Academic literature on the topic 'Homogeneous Operators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Homogeneous Operators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Homogeneous Operators"
Burýšková, Věra, and Slavomír Burýšek. "On solvability of nonlinear operator equations and eigenvalues of homogeneous operators." Mathematica Bohemica 121, no. 3 (1996): 301–14. http://dx.doi.org/10.21136/mb.1996.125984.
Full textSawano, Yoshihiro. "Maximal operator for pseudodifferential operators with homogeneous symbols." Michigan Mathematical Journal 59, no. 1 (April 2010): 119–42. http://dx.doi.org/10.1307/mmj/1272376028.
Full textBekker, Borislava, and Miron B. Bekker. "On Selfadjoint Homogeneous Operators." Complex Analysis and Operator Theory 7, no. 1 (August 3, 2011): 9–31. http://dx.doi.org/10.1007/s11785-011-0175-9.
Full textAvsyankin, Oleg. "ON INTEGRAL OPERATORS WITH HOMOGENEOUS KERNELS IN MORREY SPACES." Eurasian Mathematical Journal 12, no. 1 (2021): 92–96. http://dx.doi.org/10.32523/2077-9879-2021-12-1-92-96.
Full textGrafakos, Loukas, and Rodolfo H. Torres. "Pseudodifferential operators with homogeneous symbols." Michigan Mathematical Journal 46, no. 2 (September 1999): 261–69. http://dx.doi.org/10.1307/mmj/1030132409.
Full textKorányi, Adam, and Gadadhar Misra. "New constructions of homogeneous operators." Comptes Rendus Mathematique 342, no. 12 (June 2006): 933–36. http://dx.doi.org/10.1016/j.crma.2006.04.002.
Full textVasilescu, F. H. "Homogeneous operators and essential complexes." Glasgow Mathematical Journal 31, no. 1 (January 1989): 73–85. http://dx.doi.org/10.1017/s0017089500007576.
Full textAgbor, Dieudonne. "Algebraic Properties of Toeplitz Operators on the Pluri-harmonic Fock Space." Journal of Mathematics Research 9, no. 6 (October 26, 2017): 67. http://dx.doi.org/10.5539/jmr.v9n6p67.
Full textde Oliveira, Souza, Jose J. S. de Figueiredo, and Lucas Freitas. "Redatuming Operators Analysis in Homogeneous Media." Acta Geophysica 63, no. 2 (April 2015): 414–31. http://dx.doi.org/10.2478/s11600-014-0248-z.
Full textCasadio Tarabusi, Enrico, and Alessandro Figà-Talamanca. "Drifted Laplace operators on homogeneous trees." Proceedings of the American Mathematical Society 135, no. 07 (July 1, 2007): 2165–76. http://dx.doi.org/10.1090/s0002-9939-07-08811-9.
Full textDissertations / Theses on the topic "Homogeneous Operators"
Stefanov, Atanas. "On homogeneous Calderón-Zygmund operators with rough kernels /." free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9951125.
Full textConnolly, Donal. "Pseudo-differential operators on homogeneous spaces." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/23926.
Full textAllen, Robert Francis. "A class of operators with symbol on the bloch space of a bounded homogeneous domain." Fairfax, VA : George Mason University, 2009. http://hdl.handle.net/1920/4541.
Full textVita: p. 158. Thesis director: Flavia Colonna. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics. Title from PDF t.p. (viewed Oct. 11, 2009). Includes bibliographical references (p. 150-157). Also issued in print.
Sriskandasingam, Mayuran. "Non-homogeneous Boundary Value Problems of a Class of Fifth Order Korteweg-de Vries Equation posed on a Finite Interval." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1626357151760691.
Full textAlarcón, Daniel Núnez. "Sobre o teoremas de Bohnenblurt - Hille." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/8047.
Full textMade available in DSpace on 2016-03-29T11:06:09Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 821623 bytes, checksum: 520d1fa102a8bdfeb531d12a30d60f61 (MD5) Previous issue date: 2014-03-12
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Os teoremas de Bohnenblust Hille, demonstrados em 1931 no prestigioso jornal Annals of Mathematics, foram utilizados como ferramentas muito úteis na solução do famoso Problema da convergência absoluta de Bohr. Após um longo tempo esquecidos, estes teoremas têm sido bastante explorados nos últimos anos. Este último quinquê- nio experimentou o surgimento de várias obras dedicadas a estimar as constantes de Bohnenblust Hille ([13, 18, 20, 26, 27, 39, 42, 44, 46, 53]) e também conexões inesperadas com a Teoria da Informação Quântica apareceram (ver, por exemplo, [38]). Há, de fato, quatro casos para serem investigados: polinomial (casos real e complexo) e multilinear (casos real e complexo). Podemos resumir em uma frase as principais informa ções dos trabalhos recentes: as constantes das desigualdades de Bohnenblust Hille são, em geral, extraordinariamente menores do que as primeiras estimativas tinham previsto. Neste trabalho apresentamos algumas das nossas pequenas contribuições ao estudo das constantes nas desigualdades de Bohnenblust-Hille, os quais encontram-se contidos em ([40, 41, 42, 44]).The Bohnenblust Hille theorems, proved in 1931 in the prestigious journal Annals of Mathematics, were used as very useful tools in the solution of the famous "Bohr's absolute convergence problem". After a long time overlooked, these theorems have been explored in the recent years. Last quinquennium experienced the rising of several works dedicated to estimate the Bohnenblust Hille constants ([13, 18, 20, 26, 27, 39, 42, 44, 46, 53]) and also unexpected connections with Quantum Information Theory appeared (see, e.g., [38]). There are in fact four cases to be investigated: polynomial (real and complex cases) and multilinear (real and complex cases). We can summarize in a sentence the main information from the recent preprints: the Bohnenblust Hille constants are, in general, extraordinarily smaller than the rst estimates predicted. In this work, we present some of our small contributions to the study of the constants of the inequalities Bohnenblust-Hille, these are contained in ([40, 41, 42, 44]).
Os teoremas de Bohnenblust Hille, demonstrados em 1931 no prestigioso jornal Annals of Mathematics, foram utilizados como ferramentas muito úteis na solução do famoso Problema da convergência absoluta de Bohr. Após um longo tempo esquecidos, estes teoremas têm sido bastante explorados nos últimos anos. Este último quinquê- nio experimentou o surgimento de várias obras dedicadas a estimar as constantes de Bohnenblust Hille ([13, 18, 20, 26, 27, 39, 42, 44, 46, 53]) e também conexões inesperadas com a Teoria da Informação Quântica apareceram (ver, por exemplo, [38]). Há, de fato, quatro casos para serem investigados: polinomial (casos real e complexo) e multilinear (casos real e complexo). Podemos resumir em uma frase as principais informa ções dos trabalhos recentes: as constantes das desigualdades de Bohnenblust Hille são, em geral, extraordinariamente menores do que as primeiras estimativas tinham previsto. Neste trabalho apresentamos algumas das nossas pequenas contribuições ao estudo das constantes nas desigualdades de Bohnenblust-Hille, os quais encontram-se contidos em ([40, 41, 42, 44])
Wiesner, Dirk. "Polynomials in operator space theory /." Tönning ; Lübeck ; Marburg : Der Andere Verl, 2009. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017610887&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textWiesner, Dirk. "Polynomials in operator space theory." Tönning Lübeck Marburg Der Andere Verl, 2008. http://d-nb.info/99429770X/04.
Full textRoutin, Eddy. "Local Tb theorems and Hardy type inequalities." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00656023.
Full textMcCormick, Kathryn. "Operator algebras, matrix bundles, and Riemann surfaces." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6469.
Full textArias, Marco Teresa. "Study of homogeneous DÀtri spaces, of the Jacobi operator on g.o. spaces and the locally homogeneous connections on 2-dimensional manifolds with the help of Mathematica." Doctoral thesis, Universitat de València, 2007. http://hdl.handle.net/10803/9954.
Full textEn esta tesis, se consideran dos tipos bien diferenciados de homogeneidad: la de las variedades riemannianas y la de las variedades afines. El primer tipo de homogeneidad se define como aquel que tiene la propiedad de que el grupo de isometrías actúa transitivamente sobre la variedad. La Parte I, recoge todos los resultados que hemos obtenido en esta dirección. Sin embargo, en la Parte II se presentan los resultados obtenidos sobre conexiones afines homogéneas. Una conexión afín se dice homogénea si para cada par de puntos de la variedad existe un difeomorfismo afín que envía un punto en otro. En este caso, se considera una versión local de homogeneidad. Más específicamente, la Parte I de esta tesis está dedicada a probar que "las familias 3-paramétricas de variedades bandera construidas por Wallach son espacios de D'Atri si y sólo si son espacios naturalmente reductivos". Más aún, en el segundo Capítulo, se obtiene la clasificación completa de los espacios homogéneos de tipo A cuatro dimensionales que permite probar correctamente que todo espacio de D'Atri homogéneo de dimensión cuatro es naturalmente reductivo.Finalmente, en el tercer Capítulo se prueba que en cualquier g.o. espacio el operador curvatura tiene rango osculador constante y, como consecuencia, se presenta un método para resolver la ecuación de Jacobi sobre cualquier g.o. espacio. La Parte II se destina a clasificar (localmente) todas las conexiones afines localmente homogéneas con torsión arbitraria sobre variedades 2-dimensionales. Para finalizar el cuarto Capítulo, se prueban algunos resultados interesantes sobre conexiones llanas con torsión.En general, el estudio de estos problemas requiere a veces, un gran número de cálculos simbólicos aunque sencillos. En dichas ocasiones, realizarlos correctamente a mano es una tarea ardua que requiere mucho tiempo. Por ello, se intenta organizar todos estos cálculos de la manera más sistemática posible de forma que el procedimiento no resulte excesivamente largo. Este tipo de investigación es ideal para utilizar la ayuda del ordenador; así, cuando resulta conveniente, utilizamos la ayuda del software MATHEMATICA para desarrollar con total transparencia el método de resolución que más se adecua a cada uno de los problemas a resolver.
Books on the topic "Homogeneous Operators"
Smooth homogeneous structures in operator theory. Boca Raton: Chapman & Hall/CRC, 2005.
Find full textMass.) AMS Special Session on Radon Transforms and Geometric Analysis (2012 Boston. Geometric analysis and integral geometry: AMS special session in honor of Sigurdur Helgason's 85th birthday, radon transforms and geometric analysis, January 4-7, 2012, Boston, MA ; Tufts University Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces, January 8-9, 2012, Medford, MA. Edited by Quinto, Eric Todd, 1951- editor of compilation, Gonzalez, Fulton, 1956- editor of compilation, Christensen, Jens Gerlach, 1975- editor of compilation, and Tufts University. Workshop on Geometric Analysis on Euclidean and Homogeneous Spaces. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textAnalytic capacity, the Cauchy transform, and non-homogeneous Calderón-Zygmund theory. Heidelberg: Birkhäuser, 2014.
Find full textEpstein, Charles L., and Rafe Mazzeo. The Model Solution Operators. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0004.
Full textEpstein, Charles L., and Rafe Mazzeo. Degenerate Diffusion Operators Arising in Population Biology (AM-185). Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.001.0001.
Full textBeltita, Daniel. Smooth Homogeneous Structures in Operator Theory. Taylor & Francis Group, 2005.
Find full textBeltita, Daniel. Smooth Homogeneous Structures in Operator Theory. Taylor & Francis Group, 2019.
Find full textBeltita, Daniel. Smooth Homogeneous Structures in Operator Theory. Taylor & Francis Group, 2005.
Find full textEpstein, Charles L., and Rafe Mazzeo. The Resolvent Operator. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0011.
Full textTolsa, Xavier. Analytic Capacity, the Cauchy Transform, and Non-Homogeneous Calderón-Zygmund Theory. Springer International Publishing AG, 2016.
Find full textBook chapters on the topic "Homogeneous Operators"
Korányi, Adam. "Differential Operators." In Analysis and Geometry on Complex Homogeneous Domains, 243–55. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1366-6_18.
Full textWong, M. W. "Group Actions and Homogeneous Spaces." In Wavelet Transforms and Localization Operators, 141–42. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8217-0_24.
Full textRuzhansky, Michael, and Ville Turunen. "Pseudo-differential Operators on Homogeneous Spaces." In Pseudo-Differential Operators and Symmetries, 667–81. Basel: Birkhäuser Basel, 2010. http://dx.doi.org/10.1007/978-3-7643-8514-9_18.
Full textOrtner, Norbert, and Peter Wagner. "Fundamental Matrices of Homogeneous Systems." In Fundamental Solutions of Linear Partial Differential Operators, 333–69. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20140-5_5.
Full textBiroli, Marco, and Umberto Mosco. "Sobolev Inequalities on Homogeneous Spaces." In Potential Theory and Degenerate Partial Differential Operators, 311–24. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0085-4_1.
Full textHelgason, Sigurdur. "Solvability of Invariant Differential Operators on Homogeneous Manifolds." In Differential Operators on Manifolds, 281–311. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11114-3_5.
Full textRabinovich, Vladimir S., and Steffen Roch. "Integral Operators with Shifts on Homogeneous Groups." In Factorization, Singular Operators and Related Problems, 255–71. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0227-0_17.
Full textBott, Raoul. "The Index Theorem for Homogeneous Differential Operators." In Raoul Bott Collected Papers, 163–83. Boston, MA: Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-1-4612-5367-9_5.
Full textYamazaki, Masao. "Propagation of quasi-homogeneous microlocal singularities of solutions to nonlinear partial differential equations." In Pseudo-Differential Operators, 442–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077755.
Full textDrábek, Pavel. "On the Fredholm Alternative for Nonlinear Homogeneous Operators." In Applied Nonlinear Analysis, 41–48. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47096-9_4.
Full textConference papers on the topic "Homogeneous Operators"
Hou, Yuexia. "Global Lorentz estimates for hypoelliptic operators with drift on homogeneous group." In International Conference on Electronic Information Engineering and Computer Technology (EIECT 2021), edited by Fengjie Cen, Sahil Verma, and N. Rajathi. SPIE, 2021. http://dx.doi.org/10.1117/12.2624848.
Full textLancellotti, V., B. P. de Hon, and A. G. Tijhuis. "Linear embedding via Green's operators for 3-D scattering from piecewise homogeneous bodies." In 2010 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2010. http://dx.doi.org/10.1109/iceaa.2010.5651114.
Full textMironchenko, Andrii, Navid Noroozi, Christoph Kawan, and Majid Zamani. "A small-gain approach to ISS of infinite networks with homogeneous gain operators." In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. http://dx.doi.org/10.1109/cdc45484.2021.9683337.
Full textKurdila, A., and J. Li. "Relaxation Methods for Nonlinear Dynamics and Hysteresis Operators." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8062.
Full textElena, Miroshnikova. "Boundedness and invertibility of multidimensional integral operators with anisotropically homogeneous kernels in weighted Lp-spaces." In 10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2014. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4904637.
Full textZhang, Junjian, Guoyi Ke, and Z. Charlie Zheng. "Time-Domain Simulation of Ultrasound Propagation With Fractional Laplacian." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65966.
Full textAndrade, Matheus Guedes de, Franklin De Lima Marquezino, and Daniel Ratton Figueiredo. "Characterizing the Relationship Between Unitary Quantum Walks and Non-Homogeneous Random Walks." In Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/ctd.2021.15756.
Full textHadjisotiriou, George, Kiarash Mansour Pour, and Denis Voskov. "Application of Deep Neural Networks to the Operator Space of Nonlinear PDE for Physics-Based Proxy Modelling." In SPE Reservoir Simulation Conference. SPE, 2023. http://dx.doi.org/10.2118/212217-ms.
Full textPerre, Patrick, and Ian Turner. "A physical interpretation of the use of fractional operators for modelling the drying process." In 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7885.
Full textGraber, H. L., J. Chang, R. L. Barbour, and R. Aronson. "Evaluation of Spatial Variations in the Time and Frequency Dependence of Imaging Operators for Diffusion Tomography." In Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/aoipm.1994.apmpdwi.99.
Full textReports on the topic "Homogeneous Operators"
Esparza and Westine. L51482 Well Casing Response to Buried Explosive Detonations. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 1985. http://dx.doi.org/10.55274/r0010272.
Full textDeschamps, Robert, and Henschel. PR-420-133721-R01 Comparison of Radar Satellite Methods for Observation of Stability. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 2015. http://dx.doi.org/10.55274/r0010840.
Full text