Academic literature on the topic 'Homeolog'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Homeolog.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Homeolog"

1

Kuo, Tony C. Y., Masaomi Hatakeyama, Toshiaki Tameshige, Kentaro K. Shimizu, and Jun Sese. "Homeolog expression quantification methods for allopolyploids." Briefings in Bioinformatics 21, no. 2 (December 27, 2018): 395–407. http://dx.doi.org/10.1093/bib/bby121.

Full text
Abstract:
Abstract Genome duplication with hybridization, or allopolyploidization, occurs in animals, fungi and plants, and is especially common in crop plants. There is an increasing interest in the study of allopolyploids because of advances in polyploid genome assembly; however, the high level of sequence similarity in duplicated gene copies (homeologs) poses many challenges. Here we compared standard RNA-seq expression quantification approaches used currently for diploid species against subgenome-classification approaches which maps reads to each subgenome separately. We examined mapping error using our previous and new RNA-seq data in which a subgenome is experimentally added (synthetic allotetraploid Arabidopsis kamchatica) or reduced (allohexaploid wheat Triticum aestivum versus extracted allotetraploid) as ground truth. The error rates in the two species were very similar. The standard approaches showed higher error rates (>10% using pseudo-alignment with Kallisto) while subgenome-classification approaches showed much lower error rates (<1% using EAGLE-RC, <2% using HomeoRoq). Although downstream analysis may partly mitigate mapping errors, the difference in methods was substantial in hexaploid wheat, where Kallisto appeared to have systematic differences relative to other methods. Only approximately half of the differentially expressed homeologs detected using Kallisto overlapped with those by any other method in wheat. In general, disagreement in low-expression genes was responsible for most of the discordance between methods, which is consistent with known biases in Kallisto. We also observed that there exist uncertainties in genome sequences and annotation which can affect each method differently. Overall, subgenome-classification approaches tend to perform better than standard approaches with EAGLE-RC having the highest precision.
APA, Harvard, Vancouver, ISO, and other styles
2

Nakade, Shota, Tetsushi Sakuma, Yuto Sakane, Yoshihiro Hara, Atsushi Kurabayashi, Keiko Kashiwagi, Akihiko Kashiwagi, Takashi Yamamoto, and Masanobu Obara. "Homeolog-specific targeted mutagenesis in Xenopus laevis using TALENs." In Vitro Cellular & Developmental Biology - Animal 51, no. 9 (April 29, 2015): 879–84. http://dx.doi.org/10.1007/s11626-015-9912-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Na, Qianli Dong, Brian D. Nadon, Xiaoyang Ding, Xutong Wang, Yuzhu Dong, Bao Liu, Scott A. Jackson, and Chunming Xu. "Evolution of Homeologous Gene Expression in Polyploid Wheat." Genes 11, no. 12 (November 25, 2020): 1401. http://dx.doi.org/10.3390/genes11121401.

Full text
Abstract:
Polyploidization has played a prominent role in the evolutionary history of plants. Two recent and sequential allopolyploidization events have resulted in the formation of wheat species with different ploidies, and which provide a model to study the effects of polyploidization on the evolution of gene expression. In this study, we identified differentially expressed genes (DEGs) between four BBAA tetraploid wheats of three different ploidy backgrounds. DEGs were found to be unevenly distributed among functional categories and duplication modes. We observed more DEGs in the extracted tetraploid wheat (ETW) than in natural tetraploid wheats (TD and TTR13) as compared to a synthetic tetraploid (AT2). Furthermore, DEGs showed higher Ka/Ks ratios than those that did not show expression changes (non-DEGs) between genotypes, indicating DEGs and non-DEGs experienced different selection pressures. For A-B homeolog pairs with DEGs, most of them had only one differentially expressed copy, however, when both copies of a homeolog pair were DEGs, the A and B copies were more likely to be regulated to the same direction. Our results suggest that both cis- and inter-subgenome trans-regulatory changes are important drivers in the evolution of homeologous gene expression in polyploid wheat, with ploidy playing a significant role in the process.
APA, Harvard, Vancouver, ISO, and other styles
4

Ludman, Márta, and Károly Fátyol. "The virological model plant, Nicotiana benthamiana expresses a single functional RDR6 homeolog." Virology 537 (November 2019): 143–48. http://dx.doi.org/10.1016/j.virol.2019.08.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boatwright, J. Lucas, Lauren M. McIntyre, Alison M. Morse, Sixue Chen, Mi-Jeong Yoo, Jin Koh, Pamela S. Soltis, Douglas E. Soltis, and W. Brad Barbazuk. "A Robust Methodology for Assessing Differential Homeolog Contributions to the Transcriptomes of Allopolyploids." Genetics 210, no. 3 (September 13, 2018): 883–94. http://dx.doi.org/10.1534/genetics.118.301564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Akama, Satoru, Rie Shimizu-Inatsugi, Kentaro K. Shimizu, and Jun Sese. "Genome-wide quantification of homeolog expression ratio revealed nonstochastic gene regulation in synthetic allopolyploid Arabidopsis." Nucleic Acids Research 42, no. 6 (January 13, 2014): e46-e46. http://dx.doi.org/10.1093/nar/gkt1376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sigel, Erin M., Joshua P. Der, Michael D. Windham, and Kathleen M. Pryer. "Expression Level Dominance and Homeolog Expression Bias in Recurrent Origins of the Allopolyploid Fern Polypodium hesperium." American Fern Journal 109, no. 3 (September 17, 2019): 224. http://dx.doi.org/10.1640/0002-8444-109.3.224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hughes, Thomas E., Jane A. Langdale, and Steven Kelly. "The impact of widespread regulatory neofunctionalization on homeolog gene evolution following whole-genome duplication in maize." Genome Research 24, no. 8 (April 30, 2014): 1348–55. http://dx.doi.org/10.1101/gr.172684.114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yoo, Mi-Jeong, Tianyi Ma, Ning Zhu, Lihong Liu, Alice C. Harmon, Qiaomei Wang, and Sixue Chen. "Genome-wide identification and homeolog-specific expression analysis of the SnRK2 genes in Brassica napus guard cells." Plant Molecular Biology 91, no. 1-2 (February 22, 2016): 211–27. http://dx.doi.org/10.1007/s11103-016-0456-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sri, Tanu, Pratiksha Mayee, and Anandita Singh. "Sequence and expression variation in SUPPRESSOR of OVEREXPRESSION of CONSTANS 1 (SOC1): homeolog evolution in Indian Brassicas." Development Genes and Evolution 225, no. 5 (August 15, 2015): 287–303. http://dx.doi.org/10.1007/s00427-015-0513-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Homeolog"

1

Juery, Caroline. "Expression et régulation épigénétique des gènes homéologues chez le blé tendre." Thesis, Université Clermont Auvergne‎ (2017-2020), 2020. http://www.theses.fr/2020CLFAC037.

Full text
Abstract:
De nombreuses espèces de plantes sont polyploïdes, c’est-à-dire qu’elles possèdent plusieurs sous-génomes au sein du noyau de leurs cellules. La polyploïdie s’accompagne d’une redondance génétique qui offre un potentiel d’innovations évolutives important par un relâchement de la pression de sélection autorisant sous-fonctionnalisation, néo-fonctionnalisation, perte de gènes. Le blé tendre est une espèce polyploïde récente, apparue suite à deux hybridations interspécifiques (800 000 et 10 000 ans). Il possède un génome hexaploïde composé de trois sous-génomes : AABBDD et théoriquement, il possède trois copies homéologues de chaque gène (1A:1B:1D). Cependant, les analyses génomiques ont révélées que la moitié des séquences codantes présentaient un nombre de copie de type NA:NB:ND. Comment évolue cette redondance génétique après la polyploïdisation chez le blé tendre? Peut-on observer des différences d’expression des copies de gènes témoignant d’une évolution fonctionnelle pour cette espèce formée très récemment? Quels sont les mécanismes sous-jacents ? L’objectif de cette thèse a été d’analyser les expressions relatives des copies de gènes homéologues pour des groupes présentant trois (1 :1 :1, triades), deux (0:1:1, 1:0:1 ou 1:1:0, dyades) ou quatre copies (2:1:1, 1:2:1 ou 1:1:2, tétrades). Nous avons également relié les résultats aux caractéristiques structurales (position génomique), évolutives (présence ou absence des copies chez les espèces ancêtres) et épigénétiques (marques histones) des gènes pour répondre aux questions de recherche. Nous avons utilisé les données de RNA-seq et de ChIP-seq mises à disposition lors de la publication dela séquence génomique de référence du blé tendre (IWGSC 2018). Nous avons mis en évidence que les 51,1% de gènes en triades présentent en majorité (81%) une expression équilibrée sur l’ensemble des tissus et au cours du développement (expression élevée et constitutive). Ces gènes sont majoritairement associés la marque épigénétique d’activation de l’expression : H3K9ac. A contrario, les gènes en dyades (11,7% des gènes) et en tétrades (2,8% des gènes) présentent plus fréquemment des biais d’expression (36% et 75,4% respectivement). Ces gènes sont plus associés à la marque épigénétique liée à la répression ciblée et transitoire des séquences (H3K27me3). En revanche, aucune dominance d’expression n’a été décelée à l’échelle du génome entier. Ceci met en évidence de potentielles sous-fonctionnalisations des gènes, plus fréquentes pour des gènes différents des triades, présents dans les régions distales des chromosomes. Même si les biais d’expression correspondent à des différences déjà existantes chez les espèces ancêtres, nous avons cependant distingué des traits d’expression correspondant aux différentes étapes de l’histoire évolutive du blé : les copies du sous-génome D sont moins réprimées et moins associées à la marque H3K27me3 ; les biais d’expression entre les copies AABB sont plus prononcés. Ainsi, la coévolution des deux sous-génomes AABB pendant 800 000 ans est décelable alors que le sous-génome D semble encore s’exprimer de façon autonome. Ces résultats suggèrent que ce génome comprend des gènes très contraints évolutivement qui constitueraient le « core » génome de l’espèce avec des fonctions de bases conservées (gènes en triades) et des gènes présentant des variations du nombre de copies, des régulations différentielles et des fonctions spécifiques témoignant de possibles innovations évolutives, appartenant probablement au génome dit « dispensable » (dyades et tétrades)
Within the plant kingdom, a lot of species are polyploids, meaning that they present two or more sub-genomes in the nucleus of their cells. Polyploidy confers genetic redundancy that offers a high potential of innovations and adaptations by relaxing natural selection on genic sequences. This allows faster sub and neo-functionalization of genes but also a loss of sequences that might be stochastic or not between the sub-genomes. Bread wheat is a recent polyploidy species that derived from two interspecific hybridizations that occurred 800 000 and 10 000 years ago. The genome of this species contains three sub-genomes: AABBDD and in theory three copies of each gene (1A:1B:1D). However, genomic analysis of the genome sequences reveals that half of the genes present copy number variations (NA:NB:ND). Within this scientific context, we wanted to answer questions such as: How this genetic redundancy evaluates after the polyploïdisation process? Is-it possible to observe differences in terms of gene expression that could correspond to functional evolution for this recently formed species? Which mechanisms could explain those processes? The objective of this PhD was to analyses relative expressions of homoeologous genes of bread wheat for groups presenting one copy on each sub-genomes (1 :1 :1, triades) and groups presenting a copy number variation with a loss (0:1:1, 1:0:1 ou 1:1:0), dyads or a duplication (2:1:1, 1:2:1 ou 1:1:2, tetrads) of sequences. We linked this analysis to genomic characteristics such as chromosome structure (genomic position of genes for exemple), evolution (presence or absence of lost and duplicated copies within diploid genomes of the progenitor species) and epigenetics (histone modifications). We used RNA-seq and ChIP-seq data released at the same time as the publication of the genomic reference sequence of bread wheat (IWGSC 2018). We highlight that the 51,1% of triads genes present mostly (81%) a balanced expression across the 15 tissues and developmental stages analyzed (high and constitutive expression) Those genes are mainly associated with the H3K9ac histone mark that is linked to an active transcription of genes. At the opposite, dyad genes (11,7% of High Confidence wheat genes) and tetrad genes (2,8%) present more frequently unbalanced expression patterns (36% and 74,5% respectively). Those genes are more associated with the histone mark H3K27me3 defining facultative heterochromatin and that target genes with transient expression. No dominance of one sub-genome on the others was discovered at the whole genome scale but rather stochastic suppression of genes copies. These results reveals potential sub-functionalization of genes, more frequent for copies present I the distal regions of chromosomes and associated with the epigenetic mark H3K27me3. Even if the homoeolog expression bias mostly corresponds to already existing divergence between diploid progenitor species, we nevertheless observe expression bias corresponding to the different step of bread wheat evolutive history: copies from sub-genome D are less repressed than the A or B copies; expression bias between AABB copies are more pronounced. In that respect the co-evolution of the two sub-genomes AABB during 800 000 years are traceable while D sub-genome seems to still present a nearly autonomous expression Combined together, these results suggest that wheat genome contains genes evolutionary constraints that correspond to a “core” genome of the species with basic conserved function (triad genes) and genes that present variation of the number of gene copies with differential regulations and specific functions that correspond to “dispensable” genes (dyads and tetrads)
APA, Harvard, Vancouver, ISO, and other styles
2

Grier, D. G. "Homeobox genes in lung development." Thesis, Queen's University Belfast, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Voronina, Vera A. "Rx plays multiple roles in eye development." Morgantown, W. Va. : [West Virginia University Libraries], 2003. http://etd.wvu.edu/templates/showETD.cfm?recnum=2984.

Full text
Abstract:
Thesis (Ph. D.)--West Virginia University, 2003.
Title from document title page. Document formatted into pages; contains viii, 123 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 94-123).
APA, Harvard, Vancouver, ISO, and other styles
4

Quinn, M. F. "Homeobox gene expression in acute leukaemia." Thesis, Queen's University Belfast, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Carreiro, Lenn. "Characterization of the Alx3 homeobox gene." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0005/MQ40789.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bokaee, Shadi. "Trageting homeobox genes for cancer immunotherapy." Thesis, University of Surrey, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.543286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hui, Jerome Ho Lam. "The Evolution of clustered Homeobox genes." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490081.

Full text
Abstract:
By comparison of developmental processes and features across animal taxa, one can reconstruct ancestral states and gain a deeper understanding of how different developmental modes and body plans evolved. ANTP-class homeobox genes are an ideal starting point to study the diversification of animals due to their essential functions in developmental processes, genomic organisation, confinement to animals, and highly conserved domains, which permit relatively robust orthologue classification between species.
APA, Harvard, Vancouver, ISO, and other styles
8

Butts, Thomas. "The nevolution of animal homeobox genes." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.543559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baxter, Euan W. "Homeobox containing genes in the leech." Thesis, University of Edinburgh, 1993. http://hdl.handle.net/1842/19982.

Full text
Abstract:
Leech embryos have been used in developmental studies for over 100 years and continue to be used because of a number of unique and useful features. There is a large amount of detailed information on the highly stereotyped cellular events that take place during leech development, and recent work has shown that it is possible to study some of the genes in leech that have been shown to exert developmental effects in other species. This thesis presents that sequence of two fragments of homeobox genes which were generated from leech Helobdella robusta by polymerase chain reaction. These genes have been named Lox 7 and Lox 8. Some preliminary in situ hybridization data suggests that the Lox 7 gene is expressed in the germinal plate of stage 9 embryos. A genomic library was constructed from Helobdella robusta DNA and screened with the Lox 7 and Lox 8 fragments. A control screening was carried out with Lox 2. These experiments proved that the Lox 7 and Lox 8 genes were not represented in the library. Positives were obtained from the control screening of the Helobdella robusta genomic library and were investigated further. Evidence is presented that some of these clones do not contain the gene used to make the probe (Lox2), but may contain other homeobox genes. Positive clones were gained from the screening of a Helobdella robusta cDNA library with the leech engrailed gene. The clones show that the mRNA from the engrailed gene is alternatively spliced.
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Weizhong. "Homeobox genes and regeneration in asteroid echinoderms." Thesis, Royal Holloway, University of London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272109.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Homeolog"

1

Denis, Duboule, ed. Guidebook to the homeobox genes. Oxford: Oxford University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carreiro, Lenni. Characterization of the Alx3 homeobox gene. Ottawa: National Library of Canada, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Snow, Bryan E. Characterisation of the Chx10 and 171 homeobox genes. Ottawa: National Library of Canada, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Graba, Yacine. Hox genes: Methods and protocols. New York: Humana Press, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dong, Jianli. The expression of a LIM homeobox gene ISL-1. Ottawa: National Library of Canada, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Looser, Jens. Identification of two novel CVC domain-containing homeobox genes. Ottawa: National Library of Canada, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

service), ScienceDirect (Online, ed. Hox genes. Amsterdam: Elsevier, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gehring, Walter J. Master control genes in development and evolution: The homeobox story. New Haven: Yale University Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hox genes: Studies from the 20th to the 21st century. New York: Springer Science+Business Media, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cohen, Dana Rachel. The cloning and characterization of the murine iroquois-related homeobox genes. Ottawa: National Library of Canada, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Homeolog"

1

Stein, Stacey, and Cory Abate-Shen. "Homeobox Genes." In Encyclopedia of Cancer, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27841-9_2788-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stein, Stacey, and Cory Abate-Shen. "Homeobox Genes." In Encyclopedia of Cancer, 2104–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-46875-3_2788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stein, Stacey, and Cory Abate-Shen. "Homeobox Genes." In Encyclopedia of Cancer, 1721–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16483-5_2788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Neelabh, Neelabh, and Akash Gautam. "Homeobox Gene." In Encyclopedia of Animal Cognition and Behavior, 1–3. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-47829-6_34-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Neelabh and Akash Gautam. "Homeobox Gene." In Encyclopedia of Animal Cognition and Behavior, 3130–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-319-55065-7_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aldinger, Kimberly. "Aristaless-Related Homeobox Gene." In Encyclopedia of Autism Spectrum Disorders, 238–39. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

La Rosa, Stefano. "Orthopedia Homeobox Protein (OTP)." In Encyclopedia of Pathology, 1–2. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-28845-1_5195-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aldinger, Kimberly. "Aristaless-Related Homeobox Gene." In Encyclopedia of Autism Spectrum Disorders, 311. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-91280-6_887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

La Rosa, Stefano. "Orthopedia Homeobox Protein (OTP)." In Endocrine Pathology, 588–90. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-62345-6_5195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Franco, Diego, and Amelia Aranega. "PITX2 (Pituitary Homeobox Gene 2)." In Encyclopedia of Signaling Molecules, 4024–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101670.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Homeolog"

1

Wang, Shen-Nien, and Shih-Hsien Hsu. "Abstract 4709: ERK1/2 regulates hepatocellular carcinoma through proinflammatory homeobox gene, ISX." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kirolikar, Saurabh, Mandeep Gill, Silma Pereira, Svetlana Ghinbouschi, Luciane Cavalli, and Patricia Berg. "Abstract 1409: The BP1 homeobox gene is dysregulated in triple negative breast cancer." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carbone, Carmine, Geny Piro, Francesca Simionato, Fotios Loupakis, Chiara Cremolini, Gabriella Fontanini, Federica Di Nicolantonio, et al. "Abstract 3265: Homeobox B9 (HOXB9) sustains anti-VEGF treatment resistance in gastrointestinal tumors." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-3265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Yue, and Guozhang Zhu. "Abstract 3101: Pituitary homeobox 2 (PITX2) promotes thyroid carcinogenesis by activation of cyclin D2." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-3101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yamashita, Keishi, Akira Ooki, Hiroshi Katoh, David Sidransky, and Masahiko Watanabe. "Abstract 4671: Tumor Suppressive Role of HOP (homeobox only protein) Gene in Gastric Cancer." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, SN, and SH Hsu. "PO-318 Intestine-specific homeobox gene ISX integrates IL6 signaling, tryptophan catabolism, and immune suppression." In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Haria, Dhwani, Bon Q. Trinh, Song Yi Ko, Nicolas Barengo, and Honami Naora. "Abstract 343: The homeobox gene DLX4 promotes inflammatory signaling and peritoneal metastasis of ovarian cancer." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Shen-Nien, Li-Ting Wang, and Shih-Hsien Hsu. "Abstract 2275: Intestine-specific homeobox (ISX) upregulates E2F1 expression and related oncogenic activities in HCC." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-2275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Marcinkiewicz, Katarzyna M., and Lorraine J. Gudas. "Abstract A27: Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells." In Abstracts: AACR Special Conference on Chromatin and Epigenetics in Cancer - June 19-22, 2013; Atlanta, GA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.cec13-a27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wilson, C., T. Mertens, S. Collum, W. Bi, A. Guha, R. Thandavarayan, K. Rajagopal, S. S. Jyothula, and H. Karmouty-Quintana. "Deletion of Alveolar Epithelial Type II Sine Oculis Homeobox Homolog 1 (Six1) Attenuates Established Pulmonary Fibrosis." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a5400.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Homeolog"

1

Gudas, Lorraine J. Aberrant Homeobox Gene Expression in Mammary Tumorigenesis. Fort Belvoir, VA: Defense Technical Information Center, October 2002. http://dx.doi.org/10.21236/ada413156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gudas, Lorraine J. Aberrant Homeobox Gene Expression in Mammary Tumorigenesis. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada392917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Daniel, Charles W. Homeobox Genes in Normal, Preneoplastic, and Neoplastic Mammary Glands. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada391550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gorski, David H. Inhibition of Breast Cancer-Induced Angiogenesis by a Diverged Homeobox Gene. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada437755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gorski, David H. Inhibition of Breast Cancer-Induced Angiogenesis by a Diverged Homeobox Gene. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada425899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bieberich, Charles J. Molecular Basis of Prostate-Specific Androgen-Independent Expression of a Homeobox Gene. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada398350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bryant, Susan V., and David M. Gardiner. Homeobox Genes and Patterning of the Proximal-Distal Axis in Regenerating Limbs. Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada320044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gorski, David H. Regulation of Breast Cancer-Induced Angiogenesis by a Growth Arrest-Specific Homeobox Transcription Factor. Fort Belvoir, VA: Defense Technical Information Center, May 2004. http://dx.doi.org/10.21236/ada426328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gorski, David H. Regulation of Breast Cancer-Induced Angiogensis by a Growth Arrest-Specific Homeobox Transcription Factor. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada416728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gorski, David H. Regulation of Breast Cancer-Induced Angiogenesis by a Growth Arrest-specific Homeobox Transcription Factor. Fort Belvoir, VA: Defense Technical Information Center, May 2005. http://dx.doi.org/10.21236/ada473248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography