Academic literature on the topic 'Holonomic system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Holonomic system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Holonomic system"
LEVI, MARK. "GEOMETRY OF VIBRATIONAL STABILIZATION AND SOME APPLICATIONS." International Journal of Bifurcation and Chaos 15, no. 09 (September 2005): 2747–56. http://dx.doi.org/10.1142/s0218127405013745.
Full textAgrawal, S. K. "Multibody Dynamics: A Formulation Using Kane’s Method and Dual Vectors." Journal of Mechanical Design 115, no. 4 (December 1, 1993): 833–38. http://dx.doi.org/10.1115/1.2919276.
Full textZhang, Sheng, and Wenjing Huang. "Application of a Propeller-Based Air Propulsion System to the Land-Based Holonomic Vehicle." Applied Sciences 9, no. 21 (November 1, 2019): 4657. http://dx.doi.org/10.3390/app9214657.
Full textLifu, Liang, and Wei Yang. "On the unification of the Hamilton principles in non-holonomic system and in holonomic system." Applied Mathematics and Mechanics 17, no. 5 (May 1996): 457–63. http://dx.doi.org/10.1007/bf00131094.
Full textRavendran, Ahalya, and Chung-Hao Hsu. "LOW COST COLLISION AVOIDANCE SYSTEM ON HOLONOMIC AND NON- HOLONOMIC MOBILE ROBOTS." MATTER: International Journal of Science and Technology 5, no. 1 (March 22, 2019): 12–22. http://dx.doi.org/10.20319/mijst.2019.51.1222.
Full textNeto, Orlando. "Blow up for a holonomic system." Publications of the Research Institute for Mathematical Sciences 29, no. 2 (1993): 167–233. http://dx.doi.org/10.2977/prims/1195167271.
Full textCai, J. L., and F. X. Mei. "Conformal Invariance and Conserved Quantity of the Higher-Order Holonomic Systems by Lie Point Transformation." Journal of Mechanics 28, no. 3 (August 9, 2012): 589–96. http://dx.doi.org/10.1017/jmech.2012.67.
Full textBenenti, Sergio. "The non-holonomic double pendulum: An example of non-linear non-holonomic system." Regular and Chaotic Dynamics 16, no. 5 (October 2011): 417–42. http://dx.doi.org/10.1134/s1560354711050029.
Full textAriska, Melly, Hamdi Akhsan, Muhammad Muslim, Jesi Pebralia, Arini Rosa Sinensis, and Tine Aprianti. "Modeling of Dynamics Object with Non-Holonomic Constraints Based on Maple in Cylinder Coordinate R×S^1×SO(3)." JURNAL ILMU FISIKA | UNIVERSITAS ANDALAS 14, no. 1 (December 15, 2021): 28–36. http://dx.doi.org/10.25077/jif.14.1.28-36.2022.
Full textLi, Liang, Renhao Zhao, and Chunlei Li. "Path Planning for Chainable Non-holonomic System Based on Iterative Learning Control." Journal Européen des Systèmes Automatisés 53, no. 5 (November 15, 2020): 747–53. http://dx.doi.org/10.18280/jesa.530518.
Full textDissertations / Theses on the topic "Holonomic system"
Yuan, Hongliang. "Control of NonH=holonomic Systems." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2751.
Full textPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering PhD
Rebahi, Yacine. "Irrégularité des D-modules algébriques holonomes." Université Joseph Fourier (Grenoble ; 1971-2015), 1996. http://www.theses.fr/1996GRE10205.
Full textDelmas, Pierre. "Génération active des déplacements d'un véhicule agricole dans son environnement." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00669534.
Full textOrtiz, Morales Daniel. "Virtual Holonomic Constraints: from academic to industrial applications." Doctoral thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-87707.
Full textTöyrä, Daniel. "Fidelity of geometric and holonomic quantum gates for spin systems." Thesis, Uppsala universitet, Teoretisk kemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-222152.
Full textStroot, Holger [Verfasser]. "Strong Approximation of Stochastic Mechanical Systems with Holonomic Constraints / Holger Stroot." München : Verlag Dr. Hut, 2019. http://d-nb.info/1196415595/34.
Full textFrolík, Stanislav. "Geometrická teorie řízení na nilpotentních Lieových grupách." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-399583.
Full textSeiler, Konstantin. "Fast trajectory generation and correction for non-holonomic systems exploiting Lie group symmetries." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10117.
Full textMauny, Johan Raphaël. "Modélisation dynamique des systèmes non-holonomes intermittents : application à la bicyclette." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2018. http://www.theses.fr/2018IMTA0113.
Full textThis thesis deals with the dynamic modelling of intermittent non-holonomic systems andits application to the Whipple 3D bicycle. To that end, we relied on a set of tools in geometric mechanics (mainly Lagrangian reduction and the projection in the kernel of the kinematic constraints). In the first instance, we have addressed the case of the bicycle subjected to persistent contacts. By defining the space of the bicycle configurations as a principal fibre bundle with SE(3) as structural group, we obtained a model of the contact points and of the constraints free of any non-linearities associated with a generalized coordinate type configuration. This formulation allowed us to obtain the kernel of the constraints in a symbolic form without singularity. We then produced a symbolic model of the dynamics ofthe bicycle subjected to persistent contacts using the projection reduction method of its free dynamics in the subspace of its permissible speeds. This approach extends the general framework developed in recent years for bio-inspired locomotion. Taking advantage of the structure of SE(3), a model of the intermittent bicycle was proposed as part of an event-driven approach. Moreover, the adoption ofthe physical model of plastic impact has allowed us to extend the projection reduction method to the intermittent case. We then compared our "reduced" approach to the conventional approach and showed that they shared a common geometric interpretation. These tools were finally applied to the simulation of the intermittent bicycle to illustrate its rich dynamics
Abdel, Gadir Basil. "Analyse microlocale des systèmes différentiels holonomes." Grenoble 1, 1992. http://www.theses.fr/1992GRE10071.
Full textBooks on the topic "Holonomic system"
Soltakhanov, Shervani Kh, Mikhail P. Yushkov, and Sergei A. Zegzhda. Mechanics of non-holonomic systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85847-8.
Full textConference on Geometric Control and Non-holonomic Mechanics (1996 Mexico City, Mexico). Geometric control and non-holonomic mechanics: Conference on Geometric Control and Non-holonomic Mechanics, June 19-21, 1996, Mexico City. Edited by Jurdjevic Velimir and Sharpe R. W. Providence, R.I: American Mathematical Society, 1998.
Find full textSaito, Mutsumi. Gröbner deformations of hypergeometric differential equations. Berlin: Springer, 2000.
Find full textGeometric, control, and numerical aspects of nonholonomic systems. Berlin: Springer, 2002.
Find full textMann, Peter. Coordinates & Constraints. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0006.
Full textSoltakhanov, Sh Kh, Mikhail Yushkov, and S. Zegzhda. Mechanics of Non-Holonomic Systems: A New Class of Control Systems. Springer London, Limited, 2009.
Find full textSoltakhanov, Sh Kh, Mikhail Yushkov, and S. Zegzhda. Mechanics of Non-Holonomic Systems: A New Class of Control Systems. Springer Berlin / Heidelberg, 2010.
Find full textMann, Peter. Constrained Lagrangian Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0008.
Full textSaito, Mutsumi, Nobuki Takayama, and Bernd Sturmfels. Groebner Deformations of Hypergeometric Differential Equations, Algorithms and Computation in Mathematics, Volume 6. Springer, 2000.
Find full textBook chapters on the topic "Holonomic system"
Liu, Hongfang, Ruijuan Li, and Nana Li. "Hamilton Non-holonomic Momentum Equation of the System and Conclusions." In Communications in Computer and Information Science, 23–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-27503-6_4.
Full textWang, ZhiDong, Yoshio Kimura, Takayuki Takahashi, and Eiji Nakano. "A Control Method of a Multiple Non-holonomic Robot System for Cooperative Object Transportation." In Distributed Autonomous Robotic Systems 4, 447–56. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-67919-6_42.
Full textAndreev, Aleksandr, and Olga Peregudova. "On the Control Models in the Trajectory Tracking Problem of a Holonomic Mechanical System." In Lecture Notes in Electrical Engineering, 686–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58653-9_66.
Full textCuenca Macas, Leduin José, and Israel Pineda. "Collision Avoidance Simulation Using Voronoi Diagrams in a Centralized System of Holonomic Multi-agents." In Information and Communication Technologies, 18–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18272-3_2.
Full textHaraoka, Yoshishige. "Holonomic Systems." In Trends in Mathematics, 59–87. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52842-7_2.
Full textSoltakhanov, Shervani Kh, Mikhail P. Yushkov, and Sergei A. Zegzhda. "Holonomic Systems." In Foundations of Engineering Mechanics, 1–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85847-8_1.
Full textUmerez, Jon, and Matteo Mossio. "Constraint, Holonomic." In Encyclopedia of Systems Biology, 494. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_706.
Full textUmerez, Jon, and Matteo Mossio. "Constraint, Non-holonomic." In Encyclopedia of Systems Biology, 494. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_707.
Full textSaito, Mutsumi, Bernd Sturmfels, and Nobuki Takayama. "Solving Regular Holonomic Systems." In Gröbner Deformations of Hypergeometric Differential Equations, 51–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04112-3_2.
Full textBjörk, Jan-Erik. "Distributions and regular holonomic systems." In Analytic D-Modules and Applications, 281–332. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-0717-6_8.
Full textConference papers on the topic "Holonomic system"
Varszegi, Balazs, Denes Takacs, and Gabor Stepan. "Skateboard: A Human Controlled Non-Holonomic System." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47512.
Full textTerze, Zdravko, Dubravko Matijasˇevic´, Milan Vrdoljak, and Vladimir Koroman. "Differential-Geometric Characteristics of Optimized Generalized Coordinates Partitioned Vectors for Holonomic and Non-Holonomic Multibody Systems." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86849.
Full textKoganezawa, Koichi, and Kazuomi Kaneko. "ODE Methods for Solving the Multibody Dynamics With Constraints." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8237.
Full textIori, Tomoyuki. "On First Integrals of Hamiltonian System with Holonomic Hamiltonian." In 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022. http://dx.doi.org/10.1109/cdc51059.2022.9992319.
Full textKoganezawa, Koichi, and Kazuomi Kaneko. "A Method for Constraints Stabilization on Solving Multibody Dynamics." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21322.
Full textSeguy, N., P. Joli, Z. Q. Feng, and M. Pascal. "A Modular Dynamic Model for Multibody System Adapted to Interactive Simulation." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48311.
Full textTang, Chin Pei. "Configuration optimization for multiple nonholonomic mobile manipulators with holonomic interaction." In 2010 42nd Southeastern Symposium on System Theory (SSST 2010). IEEE, 2010. http://dx.doi.org/10.1109/ssst.2010.5442833.
Full textYoshimura, Hiroaki. "A Geometric Approach to Constraint Stabilization for Holonomic Lagrangian Systems." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35429.
Full textTerze, Zdravko, and Joris Naudet. "Discrete Mechanical Systems: Projective Constraint Violation Stabilization Method for Numerical Forward Dynamics on Manifolds." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35466.
Full textYoshimura, Hiroaki, and Kenji Soya. "On the Geometric Stabilization for Discrete Hamiltonian Systems With Holonomic Constraints." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86354.
Full text