Journal articles on the topic 'Homogenization algebra'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Homogenization algebra.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Heckenberger, István, and Volkmar Welker. "A Deformation of the Orlik-Solomon Algebra." MATHEMATICA SCANDINAVICA 118, no. 2 (June 9, 2016): 183. http://dx.doi.org/10.7146/math.scand.a-23686.
Full textBallico, E., B. Callander, and E. Gasparim. "Compactifications of adjoint orbits and their Hodge diamonds." Journal of Algebra and Its Applications 17, no. 06 (May 23, 2018): 1850099. http://dx.doi.org/10.1142/s0219498818500998.
Full textMARTÍNEZ-VILLA, ROBERTO. "ON THE HOMOGENIZED ENVELOPING ALGEBRA OF THE LIE ALGEBRA Sℓ(2,ℂ) II." Glasgow Mathematical Journal 59, no. 1 (June 10, 2016): 189–219. http://dx.doi.org/10.1017/s0017089516000112.
Full textWoukeng, Jean Louis. "Homogenization in algebras with mean value." Banach Journal of Mathematical Analysis 9, no. 2 (2015): 142–82. http://dx.doi.org/10.15352/bjma/09-2-12.
Full textZhikov, V. V. "Connectedness and homogenization. Examples of fractal conductivity." Sbornik: Mathematics 187, no. 8 (August 31, 1996): 1109–47. http://dx.doi.org/10.1070/sm1996v187n08abeh000150.
Full textSandrakov, G. V. "Homogenization of variational inequalities for obstacle problems." Sbornik: Mathematics 196, no. 4 (April 30, 2005): 541–60. http://dx.doi.org/10.1070/sm2005v196n04abeh000891.
Full textGadyl'shin, R. R. "Analogues of the Helmholtz resonator in homogenization theory." Sbornik: Mathematics 193, no. 11 (December 31, 2002): 1611–38. http://dx.doi.org/10.1070/sm2002v193n11abeh000691.
Full textPastukhova, S. E. "Homogenization of elasticity problems on periodic composite structures." Sbornik: Mathematics 196, no. 7 (August 31, 2005): 1033–73. http://dx.doi.org/10.1070/sm2005v196n07abeh000947.
Full textSirazhudinov, M. M. "G-convergence and homogenization of generalized Beltrami operators." Sbornik: Mathematics 199, no. 5 (June 30, 2008): 755–86. http://dx.doi.org/10.1070/sm2008v199n05abeh003941.
Full textZhikov, V. V., and S. E. Pastukhova. "Homogenization for elasticity problems on periodic networks of critical thickness." Sbornik: Mathematics 194, no. 5 (June 30, 2003): 697–732. http://dx.doi.org/10.1070/sm2003v194n05abeh000735.
Full textSandrakov, G. V. "Homogenization of variational inequalities and equations defined by pseudomonotone operators." Sbornik: Mathematics 199, no. 1 (February 28, 2008): 67–98. http://dx.doi.org/10.1070/sm2008v199n01abeh003911.
Full textNguetseng, Gabriel, Hubert Nnang, and Nils Svanstedt. "G-convergence and homogenization of monotone damped hyperbolic equations." Banach Journal of Mathematical Analysis 4, no. 1 (2010): 100–115. http://dx.doi.org/10.15352/bjma/1272374674.
Full textWaurick, Marcus. "On the homogenization of partial integro-differential-algebraic equations." Operators and Matrices, no. 2 (2016): 247–83. http://dx.doi.org/10.7153/oam-10-15.
Full textRedman, Irmgard T. "The homogenization of the three dimensional skew polynomial algebras of type I." Communications in Algebra 27, no. 11 (January 1999): 5587–602. http://dx.doi.org/10.1080/00927879908826775.
Full textVasilevskaya, E. S. "A periodic parabolic Cauchy problem: Homogenization with corrector." St. Petersburg Mathematical Journal 21, no. 1 (November 4, 2009): 1–41. http://dx.doi.org/10.1090/s1061-0022-09-01083-8.
Full textVeniaminov, N. "Homogenization of periodic differential operators of high order." St. Petersburg Mathematical Journal 22, no. 5 (October 1, 2011): 751–75. http://dx.doi.org/10.1090/s1061-0022-2011-01166-5.
Full textCAPRIZ, G., and G. MAZZINI. "A σ-ALGEBRA AND A CONCEPT OF LIMIT FOR BODIES." Mathematical Models and Methods in Applied Sciences 10, no. 06 (August 2000): 801–13. http://dx.doi.org/10.1142/s0218202500000410.
Full textSkrypnik, I. V. "Homogenization of non-linear Dirichlet problems in perforated domains of general type." Sbornik: Mathematics 187, no. 8 (August 31, 1996): 1229–60. http://dx.doi.org/10.1070/sm1996v187n08abeh000154.
Full textNazarov, Sergei A., Guido H. Sweers, and Andrey S. Slutskij. "Homogenization of a thin plate reinforced with periodic families of rigid rods." Sbornik: Mathematics 202, no. 8 (August 31, 2011): 1127–68. http://dx.doi.org/10.1070/sm2011v202n08abeh004181.
Full textSuslina, T. A. "Homogenization with corrector for a stationary periodic Maxwell system." St. Petersburg Mathematical Journal 19, no. 3 (March 21, 2008): 455–95. http://dx.doi.org/10.1090/s1061-0022-08-01006-6.
Full textPastukhova, S. E. "The Neumann problem for elliptic equations with multiscale coefficients: operator estimates for homogenization." Sbornik: Mathematics 207, no. 3 (March 31, 2016): 418–43. http://dx.doi.org/10.1070/sm8486.
Full textMonzner, Alexandra, Nicolas Vichery, and Frol Zapolsky. "Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization." Journal of Modern Dynamics 6, no. 2 (2012): 205–49. http://dx.doi.org/10.3934/jmd.2012.6.205.
Full textDorodnyĭ, M. A. "Homogenization of periodic Schrödinger-type equations, with lower order terms." St. Petersburg Mathematical Journal 31, no. 6 (October 27, 2020): 1001–54. http://dx.doi.org/10.1090/spmj/1632.
Full textSakamoto, Kunimochi. "Spatial homogenization and internal layers in a reaction-diffusion system." Hiroshima Mathematical Journal 30, no. 3 (2000): 377–402. http://dx.doi.org/10.32917/hmj/1206124605.
Full textMing, Pingbing, and Pingwen Zhang. "Analysis of the heterogeneous multiscale method for parabolic homogenization problems." Mathematics of Computation 76, no. 257 (January 1, 2007): 153–78. http://dx.doi.org/10.1090/s0025-5718-06-01909-0.
Full textBirman, M. Sh, and T. A. Suslina. "Operator error estimates in the homogenization problem for nonstationary periodic equations." St. Petersburg Mathematical Journal 20, no. 6 (October 1, 2009): 873–928. http://dx.doi.org/10.1090/s1061-0022-09-01077-2.
Full textKRONE, ROBERT. "NUMERICAL ALGORITHMS FOR DUAL BASES OF POSITIVE-DIMENSIONAL IDEALS." Journal of Algebra and Its Applications 12, no. 06 (May 9, 2013): 1350018. http://dx.doi.org/10.1142/s0219498813500187.
Full textPastukhova, S. E., and R. N. Tikhomirov. "On operator-type homogenization estimates for elliptic equations with lower order terms." St. Petersburg Mathematical Journal 29, no. 5 (July 26, 2018): 841–61. http://dx.doi.org/10.1090/spmj/1518.
Full textSango, M. "Homogenization of singular numbers for a non self-adjoint elliptic problem in a perforated domain." Integral Equations and Operator Theory 43, no. 2 (June 2002): 177–88. http://dx.doi.org/10.1007/bf01200252.
Full textZhikov, V. V. "Estimates of Nash-Aronson type for a diffusion equation with asymmetric matrix and their applications to homogenization." Sbornik: Mathematics 197, no. 12 (December 31, 2006): 1775–804. http://dx.doi.org/10.1070/sm2006v197n12abeh003822.
Full textHORIE, Kazuo, and Hitoshi ISHII. "Simultaneous Effects of Homogenization and Vanishing Viscosity in Fully Nonlinear Elliptic Equations." Funkcialaj Ekvacioj 46, no. 1 (2003): 63–88. http://dx.doi.org/10.1619/fesi.46.63.
Full textSenik, N. N. "Homogenization for a periodic elliptic operator in a strip with various boundary conditions." St. Petersburg Mathematical Journal 25, no. 4 (June 5, 2014): 647–97. http://dx.doi.org/10.1090/s1061-0022-2014-01311-8.
Full textZhikov, V. V., and S. E. Pastukhova. "Homogenization and two-scale convergence in the Sobolev space with an oscillating exponent." St. Petersburg Mathematical Journal 30, no. 2 (February 14, 2019): 231–51. http://dx.doi.org/10.1090/spmj/1540.
Full textPakhnin, M. A., and T. A. Suslina. "Operator error estimates for homogenization of the elliptic Dirichlet problem in a bounded domain." St. Petersburg Mathematical Journal 24, no. 6 (September 23, 2013): 949–76. http://dx.doi.org/10.1090/s1061-0022-2013-01274-x.
Full textMeshkova, Yu M., and T. A. Suslina. "Homogenization of the first initial boundary-value problem for parabolic systems: operator error estimates." St. Petersburg Mathematical Journal 29, no. 6 (September 4, 2018): 935–78. http://dx.doi.org/10.1090/spmj/1521.
Full textDorodnyi, M., and T. Suslina. "Homogenization of hyperbolic equations with periodic coefficients in ℝ^{𝕕}: Sharpness of the results." St. Petersburg Mathematical Journal 32, no. 4 (July 9, 2021): 605–703. http://dx.doi.org/10.1090/spmj/1664.
Full textBelyaev, A. G., and G. A. Chechkin. "Homogenization of a mixed boundary-value problem for the Laplace operator in the case of an insoluble 'limit' problem." Sbornik: Mathematics 186, no. 4 (April 30, 1995): 511–25. http://dx.doi.org/10.1070/sm1995v186n04abeh000029.
Full textNazarov, S. A. "Homogenization of Kirchhoff plates joined by rivets which are modeled by the Sobolev point conditions." St. Petersburg Mathematical Journal 32, no. 2 (March 2, 2021): 307–48. http://dx.doi.org/10.1090/spmj/1649.
Full textBertone, Cristina, Francesca Cioffi, and Margherita Roggero. "Macaulay-like marked bases." Journal of Algebra and Its Applications 16, no. 05 (April 12, 2017): 1750100. http://dx.doi.org/10.1142/s0219498817501006.
Full textCardone, G., A. Corbo Esposito, and S. A. Nazarov. "Homogenization of the mixed boundary-value problem for a formally selfadjoint elliptic system in a periodically punched domain." St. Petersburg Mathematical Journal 21, no. 4 (May 20, 2010): 601–34. http://dx.doi.org/10.1090/s1061-0022-2010-01108-7.
Full textMeshkova, Yu M. "Homogenization of periodic parabolic systems in the $L_2(\mathbb {R}^d)$-norm with the corrector taken into account." St. Petersburg Mathematical Journal 31, no. 4 (June 11, 2020): 675–718. http://dx.doi.org/10.1090/spmj/1619.
Full textSokołowski, Damian, Marcin Kamiński, and Artur Wirowski. "Energy Fluctuations in the Homogenized Hyper-Elastic Particulate Composites with Stochastic Interface Defects." Energies 13, no. 8 (April 17, 2020): 2011. http://dx.doi.org/10.3390/en13082011.
Full textSuslina, T. A. "Homogenization in the Sobolev class $H^{1}(\mathbb R^{d})$ for second order periodic elliptic operators with the inclusion of first order terms." St. Petersburg Mathematical Journal 22, no. 1 (February 1, 2011): 81. http://dx.doi.org/10.1090/s1061-0022-2010-01135-x.
Full textRossi, Michele, and Lea Terracini. "Toric varieties and Gröbner bases: the complete $$\mathbb {Q}$$-factorial case." Applicable Algebra in Engineering, Communication and Computing 31, no. 5-6 (July 22, 2020): 461–82. http://dx.doi.org/10.1007/s00200-020-00452-w.
Full textFrid, Hermano, and Jean Silva. "Homogenization of Nonlinear PDEs in the Fourier–Stieltjes Algebras." SIAM Journal on Mathematical Analysis 41, no. 4 (January 2009): 1589–620. http://dx.doi.org/10.1137/080737022.
Full textGaddis, Jason. "PBW deformations of Artin–Schelter regular algebras." Journal of Algebra and Its Applications 15, no. 04 (February 19, 2016): 1650064. http://dx.doi.org/10.1142/s021949881650064x.
Full textFrid, Hermano, and Jean Silva. "Homogenization of degenerate porous medium type equations in ergodic algebras." Advances in Mathematics 246 (October 2013): 303–50. http://dx.doi.org/10.1016/j.aim.2013.07.005.
Full textRoch, Steffen, and Pedro A. Santos. "Two points, one limit: Homogenization techniques for two-point local algebras." Journal of Mathematical Analysis and Applications 391, no. 2 (July 2012): 552–66. http://dx.doi.org/10.1016/j.jmaa.2012.02.054.
Full textFrid, Hermano, Jean Silva, and Henrique Versieux. "Homogenization of a generalized Stefan problem in the context of ergodic algebras." Journal of Functional Analysis 268, no. 11 (June 2015): 3232–77. http://dx.doi.org/10.1016/j.jfa.2015.03.021.
Full textWang, Juan, and Jie Zhao. "Convergence rates of nonlinear Stokes problems in homogenization." Boundary Value Problems 2019, no. 1 (May 24, 2019). http://dx.doi.org/10.1186/s13661-019-1209-x.
Full text