Academic literature on the topic 'Holographic video microscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Holographic video microscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Holographic video microscopy"

1

Cheong, Fook Chiong, Bo Sun Rémi Dreyfus, Jesse Amato-Grill, Ke Xiao, Lisa Dixon, and David G. Grier. "Flow visualization and flow cytometry with holographic video microscopy." Optics Express 17, no. 15 (July 16, 2009): 13071. http://dx.doi.org/10.1364/oe.17.013071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cheong, Fook Chiong, Bhaskar Jyoti Krishnatreya, and David G. Grier. "Strategies for three-dimensional particle tracking with holographic video microscopy." Optics Express 18, no. 13 (June 9, 2010): 13563. http://dx.doi.org/10.1364/oe.18.013563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Sang-Hyuk, Yohai Roichman, Gi-Ra Yi, Shin-Hyun Kim, Seung-Man Yang, Alfons van Blaaderen, Peter van Oostrum, and David G. Grier. "Characterizing and tracking single colloidal particles with video holographic microscopy." Optics Express 15, no. 26 (December 20, 2007): 18275. http://dx.doi.org/10.1364/oe.15.018275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheong, F. C., K. Xiao, and D. G. Grier. "Technical note: Characterizing individual milk fat globules with holographic video microscopy." Journal of Dairy Science 92, no. 1 (January 2009): 95–99. http://dx.doi.org/10.3168/jds.2008-1361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Jun, Tsukasa Hirayama, Guanming Lai, Takayoshi Tanji, Kazuo Ishizuka, and Akira Tonomura. "Video-rate electron-holographic interference microscopy using a liquid-crystal panel." Optical Review 1, no. 2 (January 1994): 304–7. http://dx.doi.org/10.1007/bf03254892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krishnatreya, Bhaskar Jyoti, Arielle Colen-Landy, Paige Hasebe, Breanna A. Bell, Jasmine R. Jones, Anderson Sunda-Meya, and David G. Grier. "Measuring Boltzmann's constant through holographic video microscopy of a single colloidal sphere." American Journal of Physics 82, no. 1 (January 2014): 23–31. http://dx.doi.org/10.1119/1.4827275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sun, Hongyue, Bing Song, Hongpai Dong, Brian Reid, Michael A. Player, John Watson, and Min Zhao. "Visualization of fast-moving cells in vivo using digital holographic video microscopy." Journal of Biomedical Optics 13, no. 1 (2008): 014007. http://dx.doi.org/10.1117/1.2841050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ikeda, Toyokazu, Haruka Eitoku, and Yasuyuki Kimura. "AC electrophoretic mobility of individual microscale colloidal particles measured using holographic video microscopy." Applied Physics Letters 114, no. 15 (April 15, 2019): 153703. http://dx.doi.org/10.1063/1.5088723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cheong, Fook C., and David G. Grier. "Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy." Optics Express 18, no. 7 (March 15, 2010): 6555. http://dx.doi.org/10.1364/oe.18.006555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Petruck, Paul, Rainer Riesenberg, and Richard Kowarschik. "Partially coherent light-emitting diode illumination for video-rate in-line holographic microscopy." Applied Optics 51, no. 13 (April 30, 2012): 2333. http://dx.doi.org/10.1364/ao.51.002333.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Holographic video microscopy"

1

Flajšmanová, Jana. "Behaviour of Objects in Structured Light Fields and Low Pressures." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444991.

Full text
Abstract:
Studium chování opticky zachycených částic nám umožňuje porozumět základním fyzikálním jevům plynoucím z interakce světla a hmoty. Předkládaná práce podává vysvětlení zesílení tažné síly působící na opticky svázané částice ve strukturovaném světelném poli, tzv. tažném svazku. Ukazujeme, že pohyb dvou opticky svázaných objektů v tažném svazku je silně závislý na jejich vzájemné vzdálenosti a prostorové orientaci, což rozšiřuje možnosti manipulace hmoty pomocí světla. Následně se práce zaměřuje na levitaci opticky zachycených částic ve vakuu. Představujeme novou metodologii na charakterizaci vlastností slabě nelinearního Duffingova oscilátoru reprezentovaného opticky levitující částicí. Metoda je založena na průměrování trajektorií s určitou počáteční pozicí ve fázovém prostoru sestávajícím z polohy a rychlosti částice a poskytuje informaci o parametrech oscilátoru přímo ze zaznamenaného pohybu. Náš inovativní postup je srovnán s běžně užívanou metodou založenou na analýze spektrální hustoty polohy částice a za využití numerických simulací ukazujeme její použitelnost i v nízkých tlacích, kde nelinearita hraje významnou roli.
APA, Harvard, Vancouver, ISO, and other styles
2

Georges, Vincent. "Holographie électronique à basse énergie." Aix-Marseille 3, 2001. http://www.theses.fr/2001AIX30071.

Full text
Abstract:
Ce travail porte sur l'imagerie d'objets de taille nanométrique à l'aide du microscope électronique à projection opérant à basse énergie (E-lOOeV, À~1Â), développé au laboratoire. Pour valider cette technique d'imagerie, nous avons étudié des matériaux de natures différentes (conducteurs, semi-conducteurs et isolants), de formes diverses (pointes, cubes, filaments, trous), à des grandissements variables (de 50 000 à 500 000). Les images obtenues sont interprétées comme étant des hologrammes, dits " en-ligne " ou " hors-axe " selon la configuration expérimentale employée. Ces images comportent une information sur l'amplitude et la phase de l'onde diffusée par l'objet. Des procédures de reconstruction, que nous avons développé numériquement, permettent d'offrir une image de la forme de l'objet et de l'action de cet objet sur l'onde incidente. Ces procédures apparaissent comme une étape de mise au point comparable à celle rencontrée dans d'autres microscopies. Le temps de calcul est alors de quelques secondes sur un ordinateur personnel actuel. .
This work deals with imaging of nano-scale objects with the low-energy-electron-projection microscope developed in the laboratory. In order to validate this imaging technique, we have studied materials of different natures (conducting, semi-conducting and insulating), of various shapes (type, cubes, filament, holes), with several magnifications (from 50 000 to 500 000). The images are interpreted as holograms, called "in-line" or "off-axis" depending on the employed experimental configuration. The phase and the amplitude of the wave scattered by the object can be extracted from these images. Reconstruction procedures, numerically developed, allow to observe a picture of the shape of the object and of the action of this object on the incident wave. These procedures appear like a focusing stage as in other microscopy. The computing time is around a few seconds with a nowadays personal computer. The experimental-holograms reconstructions exhibit a resolution around 5 nm and are validated by the images of the same objects obtained with conventional-electron microscopy. .
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Holographic video microscopy"

1

Leal-Taixé, Laura, Matthias Heydt, Axel Rosenhahn, and Bodo Rosenhahn. "Understanding What we Cannot See: Automatic Analysis of 4D Digital In-Line Holographic Microscopy Data." In Video Processing and Computational Video, 52–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24870-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Holographic video microscopy"

1

Cheong, Fook Chiong, and David G. Grier. "Holographic Video Microscopy for Biology." In Frontiers in Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/fio.2008.jsua10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cheong, Fook Chiong, and David G. Grier. "Automated Particle Characterization using Holographic Video Microscopy." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/dh.2009.pjtub36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Krishnatreya, Bhaskar Jyoti, and David G. Grier. "Integrated instrument for holographic optical trapping and multicolor holographic video microscopy." In Optical Trapping Applications. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ota.2011.ottua3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheong, Fook Chiong, and David G. Grier. "Three-dimensional Nanorod Tracking with Holographic Video Microscopy." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/dh.2011.dwc35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cheong, Fook Chiong, and David G. Grier. "Label-free molecular binding assays using holographic video microscopy." In Bio-Optics: Design and Application. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/boda.2011.bmd5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cheong, Fook Chiong, Bo Sun, Remi Dreyfus, Jesse Amato-Grill, Ke Xiao, Lisa Dixon, and David G. Grier. "Flow visualization and flow cytometry with holographic video microscopy." In OPTO, edited by Hans I. Bjelkhagen and Raymond K. Kostuk. SPIE, 2010. http://dx.doi.org/10.1117/12.840550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

van Oostrum, Peter D. J., Astrid van der Horst, and Alfons van Blaaderen. "Mutual influence of time-shared optical traps studied by means of Video Holographic Microscopy." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/dh.2009.dwd7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hao, Y. L., J. Iragorry, D. Castro, Y. X. Tao, and S. Jia. "Microscopic Characterization of Frost Surface During Liquid-Ice Phase Change Period." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32797.

Full text
Abstract:
In response to the need for developing a better model to predict frost formation and defrosting processes in freezer and evaporator applications, a microscopic analysis of frost growth on a flat surface is conducted to determine the microscopic characteristics of a frost layer during the early growth period when sub-cooled droplets are formed and changed to the ice. The surface characterization is performed by employing the holographic interferometry technique to determine the air-frost interface temperature, and the video microscope to determine the mean droplet size and ice particle fractions. Typical experimental results are presented to demonstrate the test technique. Preliminary experimentally determined frost thickness and air-frost interface temperature are compared with simulation results.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography