Academic literature on the topic 'Homogeneous Operators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Homogeneous Operators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Homogeneous Operators"

1

Stefanov, Atanas. "On homogeneous Calderón-Zygmund operators with rough kernels /." free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9951125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Connolly, Donal. "Pseudo-differential operators on homogeneous spaces." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/23926.

Full text
Abstract:
In recent years, the use of Peter-Weyl theory (the theory of Fourier analysis on compact Lie groups) to define so-called 'global symbols' of operators on compact Lie groups has emerged as a fruitful technique to study pseudo-differential operators. The aim of this thesis is to discuss similar techniques in the setting of compact homogeneous spaces. The approach is to relate operators on homogeneous spaces to those on compact Lie groups, and then to utilize the recently developed techniques on such groups. Two methods of associating operators on homogeneous spaces with those on compact Lie groups, called projective and horizontal lifting, along with their properties, merits and problems are considered. A key tool used in this analysis is the notion of a difference operator. This thesis includes a detailed study of such operators and their properties, combined with comprehensive calculations involving such operators on the homogeneous spaces $\Sbb^{n-1} = \SO(n)/\SO(n-1)$. This thesis concludes with a generalization of the symbolic calculus on compact Lie groups developed by M. Ruzhansky and V. Turunen together with a collection of conjectures, which if proven would relate the generalization to pseudo-differential theory on homogeneous spaces.
APA, Harvard, Vancouver, ISO, and other styles
3

Allen, Robert Francis. "A class of operators with symbol on the bloch space of a bounded homogeneous domain." Fairfax, VA : George Mason University, 2009. http://hdl.handle.net/1920/4541.

Full text
Abstract:
Thesis (Ph.D.)--George Mason University, 2009.<br>Vita: p. 158. Thesis director: Flavia Colonna. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics. Title from PDF t.p. (viewed Oct. 11, 2009). Includes bibliographical references (p. 150-157). Also issued in print.
APA, Harvard, Vancouver, ISO, and other styles
4

Sriskandasingam, Mayuran. "Non-homogeneous Boundary Value Problems of a Class of Fifth Order Korteweg-de Vries Equation posed on a Finite Interval." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1626357151760691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alarcón, Daniel Núnez. "Sobre o teoremas de Bohnenblurt - Hille." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/8047.

Full text
Abstract:
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-29T11:06:09Z No. of bitstreams: 1 arquivo total.pdf: 821623 bytes, checksum: 520d1fa102a8bdfeb531d12a30d60f61 (MD5)<br>Made available in DSpace on 2016-03-29T11:06:09Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 821623 bytes, checksum: 520d1fa102a8bdfeb531d12a30d60f61 (MD5) Previous issue date: 2014-03-12<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES<br>Os teoremas de Bohnenblust Hille, demonstrados em 1931 no prestigioso jornal Annals of Mathematics, foram utilizados como ferramentas muito úteis na solução do famoso Problema da convergência absoluta de Bohr. Após um longo tempo esquecidos, estes teoremas têm sido bastante explorados nos últimos anos. Este último quinquê- nio experimentou o surgimento de várias obras dedicadas a estimar as constantes de Bohnenblust Hille ([13, 18, 20, 26, 27, 39, 42, 44, 46, 53]) e também conexões inesperadas com a Teoria da Informação Quântica apareceram (ver, por exemplo, [38]). Há, de fato, quatro casos para serem investigados: polinomial (casos real e complexo) e multilinear (casos real e complexo). Podemos resumir em uma frase as principais informa ções dos trabalhos recentes: as constantes das desigualdades de Bohnenblust Hille são, em geral, extraordinariamente menores do que as primeiras estimativas tinham previsto. Neste trabalho apresentamos algumas das nossas pequenas contribuições ao estudo das constantes nas desigualdades de Bohnenblust-Hille, os quais encontram-se contidos em ([40, 41, 42, 44]).The Bohnenblust Hille theorems, proved in 1931 in the prestigious journal Annals of Mathematics, were used as very useful tools in the solution of the famous "Bohr's absolute convergence problem". After a long time overlooked, these theorems have been explored in the recent years. Last quinquennium experienced the rising of several works dedicated to estimate the Bohnenblust Hille constants ([13, 18, 20, 26, 27, 39, 42, 44, 46, 53]) and also unexpected connections with Quantum Information Theory appeared (see, e.g., [38]). There are in fact four cases to be investigated: polynomial (real and complex cases) and multilinear (real and complex cases). We can summarize in a sentence the main information from the recent preprints: the Bohnenblust Hille constants are, in general, extraordinarily smaller than the rst estimates predicted. In this work, we present some of our small contributions to the study of the constants of the inequalities Bohnenblust-Hille, these are contained in ([40, 41, 42, 44]).<br>Os teoremas de Bohnenblust Hille, demonstrados em 1931 no prestigioso jornal Annals of Mathematics, foram utilizados como ferramentas muito úteis na solução do famoso Problema da convergência absoluta de Bohr. Após um longo tempo esquecidos, estes teoremas têm sido bastante explorados nos últimos anos. Este último quinquê- nio experimentou o surgimento de várias obras dedicadas a estimar as constantes de Bohnenblust Hille ([13, 18, 20, 26, 27, 39, 42, 44, 46, 53]) e também conexões inesperadas com a Teoria da Informação Quântica apareceram (ver, por exemplo, [38]). Há, de fato, quatro casos para serem investigados: polinomial (casos real e complexo) e multilinear (casos real e complexo). Podemos resumir em uma frase as principais informa ções dos trabalhos recentes: as constantes das desigualdades de Bohnenblust Hille são, em geral, extraordinariamente menores do que as primeiras estimativas tinham previsto. Neste trabalho apresentamos algumas das nossas pequenas contribuições ao estudo das constantes nas desigualdades de Bohnenblust-Hille, os quais encontram-se contidos em ([40, 41, 42, 44])
APA, Harvard, Vancouver, ISO, and other styles
6

Wiesner, Dirk. "Polynomials in operator space theory /." Tönning ; Lübeck ; Marburg : Der Andere Verl, 2009. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017610887&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wiesner, Dirk. "Polynomials in operator space theory." Tönning Lübeck Marburg Der Andere Verl, 2008. http://d-nb.info/99429770X/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Routin, Eddy. "Local Tb theorems and Hardy type inequalities." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00656023.

Full text
Abstract:
In this thesis, we study local Tb theorems for singular integral operators in the setting of spaces of homogeneous type. We give a direct proof of the local Tb theorem with L^2 integrability on the pseudo- accretive system. Our argument relies on the Beylkin-Coifman-Rokhlin algorithm applied in adapted Haar wavelet basis and some stopping time results. Motivated by questions of S. Hofmann, we extend it to the case when the integrability conditions are lower than 2, with an additional weak boundedness type hypothesis, which incorporates some Hardy type inequalities. We study the possibility of relaxing the support conditions on the pseudo-accretive system to a slight enlargement of the dyadic cubes. We also give a result in the case when, for practical reasons, hypotheses on the pseudo-accretive system are made on balls rather than dyadic cubes. Finally we study the particular case of perfect dyadic operators for which the proof gets much simpler. Our argument gives us the opportunity to study Hardy type inequalities. The latter are well known in the Euclidean setting, but seem to have been overlooked in spaces of homogeneous type. We prove that they hold without restriction in the dyadic setting. In the more general case of a ball B and its corona 2B\B, they can be obtained from some geometric conditions relative to the distribution of points in the homogeneous space. For example, we prove that some relative layer decay property suffices. We also prove that this property is implied by the monotone geodesic property of Tessera. Finally, we give some explicit examples and counterexamples in the complex plane to illustrate the relationship between the geometry of the homogeneous space and the validity of the Hardy type inequalities.
APA, Harvard, Vancouver, ISO, and other styles
9

McCormick, Kathryn. "Operator algebras, matrix bundles, and Riemann surfaces." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6469.

Full text
Abstract:
Let $\overline{R}$ be a finitely bordered Riemann surface, and let $\mathfrak{E}_\rho(\overline{R})$ be a flat matrix $PU_n(\mathbb{C})$-bundle over $\overline{R}$. Let $\Gamma_c(\overline{R}, \mathfrak{E}(\overline{R}))$ denote the $C^*$-algebra of continuous cross-sections of $\mathfrak{E}(\overline{R})$, and let $\Gamma_h(\overline{R},\mathfrak{E}(\overline{R}))$ denote the subalgebra consisting of the continuous holomorphic sections, i.e.~the continuous cross-sections that are holomorphic on the interior of $\overline{R}$. The algebra $\Gamma_c(\overline{R}, \mathfrak{E}(\overline{R}))$ is an example of an $n$-homogeneous $C^*$-algebra, and the subalgebra $\Gamma_h(\overline{R},\mathfrak{E}(\overline{R}))$ is the principal object of study of this thesis. The algebras $\Gamma_h(\overline{R},\mathfrak{E}(\overline{R}))$ appeared in the earlier works \cite{Abrahamse1976} and \cite{Blecher2000}. Operators that can be viewed as elements in $\Gamma_h(\overline{R},\mathfrak{E}(\overline{R}))$ are the subject of \cite{Abrahamse1976}. The Morita theory of $\Gamma_h(\overline{R},\mathfrak{E}(\overline{R}))$, under the guise of a fixed-point algebra and in the special case of an annulus $R$, is studied in \cite[Ex.~8.3]{Blecher2000}. This thesis studies these algebras and their topological data $\mathfrak{E}_\rho(\overline{R})$ motivated by several problems in the theory of nonselfadjoint operator algebras. Boundary representations are an invariant of operator algebras that were introduced by Arveson in 1969. However, it took nearly 50 years to show that boundary representations existed in sufficient abundance in all cases. I show that every boundary representation of $\Gamma_c(\overline{R}, \mathfrak{E}(\overline{R}))$ for $\Gamma_h(\overline{R}, \mathfrak{E}(\overline{R}))$ is given by evaluation at some point $r \in \partial R$. As a corollary, the $C^*$-envelope of $\Gamma_h(\overline{R},\mathfrak{E}(\overline{R}))$ is $\Gamma_c(\partial R, \mathfrak{E}(\partial R))$. Using the $C^*$-envelope, I show that for certain choices of fibre and base space, $\Gamma_h(\overline{R}, \mathfrak{E}_\rho(\overline{R}))$ is not completely isometrically isomorphic to $A(\overline{R})\otimes M_n(\mathbb{C})$ unless the representation $\rho$ is the trivial representation. I also show that $\Gamma_h(\overline{R},\mathfrak{E}(\overline{R}))$ is an Azumaya over its center. Azumaya algebras are the ``pure-algebra'' analogues to $n$-homogeneous $C^*$-algebras \cite{Artin1969}. Thus the structure of the nonselfadjoint subalgebra $\Gamma_h(\overline{R},\mathfrak{E}(\overline{R}))$ reflects some of the structure of its $C^*$-envelope (which is $n$-homogeneous). Finally, I answer a question raised in \cite[Ex.~8.3]{Blecher2000} on the $cb$ and strong Morita theory of $\Gamma_h(\overline{R},\mathfrak{E}_\rho(\overline{R}))$, showing in particular that $\Gamma_h(\overline{R},\mathfrak{E}_\rho(\overline{R}))$ is $cb$ Morita equivalent to its center $A(\overline{R})$. As suggested in \cite[Ex.~8.3]{Blecher2000}, I provide additional evidence that $\Gamma_h(\overline{R},\mathfrak{E}_\rho(\overline{R}))$ may not be strongly Morita equivalent to its center. This evidence, in turn, suggests that there may be a Brauer group -like analysis for these algebras.
APA, Harvard, Vancouver, ISO, and other styles
10

Arias, Marco Teresa. "Study of homogeneous DÀtri spaces, of the Jacobi operator on g.o. spaces and the locally homogeneous connections on 2-dimensional manifolds with the help of Mathematica." Doctoral thesis, Universitat de València, 2007. http://hdl.handle.net/10803/9954.

Full text
Abstract:
Nowadays, the concept of homogeneity is one of the fundamental notions in geometry although its meaning must be always specified for the concrete situations. In this thesis, we consider the homogeneity of Riemannian manifolds and the homogeneity of manifolds equipped with affine connections. The first kind of homogeneity means that, for every smooth Riemannian manifold (M, g), its group of isometries I(M) is acting transitively on M. Part I of this thesis fits into this philosophy. Afterwards in Part II, we treat the homogeneity concept of affine connections. This homogeneity means that, for every two points of a manifold, there is an affine diffeomorphism which sends one point into another. In particular, we consider a local version of the homogeneity, that is, we accept that the affine diffeomorphisms are given only locally, i.e., from a neighborhood onto a neighborhood. More specifically, we devote the first Chapter of Part I to make a brief overview of some special kinds of homogeneous Riemannian manifolds which will be of special relevance in Part I and to show how the software MATHEMATICA© becomes useful. For that, we prove that "the three-parameter families of flag manifolds constructed by N. R. Wallach in "Compact homogeneous Riemannian manifols with strictly positive curvature, Ann. of Math. 96 (1972), p. 276-293" are D'Atri spaces if and only if they are naturally reductive spaces. Thus, we improve the previous results given by D'Atri, Nickerson and by Arias-Marco, Naveira.Moreover, in Chapter 2 we obtain the complete 4-dimensional classification of homogeneous spaces of type A. This allows us to prove correctly that every 4-dimensional homogeneous D'Atri space is naturally reductive. Therefore, we correct, complete and improve the results presented by Podestà, Spiro, Bueken and Vanhecke. Chapter 3 is devoted to prove that the curvature operator has constant osculating rank over g.o. spaces. It is mean that a real number 'r' exists such that under some assumptions, the higher order derivatives of the curvature operator from 1 to r are linear independent and from 1 to r + 1 are linear dependent. As a consequence, we also present a method valid on every g.o. space to solve the Jacobi equation. This method extends the method given by Naveira and Tarrío for naturally reductive spaces. In particular, we prove that the Jacobi operator on Kaplan's example (the first known g.o. space that it is not naturally reductive) has constant osculating rank 4. Moreover, we solve the Jacobi equation along a geodesic on Kaplan's example using the new method and the well-known method used by Chavel, Ziller and Berndt,Tricerri, Vanhecke. Therefore, we are able to present the main differences between both methods.In Part II, we classify (locally) all locally homogeneous affine connections with arbitrary torsion on two-dimensional manifolds. Therefore, we generalize the result given by Opozda for torsion-less case. Moreover, from our computations we obtain interesting consequences as the relation between the classifications given for the torsion less-case by Kowalski, Opozda and Vlá ek. In addition, we obtain interesting consequences about flat connections with torsion.In general, the study of these problems sometimes requires a big number of straightforward symbolic computations. In such cases, it is a quite difficult task and a lot of time consuming, try to make correctly this kind of computations by hand. Thus, we try to organize our computations in (possibly) most systematic way so that the whole procedure is not excessively long. Also, because these topics are an ideal subject for a computer-aided research, we are using the software MATHEMATICA©, throughout this work. But we put stress on the full transparency of this procedure.<br>En esta tesis, se consideran dos tipos bien diferenciados de homogeneidad: la de las variedades riemannianas y la de las variedades afines. El primer tipo de homogeneidad se define como aquel que tiene la propiedad de que el grupo de isometrías actúa transitivamente sobre la variedad. La Parte I, recoge todos los resultados que hemos obtenido en esta dirección. Sin embargo, en la Parte II se presentan los resultados obtenidos sobre conexiones afines homogéneas. Una conexión afín se dice homogénea si para cada par de puntos de la variedad existe un difeomorfismo afín que envía un punto en otro. En este caso, se considera una versión local de homogeneidad. Más específicamente, la Parte I de esta tesis está dedicada a probar que "las familias 3-paramétricas de variedades bandera construidas por Wallach son espacios de D'Atri si y sólo si son espacios naturalmente reductivos". Más aún, en el segundo Capítulo, se obtiene la clasificación completa de los espacios homogéneos de tipo A cuatro dimensionales que permite probar correctamente que todo espacio de D'Atri homogéneo de dimensión cuatro es naturalmente reductivo.Finalmente, en el tercer Capítulo se prueba que en cualquier g.o. espacio el operador curvatura tiene rango osculador constante y, como consecuencia, se presenta un método para resolver la ecuación de Jacobi sobre cualquier g.o. espacio. La Parte II se destina a clasificar (localmente) todas las conexiones afines localmente homogéneas con torsión arbitraria sobre variedades 2-dimensionales. Para finalizar el cuarto Capítulo, se prueban algunos resultados interesantes sobre conexiones llanas con torsión.En general, el estudio de estos problemas requiere a veces, un gran número de cálculos simbólicos aunque sencillos. En dichas ocasiones, realizarlos correctamente a mano es una tarea ardua que requiere mucho tiempo. Por ello, se intenta organizar todos estos cálculos de la manera más sistemática posible de forma que el procedimiento no resulte excesivamente largo. Este tipo de investigación es ideal para utilizar la ayuda del ordenador; así, cuando resulta conveniente, utilizamos la ayuda del software MATHEMATICA para desarrollar con total transparencia el método de resolución que más se adecua a cada uno de los problemas a resolver.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography