko Särelä. "Risk analysis of host identity protocol." In the Fourth European Conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1842752.1842794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hobaya, Fabrice, Vincent Gay, and Eric Robert. "Host Identity Protocol Extension Supporting Simultaneous End-Host Mobility." In 2009 Fifth International Conference on Wireless and Mobile Communications. IEEE, 2009. http://dx.doi.org/10.1109/icwmc.2009.50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leonardo, Arraez, and Hakima Chaouchi. "Host Identity Protocol Proactive Mobility Management Experimentation." In 2010 Sixth Advanced International Conference on Telecommunications. IEEE, 2010. http://dx.doi.org/10.1109/aict.2010.99.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Muslam, Muhana M., H. Anthony Chan, Linoh A. Magagula, and Neco Ventura. "Network-based mobility and Host Identity Protocol." In 2012 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2012. http://dx.doi.org/10.1109/wcnc.2012.6214196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Karvonen, Kristiina, Miika Komu, and Andrei Gurtov. "Usable security management with host identity protocol." In 2009 7th IEEE/ACS International Conference on Computer Systems and Applications (AICCSA-2009). IEEE, 2009. http://dx.doi.org/10.1109/aiccsa.2009.5069337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barisch, Marc, and Alfredo Matos. "Integrating user Identity Management systems with the Host Identity Protocol." In 2009 IEEE Symposium on Computers and Communications (ISCC). IEEE, 2009. http://dx.doi.org/10.1109/iscc.2009.5202234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ahmad, Ijaz, Madhusanka Liyanage, Mika Ylianttila, and Andrei Gurtov. "Analysis of deployment challenges of Host Identity Protocol." In 2017 European Conference on Networks and Communications (EuCNC). IEEE, 2017. http://dx.doi.org/10.1109/eucnc.2017.7980675.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Host identity protocol"

1

Moskowitz, R., P. Nikander, and T. Henderson. Host Identity Protocol. Edited by P. Jokela. RFC Editor, April 2008. http://dx.doi.org/10.17487/rfc5201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heer, T., and S. Varjonen. Host Identity Protocol Certificates. RFC Editor, May 2011. http://dx.doi.org/10.17487/rfc6253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Heer, T., and S. Varjonen. Host Identity Protocol Certificates. RFC Editor, October 2016. http://dx.doi.org/10.17487/rfc8002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Komu, M. Host Identity Protocol Architecture. Edited by R. Moskowitz. RFC Editor, July 2021. http://dx.doi.org/10.17487/rfc9063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vogt, C., and J. Arkko. Host Mobility with the Host Identity Protocol. Edited by T. Henderson. RFC Editor, February 2017. http://dx.doi.org/10.17487/rfc8046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vogt, C., and J. Arkko. Host Multihoming with the Host Identity Protocol. Edited by T. Henderson. RFC Editor, February 2017. http://dx.doi.org/10.17487/rfc8047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moskowitz, R., and P. Nikander. Host Identity Protocol (HIP) Architecture. RFC Editor, May 2006. http://dx.doi.org/10.17487/rfc4423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Laganier, J., T. Koponen, and L. Eggert. Host Identity Protocol (HIP) Registration Extension. RFC Editor, April 2008. http://dx.doi.org/10.17487/rfc5203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Laganier, J., and L. Eggert. Host Identity Protocol (HIP) Rendezvous Extension. RFC Editor, April 2008. http://dx.doi.org/10.17487/rfc5204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heer, T., P. Jokela, and T. Henderson. Host Identity Protocol Version 2 (HIPv2). Edited by R. Moskowitz. RFC Editor, April 2015. http://dx.doi.org/10.17487/rfc7401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography