Academic literature on the topic 'Holomorphic curvature'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Holomorphic curvature.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Holomorphic curvature"
Ali, Danish, Johann Davidov, and Oleg Mushkarov. "Holomorphic curvatures of twistor spaces." International Journal of Geometric Methods in Modern Physics 11, no. 03 (March 2014): 1450022. http://dx.doi.org/10.1142/s0219887814500224.
Full textDecu, Simona, Stefan Haesen, and Leopold Verstraelen. "Inequalities for the Casorati Curvature of Statistical Manifolds in Holomorphic Statistical Manifolds of Constant Holomorphic Curvature." Mathematics 8, no. 2 (February 14, 2020): 251. http://dx.doi.org/10.3390/math8020251.
Full textSIDDIQUI, ALIYA NAAZ, and MOHAMMAD HASAN SHAHID. "Optimizations on Statistical Hypersurfaces with Casorati Curvatures." Kragujevac Journal of Mathematics 45, no. 03 (May 2021): 449–63. http://dx.doi.org/10.46793/kgjmat2103.449s.
Full textJain, Varun, Rachna Rani, Rakesh Kumar, and R. K. Nagaich. "Some characterization theorems on holomorphic sectional curvature of GCR-lightlike submanifolds." International Journal of Geometric Methods in Modern Physics 14, no. 03 (February 14, 2017): 1750034. http://dx.doi.org/10.1142/s0219887817500347.
Full textKumar, Sangeet, Rakesh Kumar, and R. K. Nagaich. "Characterization of Holomorphic Bisectional Curvature ofGCR-Lightlike Submanifolds." Advances in Mathematical Physics 2012 (2012): 1–18. http://dx.doi.org/10.1155/2012/356263.
Full textSekigawa, Kouei, and Takashi Koda. "Compact Hermitian surfaces of pointwise constant holomorphic sectional curvature." Glasgow Mathematical Journal 37, no. 3 (September 1995): 343–49. http://dx.doi.org/10.1017/s0017089500031621.
Full textYu, Chengjie. "A Liouville Property of Holomorphic Maps." Scientific World Journal 2013 (2013): 1–3. http://dx.doi.org/10.1155/2013/265752.
Full textVanithalakshmi, S. M., S. K. Narasimhamurthy, and M. K. Roopa. "On Holomorphic Curvature of Complex Finsler with special (α, β)−Metric." Journal of the Tensor Society 12, no. 01 (June 30, 2007): 33–48. http://dx.doi.org/10.56424/jts.v12i01.10593.
Full textAbu-Saleem, Ahmad, A. R. Rustanov, and S. V. Kharitonova. "AXIOM OF Φ-HOLOMORPHIC (2r+1)-PLANES FOR GENERALIZED KENMOTSU MANIFOLDS." Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, no. 66 (2020): 5–23. http://dx.doi.org/10.17223/19988621/66/1.
Full textDruţă-Romaniuc, S. L. "A Study on the Para-Holomorphic Sectional Curvature of Para-Kähler Cotangent Bundles." Annals of the Alexandru Ioan Cuza University - Mathematics 61, no. 1 (January 1, 2015): 253–62. http://dx.doi.org/10.2478/aicu-2014-0033.
Full textDissertations / Theses on the topic "Holomorphic curvature"
Carneiro, Josà Loester SÃ. "Sobre subvariedades totalmente reais." Universidade Federal do CearÃ, 2011. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6646.
Full textCoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
Subvariedades analÃticas complexas e totalmente reais sÃo duas classes tÃpicas dentre todas as subvariedades de uma variedade quase Hermitiana. Neste trabalho procuramos dar algumas caracterizaÃÃes de subvariedades totalmente reais. AlÃm disso algumas classificaÃÃes de subvariedades totalmente reais em formas espaciais complexas sÃo obtidas.
Complex analytic submanifolds and totally real submanifolds are two typical classes among all submanifolds of an almost Hermitian manifolds. In this work, some characterizations of totally real submanifolds are given. Moreover some classifications of totally real submanifolds in complex space forms are obtained.
Tsui, Ho-yu, and 徐浩宇. "Families of polarized abelian varieties and a construction of Kähler metrics of negative holomorphic bisectional curvature on Kodairasurfaces." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37053760.
Full textTsui, Ho-yu. "Families of polarized abelian varieties and a construction of Kähler metrics of negative holomorphic bisectional curvature on Kodaira surfaces." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37053760.
Full textSantos, Adina Rocha dos. "Teoremas de comparação em variedades Käler e aplicações." Universidade Federal de Alagoas, 2011. http://repositorio.ufal.br/handle/riufal/1044.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico
Nesta dissertação, apresentamos as demonstrações dos teoremas de comparação do Laplaciano para variedades Kähler completas Mm de dimensão complexa m com curvatura bisseccional holomorfa limitada inferiormente por −1, 1 e 0. As variedades a serem comparadas são o espaço hiperbólico complexo CHm, o espaço projetivo complexo CPm e o espaço Euclidiano complexo Cm, cujas curvaturas bisseccionais holomorfas são −1, 1 e 0, respectivamente. Além disso, como aplicação dos teoremas de comparação do Laplaciano, descrevemos a prova do Teorema de Comparação de Bishop-Gromov para variedades Kähler; obtemos uma estimativa para o primeiro autovalor λ1(M) do Laplaciano, isto é, λ1(M) ≤ m2 = λ1(CHm); e mostramos que o volume de variedades Kähler, com curvatura bisseccional limitada inferiormente por 1, é limitado pelo volume de CPm. Os resultados citados acima foram provados em 2005 por Li e Wang no artigo Comparison Theorem for Kähler Manifolds and Positivity of Spectrum , publicado no Journal of Differential Geometry.
Gontard, Sébastien. "Courbures de métriques invariantes dans les variétés complexes non compactes." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM027/document.
Full textWe study the relationships between geometric properties and metric properties of domains in C^n.More precisely, we are interested in the behavior of holomorphic bisectional curvatures of invariant Kähler metrics, namely the Bergman metric and the Kähler-Einstein metric, near the boundary of bounded pseudoconvex domains with smooth boundary.We prove that at boundary points that are either strictly pseudoconvex or such that the squeezing function of the domain tends to one the holomorphic bisectional curvatures of the Kähler-Einstein metric of the domain tends to the holomorphic bisectional curvatures of the Kähler-Einstein metric of the ball.We also study the holomorphic bisectional curvatures of the Kähler-Einstein metric and of the Bergman metric in some polynomial domains (namely tube and Thullen domains in C^2) which serve as local models at boundary point of finite type. Using these studies we prove that at certain boundary points of smoothly bounded convex domains of finite type there exists a non tangential neighbourhood such the holomorphic bisectional curvatures of the Kähler-Einstein metric are pinched between two negative constants. We also prove that for every smoothly bounded pseudoconvex complete Reinhardt domain of finite type inf C^2 there exists a neighbourhood of the boundary relative to the domain in which the holomorphic bisectional curvatures of the Bergman metric are pinched between two negative constants
Ben, Ahmed Ali. "Géométrie et dynamique des structures Hermite-Lorentz." Thesis, Lyon, École normale supérieure, 2013. http://www.theses.fr/2013ENSL0824.
Full textIn the vein of Klein's Erlangen program, the research works of E. Cartan, M.Gromov and others, this work straddles between geometry and group actions. The overall theme is to understand the isometry groups of pseudo-Riemannian manifolds. Precisely, following a "vague conjecture" of Gromov, our aim is to classify Pseudo-Riemannian manifolds whose isometry group act’s not properly, i.e that it’s action does not preserve any auxiliary Riemannian metric. Several studies have been made in the case of the Lorentzian metrics (i.e of signature (- + .. +)). However, general pseudo-Riemannian case seems out of reach. The Hermite-Lorentz structures are between the Lorentzian case and the former general pseudo-Riemannian, i.e of signature (- -+ ... +). In addition, it’s defined on complex manifolds, and promises an extra-rigidity. More specifically, a Hermite-Lorentz structure on a complex manifold is a pseudo-Riemannian metric of signature (- -+ ... +), which is Hermitian in the sense that it’s invariant under the almost complex structure. By analogy with the classical Hermitian case, we naturally define a notion of Kähler-Lorentz metric. We cite as example the complex Minkowski space in where, in a sense, we have a one-dimensional complex time (the real point of view, the time is two-dimensional). We cite also the de Sitter and Anti de Sitter complex spaces. They have a constant holomorphic curvature, and generalize in this direction the projective and complex hyperbolic spaces.This thesis focuses on the Hermite-Lorentz homogeneous spaces. In addition with given examples, two other symmetric spaces can naturally play the role of complexification of the de Sitter and anti de Sitter real spaces.The main result of the thesis is a rigidity theorem of these symmetric spaces: any space Hermite-Lorentz isotropy irreducible homogeneous is one of the five previous symmetric spaces. Other results concern the case where we replace the irreducible hypothesis by the fact that the isometry group is semisimple
LOHOVE, SIMON PETER. "Holomorphic curvature of Kähler Einstein metrics on generalised flag manifolds." Doctoral thesis, 2019. http://hdl.handle.net/2158/1151431.
Full textKeshari, Dinesh Kumar. "Infinitely Divisible Metrics, Curvature Inequalities And Curvature Formulae." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2332.
Full textLafrance, Marie. "Solutions à courbure constante de modèles sigma supersymétriques." Thèse, 2017. http://hdl.handle.net/1866/20204.
Full text"Symplectic Topology and Geometric Quantum Mechanics." Doctoral diss., 2011. http://hdl.handle.net/2286/R.I.9478.
Full textDissertation/Thesis
Ph.D. Mathematics 2011
Books on the topic "Holomorphic curvature"
Concentration, functional inequalities, and isoperimetry: International workshop, October 29-November 1, 2009, Florida Atlantic University, Boca Raton, Florida. Providence, R.I: American Mathematical Society, 2011.
Find full textBook chapters on the topic "Holomorphic curvature"
Abate, Marco, and Giorgio Patrizio. "Manifolds with constant holomorphic curvature." In Finsler Metrics—A Global Approach, 127–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0073983.
Full textMok, Ngaiming. "Compact kähler manifolds of nonnegative holomorphic bisectional curvature." In Complex Analysis and Algebraic Geometry, 90–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0076997.
Full textBoyom, Michel Nguiffo, Aliya Naaz Siddiqui, Wan Ainun Mior Othman, and Mohammad Hasan Shahid. "Classification of Totally Umbilical CR-Statistical Submanifolds in Holomorphic Statistical Manifolds with Constant Holomorphic Curvature." In Lecture Notes in Computer Science, 809–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68445-1_93.
Full textDiverio, Simone. "Quasi-Negative Holomorphic Sectional Curvature and Ampleness of the Canonical Class." In Complex and Symplectic Geometry, 61–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62914-8_5.
Full textHussin, Véronique, Marie Lafrance, and İsmet Yurduşen. "Constant Curvature Holomorphic Solutions of the Supersymmetric G(2, 4) Sigma Model." In Quantum Theory and Symmetries, 91–100. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55777-5_8.
Full textTaubes, Clifford Henry. "Holomorphic submanifolds, holomorphic sections and curvature." In Differential Geometry, 268–81. Oxford University Press, 2011. http://dx.doi.org/10.1093/acprof:oso/9780199605880.003.0018.
Full textKLINGENBERG, WILHELM. "ON COMPACT KAEHLERIAN MANIFOLDS WITH POSITIVE HOLOMORPHIC CURVATURE." In Series in Pure Mathematics, 294–300. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789812812797_0020.
Full textBulnes, Francisco. "Integral Geometry and Cohomology in Field Theory on the Space-Time as Complex Riemannian Manifold." In Advances in Complex Analysis and Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92969.
Full textHSIUNG, Chuan-Chih, Wenmao YANG, and Lew FRIEDLAND. "HOLOMORPHIC SECTIONAL AND BISECTIONAL CURVATURES OF ALMOST HERMITIAN MANIFOLDS." In Selected Papers of Chuan-Chih Hsiung, 632–53. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810618_0061.
Full textConference papers on the topic "Holomorphic curvature"
Druţă, S. L. "COTANGENT BUNDLES WITH GENERAL NATURAL KÄHLER STRUCTURES OF QUASI-CONSTANT HOLOMORPHIC SECTIONAL CURVATURES." In Proceedings of the VIII International Colloquium. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814261173_0033.
Full text