Academic literature on the topic 'Homeostasis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Homeostasis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Homeostasis"
Wang, Lin-Shu, and Peizheng Ma. "The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings." Applied Energy 162 (January 2016): 183–96. http://dx.doi.org/10.1016/j.apenergy.2015.10.058.
Full textKurniawan, Shahdevi Nandar. "INTRACELLULAR Ca2+ HOMEOSTASIS." MNJ (Malang Neurology Journal) 1, no. 1 (January 1, 2015): 36–45. http://dx.doi.org/10.21776/ub.mnj.2015.001.01.7.
Full textRajkumar, R. Vinodh. "Perfect Homeostasis: pH." International Journal of Physiotherapy and Research 10, no. 1 (February 11, 2022): 4111–24. http://dx.doi.org/10.16965/ijpr.2021.213.
Full textZakharov, V. M., and I. E. Trofimov. "Homeostatic mechanisms of biological systems: Development homeostasis." Russian Journal of Developmental Biology 45, no. 3 (May 2014): 105–16. http://dx.doi.org/10.1134/s1062360414030096.
Full textMeizlish, Matthew L., Ruth A. Franklin, Xu Zhou, and Ruslan Medzhitov. "Tissue Homeostasis and Inflammation." Annual Review of Immunology 39, no. 1 (April 26, 2021): 557–81. http://dx.doi.org/10.1146/annurev-immunol-061020-053734.
Full textZiambaras, Konstantinos, Roberto Civitelli, and Stathis Papavasiliou. "Weightlessness and skeleton homeostasis." HORMONES 4, no. 1 (January 15, 2005): 18–27. http://dx.doi.org/10.14310/horm.2002.11139.
Full textS Prasad, Sanath. "Homeostasis - Balance, Equity, Equilibrium." International Journal of Science and Research (IJSR) 13, no. 3 (March 5, 2024): 1742–43. http://dx.doi.org/10.21275/es24326161131.
Full textSumner, T., J. Hetherington, R. M. Seymour, L. Li, M. Varela Rey, S. Yamaji, P. Saffrey, et al. "A composite computational model of liver glucose homeostasis. II. Exploring system behaviour." Journal of The Royal Society Interface 9, no. 69 (February 8, 2012): 701–6. http://dx.doi.org/10.1098/rsif.2011.0783.
Full textZhang, Huimin, Yang Li, Xiani Yao, Gang Liang, and Diqiu Yu. "POSITIVE REGULATOR OF IRON HOMEOSTASIS1, OsPRI1, Facilitates Iron Homeostasis." Plant Physiology 175, no. 1 (July 27, 2017): 543–54. http://dx.doi.org/10.1104/pp.17.00794.
Full textPelletier, Luc G., Camille Guertin, J. Paige Pope, and Meredith Rocchi. "Homeostasis balance, homeostasis imbalance or distinct motivational processes? Comments on Marks (2015) ‘Homeostatic Theory of Obesity’." Health Psychology Open 3, no. 1 (January 13, 2016): 205510291562451. http://dx.doi.org/10.1177/2055102915624512.
Full textDissertations / Theses on the topic "Homeostasis"
Blanch, Graziela Torres [UNESP]. "Ajustes cardiovasculares e do equilibrio hidroeletrolítico induzidos por soluções hipertônicas em ratos com lesão do núcleo do trato solitário comissural." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/106675.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
O sistema nervoso central (SNC) tem um papel fundamental na regulação de mecanismos que controlam a osmolaridade dos líquidos corporais. O núcleo do trato solitário (NTS) é o sítio primário das aferências cardiovasculares e de osmorreceptores periféricos e se projeta à áreas prosencefálicas envolvidas com a regulação cardiovascular e do equilíbrio hidroeletrolítico. Demonstramos anteriormente que animais com lesão da porção comissural do NTS (commNTS) tem maior ingestão de água, natriurese e resposta pressora frente a sobrecarga intragástrica (ig) de NaCl 2 M. Os mecanismos responsáveis por estas alterações ainda não foram determinados. Uma vez que o estímulo com NaCl 2 M ig (2 ml) ativa osmorreceptores centrais e periféricos, não sabemos até o momento os efeitos da lesão do commNTS sobre as respostas observadas após a estimulação específica de osmorreceptores periféricos, que pode ser feita com NaCl 0,6 M ig. (2 ml). Desta forma os nossos objetivos foram: a) estudar os mecanismos que medeiam o aumento da pressão arterial e da natriurese após a sobrecarga de NaCl 2 M em animais com lesão do commNTS; b) verificar as alterações na expressão da proteína c-Fos após NaCl 2 M ig em ratos com lesão fictícia (sham) ou lesão do commNTS; c) verificar as alterações na expressão gênica no PVN após NaCl 2 M ig, d) estudar os efeitos na pressão arterial, na ingestão de água e na excreção renal subseqüentes a administração de NaCl 0,6 M ig, bem como os mecanismos responsáveis pelas alterações, em ratos com lesão fictícia (sham) ou lesão do commNTS; e) verificar as alterações na expressão da proteína c-Fos após NaCl 0,6 M ig em ratos com lesão fictícia (sham) ou lesão do commNTS. Ratos Holtzman (280-320 g) foram utilizados. A lesão eletrolítica...
The central nervous system has an important role controlling the mechanisms involved in the regulation of body fluid osmolality. The nucleus of the solitary tract (NTS) is the primary site of cardiovascular and peripheral osmoreceptors afferents and projects to prosencephalic areas involved in hydroelectrolytic balance and cardiovascular regulation. We have demonstrated that commissural NTS (commNTS) lesioned rats had an increase in arterial pressure and a greater increase in water intake and natriuresis after 2 M NaCl intragastric (ig) load. The mechanisms involved in these responses are not known. Since 2 M NaCl ig (2 ml) activates central and peripheral osmoreceptors, it is not known the effects of the commNTS lesion on the responses induced only by the activation of the peripheral osmoreceptors, which can be done by 0.6 M NaCl (2 ml) ig. Thus, the aims of this study were: a) to study the mechanisms involved in the increase of the arterial pressure and natriuresis in commNTS lesioned rats after 2 M NaCl ig; b) to verify the changes in c-Fos expression after 2 M NaCl ig in sham and commNTS lesioned rats; c) to verify the changes in gene expression in PVN after 2 M NaCl ig in naïve rats; d) to study the effects on arterial pressure, water intake and renal excretion after 0.6 M NaCl, as well as, the mechanisms involved in these responses, in sham and in commNTS lesioned rats; e) to verify the changes in c-Fos expression after 0.6 M NaCl ig in sham and commNTS lesioned rats. Male Holtzman rats (280-320 g) were used. Electrolytic lesion of the commNTS and all experiments were be performed in chronic period of lesion (14 to 21 days. For the lesion, a partial craniotomy of the occipital bone was performed, and the dorsal surface of the brainstem was exposed. The electrolytic lesion was performed using... (Complete abstract click electronic access below)
Kisko, Mushtak. "Study of Physiological and molecular mechanisms underlying the co-regulation between phosphate and zinc homeostasis in plants." Thesis, Montpellier, SupAgro, 2018. http://www.theses.fr/2018NSAM0004/document.
Full textIn plants, while it is clear the homeostasis of different nutrients is highly dependent on each other, they are usually studied independent of each other. Given the paucity of past studies assessing the biological significance of mineral nutrient homeostasis interaction, very little is known about the genetic and molecular basis of such interactions. During my thesis, we made significant progress in going towards a more integrative comprehension of the problem and identify the molecular and genetic bases for a highly important and conserved nutrients interaction: the interaction of zinc and phosphate. First, using the phosphate transporter PHO1;H3 as entry molecular point, and by combining system biology and functional genomics approaches we have identified the functional module (four transcription factors) that regulates the expression and activity of PHO1;H3 under Zn deficiency leading to control Pi accumulation in shoots. Second, following our discovery of Lyso PhosphatidylCholine (PC) AcylTransferase 1 (LPCAT1) using genome-wide association studies (GWAS), we determined complete molecular pathway controlling the expression of this gene. We further uncovered a fundamental link between phospholipid metabolism and Pi-Zn homeostasis interaction via LPCAT1, which lays the foundations to explore a new role for Lyso-PC and PC in control of macro- and micronutrients homeostasis interaction. Taken together, our discoveries offer a new perspective on how to improve Pi content in plants, as our findings suggests that modulating the Zn-deficiency signalling pathway might be a good and simple approach for that
Blanch, Graziela Torres. "Ajustes cardiovasculares e do equilibrio hidroeletrolítico induzidos por soluções hipertônicas em ratos com lesão do núcleo do trato solitário comissural /." Araraquara : [s.n.], 2010. http://hdl.handle.net/11449/106675.
Full textBanca: Colin Sumners
Banca: Cássia Marta de Toledo Bermagaschi
Banca: Vagner Roberto Antunes
Banca: Lucila Leico Kagohara Elias
Resumo: O sistema nervoso central (SNC) tem um papel fundamental na regulação de mecanismos que controlam a osmolaridade dos líquidos corporais. O núcleo do trato solitário (NTS) é o sítio primário das aferências cardiovasculares e de osmorreceptores periféricos e se projeta à áreas prosencefálicas envolvidas com a regulação cardiovascular e do equilíbrio hidroeletrolítico. Demonstramos anteriormente que animais com lesão da porção comissural do NTS (commNTS) tem maior ingestão de água, natriurese e resposta pressora frente a sobrecarga intragástrica (ig) de NaCl 2 M. Os mecanismos responsáveis por estas alterações ainda não foram determinados. Uma vez que o estímulo com NaCl 2 M ig (2 ml) ativa osmorreceptores centrais e periféricos, não sabemos até o momento os efeitos da lesão do commNTS sobre as respostas observadas após a estimulação específica de osmorreceptores periféricos, que pode ser feita com NaCl 0,6 M ig. (2 ml). Desta forma os nossos objetivos foram: a) estudar os mecanismos que medeiam o aumento da pressão arterial e da natriurese após a sobrecarga de NaCl 2 M em animais com lesão do commNTS; b) verificar as alterações na expressão da proteína c-Fos após NaCl 2 M ig em ratos com lesão fictícia (sham) ou lesão do commNTS; c) verificar as alterações na expressão gênica no PVN após NaCl 2 M ig, d) estudar os efeitos na pressão arterial, na ingestão de água e na excreção renal subseqüentes a administração de NaCl 0,6 M ig, bem como os mecanismos responsáveis pelas alterações, em ratos com lesão fictícia (sham) ou lesão do commNTS; e) verificar as alterações na expressão da proteína c-Fos após NaCl 0,6 M ig em ratos com lesão fictícia (sham) ou lesão do commNTS. Ratos Holtzman (280-320 g) foram utilizados. A lesão eletrolítica... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The central nervous system has an important role controlling the mechanisms involved in the regulation of body fluid osmolality. The nucleus of the solitary tract (NTS) is the primary site of cardiovascular and peripheral osmoreceptors afferents and projects to prosencephalic areas involved in hydroelectrolytic balance and cardiovascular regulation. We have demonstrated that commissural NTS (commNTS) lesioned rats had an increase in arterial pressure and a greater increase in water intake and natriuresis after 2 M NaCl intragastric (ig) load. The mechanisms involved in these responses are not known. Since 2 M NaCl ig (2 ml) activates central and peripheral osmoreceptors, it is not known the effects of the commNTS lesion on the responses induced only by the activation of the peripheral osmoreceptors, which can be done by 0.6 M NaCl (2 ml) ig. Thus, the aims of this study were: a) to study the mechanisms involved in the increase of the arterial pressure and natriuresis in commNTS lesioned rats after 2 M NaCl ig; b) to verify the changes in c-Fos expression after 2 M NaCl ig in sham and commNTS lesioned rats; c) to verify the changes in gene expression in PVN after 2 M NaCl ig in naïve rats; d) to study the effects on arterial pressure, water intake and renal excretion after 0.6 M NaCl, as well as, the mechanisms involved in these responses, in sham and in commNTS lesioned rats; e) to verify the changes in c-Fos expression after 0.6 M NaCl ig in sham and commNTS lesioned rats. Male Holtzman rats (280-320 g) were used. Electrolytic lesion of the commNTS and all experiments were be performed in chronic period of lesion (14 to 21 days. For the lesion, a partial craniotomy of the occipital bone was performed, and the dorsal surface of the brainstem was exposed. The electrolytic lesion was performed using... (Complete abstract click electronic access below)
Doutor
Val, Casals Maria 1993. "Circadian regulation of macrophages in homeostasis and disease." Doctoral thesis, Universitat Pompeu Fabra, 2020. http://hdl.handle.net/10803/669532.
Full textCircadian rhythms are daily oscillations in physiological parameters required for organisms to adapt their activity to cycles of light and darkness. At the molecular level, the circadian machinery consists of cell-autonomous transcription-translation oscillation loops led by the activity of BMAL1 and CLOCK proteins. The circadian machinery regulates the activity of diverse immune cell types, including macrophages. Specifically, BMAL1 can control the daily magnitude of macrophage inflammatory responses. In the present work we characterize the circadian regulation of macrophages in yet unexplored contexts. We have analyzed the expression and oscillatory patterns of clock components in macrophage populations, and also assessed the potential role of clocks in macrophage functions. We present results identifying aspects of clock function in macrophages that can help understand the influence of circadian rhythms in the modulation of innate immune responses.
Wassif, Christopher A. "Dysregulation of cholesterol homeostasis." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:da3374f0-9285-4490-b2e7-af493556d925.
Full textDavies, Luke C. "Control of macrophage homeostasis." Thesis, Cardiff University, 2014. http://orca.cf.ac.uk/112185/.
Full textHoshi, Rosangela Akemi. "Análise da variabilidade da frequência cardíaca, variáveis cardiopulmonares e catecolaminas plasmáticas durante recuperação pós-exercício." Faculdade de Medicina de São José do Rio Preto, 2015. http://hdl.handle.net/tede/253.
Full textMade available in DSpace on 2016-05-19T22:20:23Z (GMT). No. of bitstreams: 1 rosangelaakemihoshi_tese.pdf: 2556179 bytes, checksum: a5e900121bd799f888f7c902c2e959c4 (MD5) Previous issue date: 2015-09-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Introduction: Exercises promote changes in the Autonomic Nervous System, the mainly responsible for neurodegenerative functions. Due to its importance, several methods are used in evaluation such as Heart Rate Variability (HRV) analysis, considered an indirect technique to assess autonomic functions, but its use is still questioned. Objectives: To analyze the correlation between HRV indices and concentration of epinephrine and norepinephrine, and observe post-exercise recovery, by HRV linear and nonlinear indices and cardiopulmonary parameters. Methods: 28 participants, divided into two groups (N = 14) had their recovery after exercise evaluated. One group performed submaximal effort (55% V̇O2peak), for 5 minutes, and the other, supramaximal (110% of peak V̇O2) until exhaustion. During 90 minutes post-exercise, blood samples were collected, cardiopulmonary variables were registered and HRV was analyzed. Results: Between baseline and immediately postexercise, we detected that adrenaline and noradrenaline showed significant nonlinear correlation with RR intervals, heart rate, HRV linear indices and nonlinear parameters related to complexity and fractality. After exercise performed at 55% of peak V̇O2, recovery was observed between 30 and 60 minutes, whereas for exercise at 110%, 90 minutes were not enough for returning of variables to baseline levels. Conclusions: Plasma catecholamine concentrations after exercise presented correlation with HRV linear indices and nonlinear parameters related to complex and fractal characteristics of heartbeats, especially the Lyapunov exponent. The variables recovery occurred at different times, but the changes caused by supramaximal exercise were more expressive and lasting.
Introdução: A realização de exercícios físicos promove alterações no sistema nervoso autônomo, principal responsável pelas funções neurovegetativas. Devido à sua importância, diversos métodos são utilizados para avaliação, como a análise da Variabilidade da Frequência Cardíaca (VFC), considerada uma técnica indireta de acesso ao funcionamento autonômico, porém seu emprego é ainda questionado. Objetivos: analisar a correlação entre índices de VFC e concentração de adrenalina e noradrenalina, e observar a recuperação pós-exercício, a partir dos índices lineares e não lineares de VFC e de parâmetros cardiopulmonares. Métodos: 28 participantes, divididos em dois grupos (N=14), foram submetidos à avaliação da recuperação após exercício. Um grupo realizou esforço submáximo (55% do V̇O2pico), por 5 minutos, e o outro, supramáximo ( 110% do V̇O2pico) até a exaustão. Durante 90 minutos pós-exercício foram realizadas coletas sanguíneas, registros das variáveis cardiopulmonares e análise da VFC. Resultados: No período entre o basal e imediatamente após o exercício, detectou-se que adrenalina e noradrenalina apresentaram correlações não lineares significantes com intervalos R-R, frequência cardíaca, índices lineares de VFC e parâmetros não lineares relacionados à complexidade e fractalidade. Após exercício realizado a 55% do V̇O2pico, a recuperação foi verificada entre 30 e 60 minutos, enquanto que para o esforço a 110%, 90 minutos não foram suficientes para o retorno das variáveis aos níveis basais. Conclusões: Concentrações de catecolaminas plasmáticas após exercícios apresentam correlação com índices lineares de VFC e parâmetros não lineares relacionados às características complexas e fractais dos batimentos cardíacos, sobretudo o expoente de Lyapunov. A recuperação das variáveis analisadas ocorreu em tempos diferentes, porém as alterações promovidas pelo exercício supramáximo foram muito mais expressivas e duradouras.
Smith, Kirsty Louise. "Metabolic hormones and energy homeostasis." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411789.
Full textAllstaff, Alison Jane. "Novel factors in bone homeostasis." Thesis, University of Aberdeen, 2010. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=128211.
Full textThompson, Shirley Patricia. "Calcium homeostasis in the elderly." Thesis, University of Nottingham, 1989. http://eprints.nottingham.ac.uk/14012/.
Full textBooks on the topic "Homeostasis"
Gelissen, Ingrid C., and Andrew J. Brown, eds. Cholesterol Homeostasis. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6875-6.
Full textSnow, Andrew L., and Michael J. Lenardo, eds. Immune Homeostasis. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-290-2.
Full textCarafoli, Ernesto, and Joachim Krebs, eds. Calcium Homeostasis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-58306-3.
Full textPool, Ontario Assessment Instrument, ed. Homeostasis: Draft. Toronto: Minister of Education, Ontario, 1989.
Find full textKumar, Vijay, ed. Immune Homeostasis. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3754-8.
Full textSmith, Robert Elijah. Mammalian homeostasis. Burlington, N.C: Carolina Biological Supply Co., 1987.
Find full textBanfalvi, Gaspar. Homeostasis - Tumor - Metastasis. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7335-6.
Full textJeong, Jeeyon, ed. Plant Iron Homeostasis. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3183-6.
Full text1937-, Brenner Barry M., and Stein Jay H. 1937-, eds. Body fluid homeostasis. New York: Churchill Livingstone, 1987.
Find full textPanda, Sanjib Kumar, and Yoshiharu Y. Yamamoto, eds. Redox Homeostasis in Plants. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-95315-1.
Full textBook chapters on the topic "Homeostasis"
Soper, Roland. "Homeostasis." In Human Biology GCSE, 111–31. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-12789-4_8.
Full textKilgour, O. F. G. "Homeostasis." In Work Out Biology GCSE, 159–71. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-09450-9_9.
Full textCaon, Martin. "Homeostasis." In Examination Questions and Answers in Basic Anatomy and Physiology, 139–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75599-1_6.
Full textCapinera, John L., Thomas O. Crist, John B. Heppner, Minos E. Tzanakakis, Severiano F. Gayubo, Aurélien Tartar, Pauline O. Lawrence, et al. "Homeostasis." In Encyclopedia of Entomology, 1832. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_1365.
Full textGaab, Jens. "Homeostasis." In Encyclopedia of Behavioral Medicine, 1080. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39903-0_22.
Full textOrbell, Sheina, Havah Schneider, Sabrina Esbitt, Jeffrey S. Gonzalez, Jeffrey S. Gonzalez, Erica Shreck, Abigail Batchelder, et al. "Homeostasis." In Encyclopedia of Behavioral Medicine, 978. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_22.
Full textMoreno, Alvaro, and Kepa Ruiz-Mirazo. "Homeostasis." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_730-2.
Full textCummins, Robert A. "Homeostasis." In Encyclopedia of Quality of Life and Well-Being Research, 2901–4. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-0753-5_1303.
Full textStout, G. W., and N. P. O. Green. "Homeostasis." In Work Out Biology A Level, 166–76. London: Macmillan Education UK, 1995. http://dx.doi.org/10.1007/978-1-349-13844-9_11.
Full textMoreno, Alvaro, and Kepa Ruiz-Mirazo. "Homeostasis." In Encyclopedia of Astrobiology, 1113–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_730.
Full textConference papers on the topic "Homeostasis"
Polyak, Emil. "Homeostasis." In SIGGRAPH '20: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3386567.3388559.
Full textZeinali-Davarani, Shahrokh, and Seungik Baek. "Testing Different Hypotheses of Vascular Homeostasis Based on Mechanical Stress or Strain in Image-Based Models Using an Inverse Method." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53213.
Full textRoy, Sudip, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch, Nate Foster, and Johannes Gehrke. "The Homeostasis Protocol." In SIGMOD/PODS'15: International Conference on Management of Data. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2723372.2723720.
Full textDomin, C., and L. Medlin. "Homeostasis and perpetual change." In ECO-ARCHITECTURE 2010. Southampton, UK: WIT Press, 2010. http://dx.doi.org/10.2495/arc100031.
Full textHunley, S. C., S. Kwon, and S. Baek. "Influence of Surrounding Tissues on Biomechanics of Aortic Wall: A Feasibility Study of Mechanical Homeostasis." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19264.
Full textKiryu, Tohru. "Handling Risk Homeostasis in Biofunctions*." In 2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech). IEEE, 2020. http://dx.doi.org/10.1109/lifetech48969.2020.1570618241.
Full textRenaud, Karen, and Merrill Warkentin. "Risk Homeostasis in Information Security." In NSPW '17: 2017 New Security Paradigms Workshop. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3171533.3171534.
Full textClark, Sean, and Stephen Scrivener. "Rebuilding Stephen Scrivener's Homeostasis Artwork." In Proceedings of EVA London 2023. BCS Learning & Development, 2023. http://dx.doi.org/10.14236/ewic/eva2023.15.
Full textTacail, Théo, Jamie Lewis, Thomas Tütken, Christopher D. Coath, Nicholas Lloyd, Marcus Clauss, and Tim Elliott. "Potassium Stable Isotope Homeostasis in Vertebrates." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2524.
Full textOka, Mizuki, Hirotake Abe, and Takashi Ikegami. "Dynamic Homeostasis in Packet Switching Networks." In European Conference on Artificial Life 2015. The MIT Press, 2015. http://dx.doi.org/10.7551/978-0-262-33027-5-ch020.
Full textReports on the topic "Homeostasis"
Kilduff, Thomas S. Neurobiological Correlates of Sleep Homeostasis. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada391757.
Full textYoung, Jamey D., and Young M. Whang. Targeting Redox Homeostasis in LKB1-deficient NSCLC. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada614534.
Full textBlumwald, Eduardo, and Avi Sadka. Sugar and Acid Homeostasis in Citrus Fruit. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7697109.bard.
Full textR. Nebreda, Ángel. Señalización de estrés en la homeostasis tumoral: implicaciones terapéuticas. Sociedad Española de Bioquímica y Biología Molecular, October 2017. http://dx.doi.org/10.18567/sebbmdiv_anc.2017.10.1.
Full textKongara, Sameera. Role of Autophagy in Keratin Homeostasis in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, December 2012. http://dx.doi.org/10.21236/ada583662.
Full textKongara, Sameera. Role of Autophagy in Keratin Homeostasis in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, March 2014. http://dx.doi.org/10.21236/ada601249.
Full textKohrt, Wendy M. Disruption of Calcium Homeostasis during Exercise as a Mediator of Bone Metabolism. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada593122.
Full textKohrt, Wendy M. Disruption of Calcium Homeostasis during Exercise as a Mediator of Bone Metabolism. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada615544.
Full textPuigserver, Pere. Maintenance of Glucose Homeostasis through Acetylation of the Metabolic Transcriptional Coactivator PGC-1alpha. Fort Belvoir, VA: Defense Technical Information Center, February 2007. http://dx.doi.org/10.21236/ada467976.
Full textPuigserver, Pere. Maintenance of Glucose Homeostasis Through Acetylation of the Metabolic Transcriptional Coactivator PGC1-alpha. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada551301.
Full text