Academic literature on the topic 'Host-directed'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Host-directed.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Host-directed"
Wilkinson, Robert John. "Host-directed therapies against tuberculosis." Lancet Respiratory Medicine 2, no. 2 (February 2014): 85–87. http://dx.doi.org/10.1016/s2213-2600(13)70295-9.
Full textStricker, Raphael B. "Host-Directed Therapy for AIDS." Annals of Internal Medicine 123, no. 6 (September 15, 1995): 471. http://dx.doi.org/10.7326/0003-4819-123-6-199509150-00019.
Full textLederman, Michael M. "Host-Directed Therapy for AIDS." Annals of Internal Medicine 123, no. 6 (September 15, 1995): 472. http://dx.doi.org/10.7326/0003-4819-123-6-199509150-00020.
Full textJeong, Eui-Kwon, Hyo-Ji Lee, and Yu-Jin Jung. "Host-Directed Therapies for Tuberculosis." Pathogens 11, no. 11 (November 3, 2022): 1291. http://dx.doi.org/10.3390/pathogens11111291.
Full textMaeurer, Markus, Renata Ramalho, Fu-Sheng Wang, and Alimuddin Zumla. "Host-directed therapies for COVID-19." Current Opinion in Pulmonary Medicine 27, no. 3 (February 2, 2021): 205–9. http://dx.doi.org/10.1097/mcp.0000000000000769.
Full textDavis, Angharad G., Joseph Donovan, Marise Bremer, Ronald Van Toorn, Johan Schoeman, Ariba Dadabhoy, Rachel P. J. Lai, et al. "Host Directed Therapies for Tuberculous Meningitis." Wellcome Open Research 5 (July 1, 2021): 292. http://dx.doi.org/10.12688/wellcomeopenres.16474.2.
Full textSingh, Bhawana, Sanjay Varikuti, Gregory Halsey, Greta Volpedo, Omar M. Hamza, and Abhay R. Satoskar. "Host-directed therapies for parasitic diseases." Future Medicinal Chemistry 11, no. 15 (August 2019): 1999–2018. http://dx.doi.org/10.4155/fmc-2018-0439.
Full textDavis, Angharad G., Joseph Donovan, Marise Bremer, Ronald Van Toorn, Johan Schoeman, Ariba Dadabhoy, Rachel PJ Lai, et al. "Host Directed Therapies for Tuberculous Meningitis." Wellcome Open Research 5 (December 23, 2020): 292. http://dx.doi.org/10.12688/wellcomeopenres.16474.1.
Full textGuler, Reto, and Frank Brombacher. "Host-directed drug therapy for tuberculosis." Nature Chemical Biology 11, no. 10 (September 17, 2015): 748–51. http://dx.doi.org/10.1038/nchembio.1917.
Full textZumla, Alimuddin, Jeremiah Chakaya, Michael Hoelscher, Francine Ntoumi, Roxana Rustomjee, Cristina Vilaplana, Dorothy Yeboah-Manu, et al. "Towards host-directed therapies for tuberculosis." Nature Reviews Drug Discovery 14, no. 8 (July 17, 2015): 511–12. http://dx.doi.org/10.1038/nrd4696.
Full textDissertations / Theses on the topic "Host-directed"
Jordan, Brian J. "Directed assembly host-guest chemistry, nanowires, and polymeric templates /." Amherst, Mass. : University of Massachusetts Amherst, 2009. http://scholarworks.umass.edu/dissertations/AAI3359899/.
Full textSüss, Heike Ingrid. "Property directed inclusion formation by channel forming host compounds /." [S.l.] : [s.n.], 2004. http://www.zb.unibe.ch/download/eldiss/04suess_hi.pdf.
Full textPaudyal, Bhesh Raj [Verfasser]. "Small lipid mediators in experimental tuberculosis as target for host-directed therapy / Bhesh Raj Paudyal." Lübeck : Zentrale Hochschulbibliothek Lübeck, 2017. http://d-nb.info/1147619638/34.
Full textPathi, Krishna [Verfasser]. "Establishment of maize resistance to fungal diseases by host-induced gene silencing and site-directed mutagenesis / Krishna Pathi." Hannover : Gottfried Wilhelm Leibniz Universität, 2021. http://d-nb.info/1235138437/34.
Full textLaughery, Zachary. "Synthesis of Molecular Baskets and Introduction of Inward Facing Functionality." ScholarWorks@UNO, 2006. http://scholarworks.uno.edu/td/328.
Full textSmyth, Robin. "Role of Protein Kinase R in the Immune Response to Tuberculosis." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/41842.
Full textHlaka, Lerato. "Investigation of minor groove binders (MGB), non-ionic surfactant vesicles (NIV) delivery systems and IL-4i1 as novel pathogen- and host-directed drug therapy for tuberculosis." Doctoral thesis, Faculty of Health Sciences, 2019. http://hdl.handle.net/11427/31054.
Full textMarzo, Escartín Elena. "Tuberculosi pulmonar: com evitar el pas de granuloma a cavitat. Estudi de la inflamació en la patogènesi de la malaltia tuberculosa i desenvolupament de noves estratègies terapèutiques." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/285649.
Full textLa tuberculosis (TB) es una epidemia global causada por Mycobacterium tuberculosis (Mtb) con 8,6 millones de enfermos y 1,3 millones de muertes cada año. El tratamiento actual con antibióticos es muy largo, caro i presenta efectos adversos. Cuando una persona se infecta con Mtb puede controlar la infección en el 90% de los casos (infección latente), desarrollando solamente lesiones microscópicas en el pulmón: granulomas de 0,5mm de diámetro invisibles en una radiografía. En el 10% restante la infección no se controla y se desarrollan lesiones mayores, típicamente cavidades de unos 20mm en adultos inmunocompetentes. La clave para comprender la patogénesis de la TB activa es el paso de granulomas de 0,5mm a cavidades de gran tamaño. En esta tesis se ha desarrollado un modelo murino mediante la infección endovenosa de ratones C3HeB/FeJ con la cepa virulenta H37Rv de Mtb, que desarrolla lesiones con necrosis granulomatosa central y licuefacción, muy similares a las lesiones previas a la cavitación en humanos. Las lesiones crecen de forma exponencial debido en parte a la infiltración neutrofílica masiva, y en parte a la coalescencia de las lesiones vecinas. Los estudios comparativos con la cepa resistente C3H/HeN y el uso de antiinflamatorios no esteroideos (AINEs) en el modelo han confirmado que la inflamación es un factor clave en el desarrollo de la TB activa, y también que los AINE podrían utilizarse como tratamiento coadyuvante en la TB pulmonar en adultos inmunocompetentes, dado que en frenar la inflamación ayudan a controlar la enfermedad. Por otro lado se ha desarrollado un método profiláctico que mediante la administración oral de dosis bajas de micobacterias inactivadas induce tolerancia al Mtb, y en consecuencia una respuesta inmunitaria más equilibrada, conteniendo la respuesta Th17, resultando en una mejora de la supervivencia, la carga bacilar y la histopatología de los ratones. Conclusiones: Se ha desarrollado un modelo murino de TB activa, se ha caracterizado el papel de la inflamación en el desarrollo de cavidades, concretamente de la infiltración masiva de neutrófilos, se ha propuesto el uso de AINEs como tratamiento coadyuvante para la tuberculosis activa en adultos inmunocompetentes, y se ha desarrollado un nuevo método profiláctico que podría evitar la enfermedad mediante la inducción de tolerancia oral al Mtb que se consigue con la administración oral de bajas dosis de micobacterias inactivadas.
Tuberculosis (TB) is a global epidemic caused by Mycobacterium tuberculosis (Mtb). In 2012 an estimated 8,6 million of people developed TB and 1,3 million died from the disease. The current treatment with antibiotics is expensive, long-lasting and presents adverse effects. When people are infected with Mtb the infection is controlled in the 90% of the cases, developing microscopic lesions in the lungs, 0,5mm of size granulomas, invisibles to the X-rays. In the other 10% the infection is not controlled and bigger lesions are developed: in immunocompetent adults the most characteristic lesion is a cavity sized about 20mm of diameter. The clue to understand active TB pathogenesis must be the development of 20mm cavities from 0,5mm granulomas. In this work a murine model has been developed through the endovenous infection of C3HeB/FeJ mice with H37Rv virulent strain of Mtb, which develops lesions presenting central granulomatous necrosis and further liquefaction, very similarly to the lesions previous to cavity formation in human patients. The lesions grow exponentially due to massive neutrophilic infiltration and coalescence of neighbour lesions. The comparative studies with the resistant mice strain C3H/HeN and the use of non-steroidal anti-iflammatory drugs (NSAIDs) in the model confirmed that inflammation is clue in the active TB development, and also that NSAIDs could be use as adjunctive therapy in the treatment of pulmonary TB in immunocompetent adults, through control of excessive inflammation. On the other hand, a prophylactic method has been developed consisting on induction of tolerance to Mtb through oral administration of low doses of heat-killed mycobacteria, driving to a more balanced immune response, limiting Th17 development and resulting in a better outcome of mice in terms of survival, histopathology and bacillary load in lungs. Conclusions: A murine active TB model has been developed, and the role of inflammation in cavity formation characterized, namely the role of massive neutrophilic infiltration. The use of NSAIDs has been proposed as an adjuvant treatment of active TB in immunocompetent adults, and a new prophylactic method has been developed that could avoid the disease by induction of oral tolerance to Mtb through the administration of heat killed micobacteria at low doses.
Matsui, Yusuke. "Defining HIV-1 Vif residues that interact with CBFβ by site-directed mutagenesis." Kyoto University, 2015. http://hdl.handle.net/2433/199190.
Full textChiu, Chia-I., and 邱嘉儀. "Evaluation of Host-Directed Anti-Bacterial Agents Against Intracellular Salmonella Typhimurium." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/w39y38.
Full text國立臺灣大學
醫學檢驗暨生物技術學研究所
106
Some bacteria pathogens that can reside in host cells, for example: Salmonella spp. and will lead to chronic infection. These pathogens will invade host cells to evade external antibiotics’ attack and continue to survive in the cell, thus they are difficult to completely eradicated with antibiotics and often lead to drug resistance. Host-directed therapies have been proposed in many studies for the treatment of intracellular bacterial infections. AR-12 (a.k.a. OSU-03012), was originally used as an anti-cancer drug and have been showed in our previous studies that AR-12 combined with aminoglycoside antibiotics can significantly clear intracellular bacteria, making AR-12 as a potential drug for the treatment of intracellular bacterial infections. As the half-lethal dose (IC50) of AR-12 is close to half-effective concentration, we decided to conduct AR-12 structure optimization. In addition, we previously found that an antipsychotic drug - loxapine in combined with aminoglycoside antibiotics showed antimicrobial efficacy and significantly cleared intracellular bacteria with a high half-lethal dose (IC50), however, loxapine cannot prolong the survival of mice. Therefore, we hope to obtain potential drugs by synthesis of loxapine derivatives. In this study, we obtained 167 AR-12 derivatives and 5 loxapine derivatives. We tested the anti-bacterial activity against intracellular Salmonella Typhimurium of all compounds and simultaneously tested toxicity towards host cells to identify more effective and low toxicity drugs. At the same time, we used loxapine as the representative to explore its antibacterial mechanism. First, we performed AR-12 derivative screening. We found that seven compounds have lower toxicity and equal antibacterial activity to AR-12. Another seven compounds showed better antibacterial activity but equal toxicity to AR-12. We further evaluated the efficacy of these 14 compounds in combination with aminoglycoside antibiotics for the treatment of intracellular S. Typhimurium. The results of the cell infection experiments showed that 4 of 14 compounds had no significant antibacterial activity. Subsequent test of the three compounds with highest selectivity for antibacterial activity against multidrug-resistant strains also demonstrated the same effect. In the cell infection test and toxicity test of loxapine, three compounds showed better antibacterial ability than loxapine, but with high toxicity, thus there was no high selectivity. At present, the synthesis and test of AR-12 derivatives and loxapine derivatives are ongoing. The above findings demonstrated that the antibacterial activity of AR-12 can be dissociated from its antiproliferative activity via structure optimization and that hit compounds are potential to be served as antibiotic adjuvants for MDR Salmonella Typhimurium infection.
Books on the topic "Host-directed"
Karakousis, Petros C., Richard Hafner, and Maria Laura Gennaro, eds. Advances in Host-Directed Therapies Against Tuberculosis. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56905-1.
Full textHost-Directed Therapies for Tuberculosis. MDPI, 2020. http://dx.doi.org/10.3390/books978-3-03943-502-9.
Full textKarakousis, Petros C., Richard Hafner, and Maria Laura Gennaro. Advances in Host-Directed Therapies Against Tuberculosis. Springer International Publishing AG, 2021.
Find full textKarakousis, Petros C., Richard Hafner, and Maria Laura Gennaro. Advances in Host-Directed Therapies Against Tuberculosis. Springer International Publishing AG, 2020.
Find full textWilkinson, Robert, Anna Kathleen Coussens, and Thomas Richard Hawn, eds. Natural Resistance to and Host-Directed Prevention of Tuberculosis. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-799-7.
Full textBrombacher, Frank, Abhay Satoskar, and Alessandro Marcello, eds. Towards Host-Directed Drug Therapies for Infectious and Non-Communicable Diseases. Frontiers Media SA, 2019. http://dx.doi.org/10.3389/978-2-88963-102-5.
Full textFraziano, Maurizio, Roberto Nisini, Gian Maria Rossolini, and Marco Rinaldo Oggioni, eds. Exploiting Novel Combined Host- and Pathogen-Directed Therapies for Combating Bacterial Multidrug Resistance. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88966-307-1.
Full textKatia, Yannaca-Small. Part III Guide to Key Jurisdictional Issues, 16 The Umbrella Clause: Is the Umbrella Closing? Oxford University Press, 2018. http://dx.doi.org/10.1093/law/9780198758082.003.0016.
Full textThompson, Evan. Looping Effects and the Cognitive Science of Mindfulness Meditation. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190495794.003.0003.
Full textWise, Matt, and Paul Frost. Nutritional support in the critically ill. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0334.
Full textBook chapters on the topic "Host-directed"
Weintraub, Zachary, and Katherine Menson. "Host-Directed Therapy." In Bronchiectasis, 191–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12926-1_8.
Full textDutta, Noton K., and Petros C. Karakousis. "Statins as Host-Directed Therapy for Tuberculosis." In Advances in Host-Directed Therapies Against Tuberculosis, 109–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56905-1_8.
Full textJo, Eun-Kyeong. "Nuclear Receptors in Host-Directed Therapies against Tuberculosis." In Advances in Host-Directed Therapies Against Tuberculosis, 61–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56905-1_5.
Full textSmulan, Lorissa, Hardy Kornfeld, and Amit Singhal. "Sirtuin Deacetylases: Linking Mycobacterial Infection and Host Metabolism." In Advances in Host-Directed Therapies Against Tuberculosis, 15–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56905-1_2.
Full textFrank, Daniel J., and Robert N. Mahon. "Introduction: An Overview of Host-Directed Therapies for Tuberculosis." In Advances in Host-Directed Therapies Against Tuberculosis, 3–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56905-1_1.
Full textRuibal, Paula, Tom H. M. Ottenhoff, and Simone A. Joosten. "Conventional and Unconventional Lymphocytes in Immunity Against Mycobacterium tuberculosis." In Advances in Host-Directed Therapies Against Tuberculosis, 133–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56905-1_10.
Full textParveen, Sadiya, John R. Murphy, and William R. Bishai. "Targeting Inhibitory Cells Such as Tregs and MDSCs in the Tuberculous Granuloma." In Advances in Host-Directed Therapies Against Tuberculosis, 169–203. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56905-1_11.
Full textKleynhans, Léanie, and Gerhard Walzl. "Targeting Suppressor T Cells." In Advances in Host-Directed Therapies Against Tuberculosis, 205–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56905-1_12.
Full textDallenga, Tobias K., and Ulrich E. Schaible. "Neutrophil-Mediated Mechanisms as Targets for Host-Directed Therapies Against Tuberculosis." In Advances in Host-Directed Therapies Against Tuberculosis, 211–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56905-1_13.
Full textMayer-Barber, Katrin D., and Christopher M. Sassetti. "Type I Interferon and Interleukin-1 Driven Inflammatory Pathways as Targets for HDT in Tuberculosis." In Advances in Host-Directed Therapies Against Tuberculosis, 219–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56905-1_14.
Full textConference papers on the topic "Host-directed"
Dey, Nidhi Sharma. "Immunopathology pipeline to study potential host directed therapy targets in cutaneous leishmaniasis." In Microscience Microscopy Congress 2021 incorporating EMAG 2021. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.mmc2021.296.
Full textFELCIANO, RAMON M., SINA BAVARI, DANIEL R. RICHARDS, JEAN-NOEL BILLAUD, TRAVIS WARREN, REKHA PANCHAL, and ANDREAS KRÄMER. "PREDICTIVE SYSTEMS BIOLOGY APPROACH TO BROAD-SPECTRUM, HOST-DIRECTED DRUG TARGET DISCOVERY IN INFECTIOUS DISEASES." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814447973_0003.
Full textJakobs, Nikolas, Kerstin Walter, Johanna Volz, Alexandra Hölscher, Torsten Goldmann, Sebastian Marwitz, Markus Weckmann, Folke Brinkmann, and Christoph Hölscher. "Multiplex Immunofluorescence and Multispectral Imaging as a tool to evaluate host directed therapy against tuberculosis." In 44. Jahrestagung der Gesellschaft für Pädiatrische Pneumologie. Georg Thieme Verlag, 2023. http://dx.doi.org/10.1055/s-0043-1761549.
Full textGuy, M. J., A. Boskovic, D. U. Noske, and J. R. Taylor. "Femtosecond Pulse Generation At 1.3 μm From A Praseodymium Fibre Laser." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.wc.3.
Full textErmer, Susan, Doris S. Leung, Steven M. Lovejoy, John F. Valley, and Marc Stiller. "Photobleachable Donor-Acceptor-Donor Chromophores with Enhanced Thermal Stability." In Organic Thin Films for Photonic Applications. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/otfa.1993.wc.2.
Full textWallis, R. S., S. Ginindza, T. Beattie, N. Arjun, M. Likoti, V. Edward, M. Rassool, et al. "Preliminary Results of an Experimental Medicine Trial of Adjunctive Host-Directed Therapy in Adults with Moderately or Far-Advanced Rifampin-Susceptible Pulmonary Tuberculosis." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a7388.
Full textWilliams, Alicia, Ashok Sinha, Pavlos Vlachos, and Ishwar K. Puri. "Magnetic Targeting of Particle Transport Under Pulsatile Flow." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98124.
Full textWouters, Katinka, Hugo Moors, and Natalie Leys. "Boom Clay Borehole Water, Home of a Diverse Bacterial Community." In ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icem2013-96222.
Full textThomas, Wendy E., Evgeni V. Sokurenko, and Viola Vogel. "How Bacteria Bind More Strongly Under Mechanical Force: The Catch-Bond FimH." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43680.
Full textMarchant, David, Gurpreet Singerha, John H. Boyd, Delbert Dorscheid, Bruce M. McManus, and Richard Hegele. "P38 Mitogen Activated Protein Kinase Is Activated By Toll Like Receptor 4 Via MyD88 During Pulmonary Virus Entry To Activate Virus Internalization And Replication: A New Host-directed Antiviral." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a1046.
Full textReports on the topic "Host-directed"
Gutnick, David, and David L. Coplin. Role of Exopolysaccharides in the Survival and Pathogenesis of the Fire Blight Bacterium, Erwinia amylovora. United States Department of Agriculture, September 1994. http://dx.doi.org/10.32747/1994.7568788.bard.
Full textGal-On, Amit, Shou-Wei Ding, Victor P. Gaba, and Harry S. Paris. role of RNA-dependent RNA polymerase 1 in plant virus defense. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597919.bard.
Full textMcClure, Michael A., Yitzhak Spiegel, David M. Bird, R. Salomon, and R. H. C. Curtis. Functional Analysis of Root-Knot Nematode Surface Coat Proteins to Develop Rational Targets for Plantibodies. United States Department of Agriculture, October 2001. http://dx.doi.org/10.32747/2001.7575284.bard.
Full text