Dissertations / Theses on the topic 'Holographic imaging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Holographic imaging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Howlett, Isela D., Wanglei Han, Michael Gordon, Photini Rice, Jennifer K. Barton, and Raymond K. Kostuk. "Volume holographic imaging endoscopic design and construction techniques." SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 2017. http://hdl.handle.net/10150/624713.
Full textWolf, Michael Trevor. "Digital holographic imaging of microorganisms." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36684.
Full textIncludes bibliographical references (leaf 25).
Imaging aquatic microorganisms in 3D space is of interest to biologists and ocean scientists seeking to understand the behavior of these organisms in their natural environments. In this research, digital holographic imaging (DHI), with a 4f system providing transverse magnification of 9.1, is used to study such microorganisms. To test the imaging technique, DHI was used to locate and track 10 micrometer Dunaliella freely swimming in a 30 milliliter tank of artificial ocean water. Multiple holograms were recorded onto one frame with laser pulsing to identify short algae trajectories. An automatic algae locating program was designed, but the signal to noise ratio was too low, and therefore the program could only locate algae reliably with manual confirmation. With refinement to the experimental setup, the signal to noise ratio could be increased, and this imaging technique could be used to analyze many systems of aquatic microorganisms interacting in a 3D space.
by Michael Trevor Wolf.
S.B.
Sun, Wenyang. "Profilometry with volume holographic imaging." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35631.
Full textIncludes bibliographical references (p. 127-133).
High resolution, non-contact object profile measurement (profilometry) at long working distance is important in a number of application areas, such as precise parts manufacturing, optical element grounding and polishing, adversary target identification in military, terrace profiling, etc. The Volume Holographic (VH) lens is a novel optical element which process the incident light field in a 3D fashion. It has been shown with promising applications in object profile acquisition and 3D imaging areas. In this thesis, we propose, design and implemented a number of volume holographic computational imaging systems for profilometry related applications. We show that the rich functionalities of the VH lens can be exploited to process the incident optical field. Some of the unique imaging behavior can not be easily achieved by using conventional optics. We first develop the theoretical framework for investigating the VH lens optical behavior. We concentrate on a simple design: using the VH lens as the spatial spectrum plane filter in a 4F imaging system. We derived the point spread function (PSF), the depth resolution, the diffraction field distribution of the proposed imaging system. Experimental system characterization and profilometry measurements were carried out with our setups.
(cont.) We find the resolution of the volume holographic imaging (VHI) profilometry system degrades quadratically with the increase of working distance. We addressed this problem by two approaches: 1. We discuss the effect of objective optics design on the VHI resolution. We proposed and implemented the use of appropriately designed telephoto objective optics to achieve very good resolution at long working distance. 2. We developed a maximum likelihood estimation based post-processing method to improve the depth resolution by more than 5 times. An important issue on VHI profilometry is the "slit-shaped" limited field of view (FoV). This makes measurement over the entire big object is very time consuming because scanning is necessary. Otherwise hundreds or thousands of VH lenses must be multiplexed on a single crystal to concatenate the slit FoV of each VH lens to form a wide exit window. However the multiplexing method suffers the "M/#" penalty on photon efficiency. We solved this problem by utilizing the wavelength degeneracy of the VH lens and designed a rainbow illumination VHI to expand the FoV.
(cont.) We also extended the application of VHI to hyper-spectral imaging. The experimental implementation of the hyper-spectral imaging system shows it is capable of not only reconstructing the 3D spatial profile but also restoring the spectral information of the object, both at high resolution. Finally, we conclude with some directions for the future work in this emerging field.
by Wenyang Sun.
Ph.D.
Domínguez-Caballero, José Antonio. "Digital holographic imaging of aquatic species." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35655.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 160-174).
The aim of this thesis is to design, develop and implement a digital holographic imaging (DHI) system, capable of capturing three-dimensional (3D) images of aquatic species. The images produced by this system are used in a non-intrusive manner to characterize the abundance, morphology and 3D location of the aquatic species. The DHI system operates by recording the hologram produced by the interference between a reference wave and the wave scatter by a coherently illuminated object with a charge-couple-device (CCD). The recorded hologram contains information about the amplitude and phase of the optical field as modified by the object. This optical field is retrieved by numerical algorithms, which enable the reconstruction of the field at different distances relative to the detector from a single hologram. The recording of the holograms with the CCD allows the implementation of image post-processing techniques intended to enhance the reconstructed images. A description of the optimization of the reconstruction by means of an auto-scan algorithm and the reconstruction of large holograms are discussed. It is found that the in-line single-beam experimental set-up is the most suitable configuration for underwater imaging of aquatic species.
(cont.) This is experimentally verified by imaging brine shrimp and copepods under various conditions. Small, sub-10um features of the objects were successfully resolved. It is also found that by using configurations with a spherical reference wave, resolutions comparable to those obtained by a conventional optical microscope can be achieved in a "lens-free" approach with larger working distances.
by José Antonio Domínguez-Caballero.
S.M.
Howlett, Isela Danielle, and Isela Danielle Howlett. "Endoscope Design for Volume Holographic Imaging." Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/625584.
Full textLiu, Changgeng. "Coherent Digital Holographic Adaptive Optics." Scholar Commons, 2015. https://scholarcommons.usf.edu/etd/5527.
Full textLin, Haibo Yu Ping. "Speckle mechanism in holographic optical coherence imaging." Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/6184.
Full textde, Leon Erich Ernesto. "Optical Design of Volume Holographic Imaging Systems for Microscopy." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/242357.
Full textDomínguez-Caballero, José Antonio. "Optimization of the holographic process for imaging and lithography." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/57696.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 272-297).
Since their invention in 1948 by Dennis Gabor, holograms have demonstrated to be important components of a variety of optical systems and their implementation in new fields and methods is expected to continue growing. Their ability to encode 3D optical fields on a 2D plane opened the possibility of novel applications for imaging and lithography. In the traditional form, holograms are produced by the interference of a reference and object waves recording the phase and amplitude of the complex field. The holographic process has been extended to include different recording materials and methods. The increasing demand for holographic-based systems is followed by a need for efficient optimization tools designed for maximizing the performance of the optical system. In this thesis, a variety of multi-domain optimization tools designed to improve the performance of holographic optical systems are proposed. These tools are designed to be robust, computationally efficient and sufficiently general to be applied when designing various holographic systems. All the major forms of holographic elements are studied: computer generated holograms, thin and thick conventional holograms, numerically simulated holograms and digital holograms. Novel holographic optical systems for imaging and lithography are proposed. In the case of lithography, a high-resolution system based on Fresnel domain computer generated holograms (CGHs) is presented. The holograms are numerically designed using a reduced complexity hybrid optimization algorithm (HOA) based on genetic algorithms (GAs) and the modified error reduction (MER) method. The algorithm is efficiently implemented on a graphic processing unit. Simulations as well as experimental results for CGHs fabricated using electron-beam lithography are presented. A method for extending the system's depth of focus is proposed. The HOA is extended for the design and optimization of multispectral CGHs applied for high efficiency solar concentration and spectral splitting. A second lithographic system based on optically recorded total internal reflection (TIR) holograms is studied. A comparative analysis between scalar and (cont.) vector diffraction theories for the modeling and simulation of the system is performed.
A complete numerical model of the system is conducted including the photoresist response and first order models for shrinkage of the holographic emulsion. A novel block-stitching algorithm is introduced for the calculation of large diffraction patterns that allows overcoming current computational limitations of memory and processing time. The numerical model is implemented for optimizing the system's performance as well as redesigning the mask to account for potential fabrication errors. The simulation results are compared to experimentally measured data. In the case of imaging, a segmented aperture thin imager based on holographically corrected gradient index lenses (GRIN) is proposed. The compound system is constrained to a maximum thickness of 5mm and utilizes an optically recorded hologram for correcting high-order optical aberrations of the GRIN lens array. The imager is analyzed using system and information theories. A multi-domain optimization approach is implemented based on GAs for maximizing the system's channel capacity and hence improving the information extraction or encoding process. A decoding or reconstruction strategy is implemented using the superresolution algorithm. Experimental results for the optimization of the hologram's recording process and the tomographic measurement of the system's space-variant point spread function are presented. A second imaging system for the measurement of complex fluid flows by tracking micron sized particles using digital holography is studied. A stochastic theoretical model based on a stability metric similar to the channel capacity for a Gaussian channel is presented and used to optimize the system. The theoretical model is first derived for the extreme case of point source particles using Rayleigh scattering and scalar diffraction theory formulations. The model is then extended to account for particles of variable sizes using Mie theory for the scattering of homogeneous dielectric spherical particles. The influence and statistics of the particle density dependent cross-talk noise are studied. Simulation and experimental results for finding the optimum particle density based on the stability metric are presented. For all the studied systems, a sensitivity analysis is performed to predict and assist in the correction of potential fabrication or calibration errors.
by José Antonio Domínguez-Caballero.
Ph.D.
Hubel, Paul Matthew. "Colour reflection holography." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.257949.
Full textEl, Mallahi Ahmed. "Automated 3D object analysis by digital holographic microscopy." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209489.
Full textDoctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Shih, Tina 1982. "Three dimensional imaging of translucent objects using volume holographic techniques." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32786.
Full textIncludes bibliographical references (p. 25-26).
Plankton is a primitive form of one or several-celled organism that lives in the sea. Its behavior, its formation, and the various life patterns, when monitored, reveals a wealth of information about the sea. Three dimensional in-situ images of these semi-translucent organisms are therefore of great interest. To better understand how volume holographic imaging works on a translucent object like plankton, this project explores the three dimensional imaging of a gummy bear. Tomographic experiments were performed both with monochromatic laser light illumination and broadband white-light illumination. It was found that unexpectedly, the white light illumination, though not a perfect tomographic setup because of the inclusion of a lot of scattered and refracted light, images better in three dimensions than the monochromatic laser illumination.
by Tina Shih.
S.B.
Feng, Z. "A signal processing method for the acoustic image reconstruction of planar objects." Thesis, University of Portsmouth, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234728.
Full textBlasiak, Thomas C. "Modeling holographic grating imaging systems using the angular spectrum propagation method /." Link to online version, 2006. https://ritdml.rit.edu/dspace/handle/1850/2294.
Full textChen, Jhen-Si. "Holographic 3D image display : layer-based method and coarse integrated holograms." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708806.
Full textWatson, Jonathan M. "Evaluation of spatial-spectral filtering in non-paraxial volume holographic imaging systems." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44854.
Full textIncludes bibliographical references (leaves 144-148).
In this thesis, the properties of transmission-mode volume phase holograms as spatial-spectral filters in optical systems for microscopic medical imaging are evaluated. In experiment, the relationship between the angle of incidence and diffraction efficiency are invesitgated for wavelength-detuned multiplex holograms to establish the limits of the narrow bandwidth lateral field of view. The depth selectivity of the microscope with a volume hologram pupil is also measured and found to vary significantly with recording parameters and lateral shift of the probe point source in object space. This experiment is modified to incorporate controlled levels of spherical aberration, where the effect on the depth selectivity is evaluated. A novel resolution target designed specifically for the evaluation of this imaging system is described and imaged. A flexible approach based on the 1st-order Born approximation is implemented to simulate all aspects of the imaging system with a multiplex volume hologram pupil. The simulation is then used to verify and expand upon the experimental results. A mathematical treatment of the nature of the anomalous apparent curvature of the diffraction image is performed, showing that a volume grating recorded in plane has weak out-of-plane spatial filtering behavior.
by Jonathan M. Watson.
S.M.
Flewellen, James Lewis. "Digital holographic microscopy for three-dimensional studies of bacteria." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:94ff344b-51ec-41c5-a5f8-c579e16dccd7.
Full textMagalhães, Daniel Souza Ferreira. "Construção de telas holográficas e aplicações." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278163.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-14T06:28:04Z (GMT). No. of bitstreams: 1 Magalhaes_DanielSouzaFerreira_D.pdf: 18841445 bytes, checksum: 83953f45dd82288807d2ece70a0d3c17 (MD5) Previous issue date: 2009
Resumo: A Tela holográfica é um elemento óptico difrativo gerado pela interferência de dois feixes de maneira a redistribuir convenientemente para um observador a luz que recebe com o objetivo de visualização de imagens sem óculos e com paralaxe. Neste trabalho descrevemos alguns métodos de obtenção de telas holográficas para aplicações em projeções com luz branca. As fundamentamos, analisamos os resultados obtidos, assim como descrevemos suas aplicações.
Abstract: Holographic screen is a difractive optical element generated by the interference of two beams in order to properly distribute to an observer the light it receives with the purpose of viewing parallax images without glasses. This work describes some methods for obtaining holographic screens looking forward applications with white light. We substantiate, analyze the results and describe their applications.
Doutorado
Ótica
Doutor em Ciências
Nguyen, Krzysztof Quoc Khanh. "Characterisation of holographic projection as structured illumination in a Time-of-Flight based 3D imaging system." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/9953.
Full textTian, Lei Ph D. Massachusetts Institute of Technology. "Phase-space representation of digital holographic and light field imaging with application to two-phase flows." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/57789.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 125-133).
In this thesis, two computational imaging techniques used for underwater research, in particular, two-phase flows measurements, are presented. The techniques under study, digital holographic imaging and light field imaging, are targeted at different flow conditions. In low-density flows, particles and air bubbles in water can be imaged by a digital holographic imaging system to provide 3D flow information. In the high density case, both occlusions and scattering become significant, imaging through these partial occlusions to achieve object detection is possible by integrating views from multiple perspectives, which is the principle of light field imaging. The analyses on the digital holographic and light field imaging systems are carried out under the framework of phase-space optics. In the holographic imaging system, it is seen that, by tracking the Space bandwidth transfer, the information transformation through a digital holographic imaging system can be traced. The inverse source problem of holography can be solved in certain cases by posing proper priori constraints. As is in the application to two-phase flows, 3D positions of bubbles can be computed by well tuned focus metrics. Size statistical distribution of the bubbles can also be obtained from the reconstructed images.
(cont.) Light field is related to the Wigner distribution through the generalized radiance function. One practical way to sample the Wigner distribution is to take intensity measurements behind an aperture which is moving laterally in the field. Two types of imaging systems, the light field imaging and the integral imaging, realize this Wigner sampling scheme. In the light field imaging, the aperture function is a rect function; while a sinc aperture function in the integral imaging. Axial ranging through the object space can be realized by digital refocusing. In addition, imaging through partial occlusion is possible by integrating properly selected Wigner samples.
by Lei Tian.
S.M.
Subramani, Dinesh. "The Diode Laser Source and the Spatial Light Modulator's Driver Electronics for Miniaturized Holographic 3D Imaging." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36409.
Full textMaster of Science
Crotty, Maureen. "Signal to Noise Ratio Effects on Aperture Synthesis for Digital Holographic Ladar." University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1355245759.
Full textClark, David C. "Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4299.
Full textBrown, Andrew, and Hua Lee. "SYNTHETIC APERTURE GROUND PENETRATING RADAR IMAGING FOR NONDESTRUCTIVE EVALUATION OF CIVIL AND GEOPHYSICAL STRUCTURES." International Foundation for Telemetering, 2001. http://hdl.handle.net/10150/607690.
Full textSynthetic-aperture microwave imaging with ground penetrating radar systems has become a research topic of great importance for the potential applications in sensing and profiling of civil and geophysical structures. It allows us to visualize subsurface structures for nondestructive evaluation with microwave tomographic images. This paper provides an overview of the research program, ranging from the formation of the concepts, physical and mathematical modeling, formulation and development of the image reconstruction algorithms, laboratory experiments, and full-scale field tests.
Perfetti, Claire. "Particle manipulation in minichannels for enhanced digital holographic microscopy observation." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209283.
Full textsizes - mostly in the nano to millimeter scale - when dispersed in a carrier medium, is an increasingly important topic in many fields such as biotechnology,nanotechnology, medicine, biophysics and environmental monitoring and remediation. The underlying rationale for using such techniques stands in the sometimes compelling requirements of avoiding clogging as in micro/nano channel flows, of limiting sedimentation and wall interactions in particle/cell counting, of enhancing particle-surface interaction as in bio-sensing or of facilitating characterization and sorting as in bio-physical applications. Being developed in the frame of a Belgian national project devoted to the characterization and counting of pollutant in water media by digital holographic microscopy, this thesis tackles a peculiar class of particle manipulation techniques, commonly known as Focusing. The main goal of focusing is to avoid at best wall particle interactions and sedimentation, prevalent issues for dispersions owing in micro/mini-channels especially for applications such as optical characterization and counting.
The main attention was given to two flow focusing techniques - Hydrodynamic and Acoustic Focusing - for their wide range applicability and cost effectiveness. Hydrodynamic Focusing consists in controlling the position and spreading of the sample under investigation by means of a so-called sheath flow. A low-cost, nevertheless effective, prototype has been conceived, designed, manufactured and tested. It allowed for controlling the spreading of the sample stream and achieving a focusing ratio accounting for only 4% of the original stream width.
Acoustic Focusing takes advantage of the time-averaged pressure fields induced by the creation of standing waves in channels to manipulate and focus the dispersed particles. In the frame of this thesis, several devices have been developed using square cross section glass mini-channels. Aside from the cost-effectiveness, particles where focused in a somehow unexpected but high reproducible 3D matrix-like structure. A novel numerical model has also been implemented in order to study the conditions leading to the 3D structure formation. A good agreement between experimental and numerical results was found./Ce projet de thèse portant sur la manipulation de micro-particules dans des minicanaux s'inscrit dans le développement de cellules de flux pour des applications biologiques, qui est l'une des problématiques du projet HOLOFLOW, soutenu par
la région de Bruxelles Capitale. Les cellules de flux doivent permettre l'observation et la reconnaissance des micro-organismes vivants dans une large gamme de dimensions (de quelques microns à 1mm) avec la microscopie holographie digitale.
La problématique d'observation et de manipulation des microorganismes en flux est liée au clogging (bouchage) et à la sédimentation qui limitent la durée de vie des cellules d'observation. Ce projet de thèse s'inscrit dans cette problématique et propose deux axes d'étude pour limiter l'interaction entre organismes et canaux, la focalisation hydrodynamique, basée sur le guidage de flux, et la focalisation acoustique, basée sur la manipulation des particules.
La focalisation hydrodynamique est une technique basée sur l'injection différentiée de l'échantillon à observer et d'un fluide support. La différence des vitesses d'injection des flux permet de contrôler la dispersion des particules afin d'optimiser leur observation. Dans le cadre de cette thèse, un prototype à bas-coût a été développé et construit, permettant de focaliser les particules dans un faisceau jusqu'à 4% de leur faisceau incident.
La focalisation acoustique utilise la création d'une onde acoustique stationnaire afin de regrouper les particules en suspension au centre du canal. Au cours de cette thèse, plusieurs prototypes ont été réalisés, mettant en évidence la formation de motifs tridimensionnaux. Un model numérique a été spécialement développé afin d'étudier les conditions de génération de ces motifs, et de nombreuses expériences ont été menées afin de s'assurer de leur reproductibilité. Une bonne adéquation entre la position des particules mesurée et calculée numériquement a été démontrée.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Schaffert, Stefan [Verfasser], Stefan [Akademischer Betreuer] Eisebitt, and Christian [Akademischer Betreuer] Gutt. "Holographic imaging and time-resolved X-ray scattering on magnetic-domain systems / Stefan Schaffert. Gutachter: Stefan Eisebitt ; Christian Gutt. Betreuer: Stefan Eisebitt." Berlin : Technische Universität Berlin, 2014. http://d-nb.info/1067387188/34.
Full textBlocher, Garth M. "Development of an Infrared Direct Viewer Based on a MEMS Focal Plane Array." Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-theses/901.
Full textBarszczak, Sardinha Anna Luiza. "Coherent imaging of nano-objects with ultra-short X-ray pulses." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX006/document.
Full textThe use of X-rays is fundamental to obtain a spatial resolution in the order of the dozen of nanometers. The duration of the flashes of radiation is placed between the dozen of femtoseconds (1 fs =10-15 s) to the hundreds of attoseconds (1as=10-18 s). During this time frame nano-objects are static in time, image wise it translates as a precise image. Exciting these nano-objects with flashes of X-ray beams it is possible to follow its temporal evolution and record a "movie" of the evolution due to excitation. This type of information is extremely important since it can allow the identification of intermediary structural states and therefore attaining a better understanding of their reactional power.This type of studies it is making its debut in the scientific community due to the recent development of ultra-fast and intense X-ray sources needed to perform this type of imaging. The referenced source is a free electron laser (FEL) and there are only tree of them in the world nowadays. One in Germany, one in the USA and one in Japan. The small amount of FELs is mainly due to its elevated costs. From some years the LOA has shown that lasers can also provide an X-ray beam in the femtosecond region and intense enough to produce images of nano-objects with equivalent temporal and spatial resolutions.This present thesis was built in tree phases: realization of an X-ray laser source, circularly polarized; realization of a new improved imaging system and testing of the nano-samples possessing nano-structures. These nano-structures have a velocity of evolution after excitation in the range of 100 fs. These studies have had place at LOA, LCLS, Laboratoire de Chimie-Physique, Matière et Rayonnement (LCPMR), the CEA de Saclay, BESSY-II in Germany. These cooperations have insured a specific training and expertise in the world of nanometric imaging based on the new technique developed during this work
Sorensen, Thomas J. "Inverse Scattering Image Quality with Noisy Forward Data." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2541.pdf.
Full textĎuriš, Miroslav. "Zobrazení objektu v rozptylujícím prostředí kombinací signálu balistických a rozptýlených fotonů v koherencí řízeném holografickém mikroskopu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-392845.
Full textČolláková, Jana. "Průtokové komůrky pro mikroskopii živých buněk." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229859.
Full textSlabý, Tomáš. "Koherencí řízený holografický mikroskop nové generace." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-234255.
Full textBrasiliense, Vitor. "Opto-Electrochemical Methods for Imaging the Reactivity of Individual Nanoparticles." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC283/document.
Full textA number of coupled optical and electrochemical single particle techniques are employed for investigating a variety of chemical systems at the level of individual objects.On the optical side, holography and visible spectroscopy are imbued with superlocalization principles pushing the applicability of these techniques down to sub-diffraction levels. Nanoelectrochemical techniques such as stochastic impacts and nanoelectrodes are used to complement this information, providing a much more complete characterization of the phenomena.It is shown that this dual optical and electrochemical single particle characterizationis actually crucial to understand complex nano chemical systems in loco. Starting frommodel reactions, such as Ag oxidation, the complexity of the studied phenomena and systems is progressively increased, as light is shed on transport phenomena, aggregation,as well as redox transformations and catalysis on complicated materials such as ill-defined transition metal (cobalt) oxides
Flasseur, Olivier. "Object detection and characterization from faint signals in images : applications in astronomy and microscopy." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSES042.
Full textDetecting and characterizing objects in images in the low signal-to-noise ratio regime is a critical issue in many areas such as astronomy or microscopy. In astronomy, the detection of exoplanets and their characterization by direct imaging from the Earth is a hot topic. A target star and its close environment (hosting potential exoplanets) are observed on short exposures. In microscopy, in-line holography is a cost-effective method for characterizing microscopic objects. Based on the recording of a hologram, it allows a digital focusing in any plane of the imaged 3-D volume. In these two fields, the object detection problem is made difficult by the low contrast between the objects and the nonstationary background of the recorded images.In this thesis, we propose an unsupervised exoplanet detection and characterization algorithm based on the statistical modeling of background fluctuations. The method, based on a modeling of the statistical distribution of patches, captures their spatial covariances. It reaches a performance superior to state-of-the-art techniques on several datasets of the European high-contrast imager SPHERE operating at the Very Large Telescope. It produces statistically grounded and spatially-stationary detection maps in which detections can be performed at a constant probability of false alarm. It also produces photometrically unbiased spectral energy distributions of the detected sources. The use of a statistical model of the data leads to reliable photometric and astrometric accuracies. This methodological framework can be adapted to the detection of spatially-extended patterns in strong structured background, such as the diffraction patterns in holographic microscopy. We also propose robust approaches based on weighting strategies to reduce the influence of the numerous outliers present in real data. We show on holographic videos that the proposed weighting approach achieves a bias/variance tradeoff. In astronomy, the robustness improves the performance of our detection method in particular at close separations where the stellar residuals dominate. Our algorithms are adapted to benefit from the possible spectral diversity of the data, which improves the detection and characterization performance. All the algorithms developed are unsupervised: weighting and/or regularization parameters are estimated in a data-driven fashion. Beyond the applications in astronomy and microscopy, the signal processing methodologies introduced are general and could be applied to other detection and estimation problems
Corman, Ramona. "2D/3D lensless imaging : prototype and applications." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS042.
Full textBiological imaging has made tremendous progresses these last decades. The latest developments concern manipulating and imaging single cells with nanometer spatial resolutions. A recent category of imaging techniques, called lensless microscopy, are very promising because they combine very good spatial resolutions in a large field-of-view, simplicity of use and low cost, while operating on label free samples. In this thesis two different lensless approaches are considered: digital in-line holography (DILH) and Fourier transform holography (FTH). In lensless imaging, the usual optical system used to form the sample’s image are remove and replace by numerical algorithms using the light spatial coherence properties.Two imaging prototypes, built on these principles, are presented. They offer (sub ) micrometer scale resolutions, and offer the possibility to retrieve both spatial amplitude and phase information of the optical field. This allows to achieve pseudo-3D reconstruction of volumetric objects from a single 2D hologram. Both devices were first characterized with reference samples. In a second step, real applications, relevant to selected biological problems, were performed to assess the devices’ performances towards high resolution, real time imaging and 3D.This thesis objective is also to develop a new platform directly integrating in a single chip a microfluidics system for biological cell handling by dielectrophoresis and an optical mask for cell visualization by lensless microscopy. Its working principle is based on cell transport in a liquid media by microfluidics, cell separation in the microscope field of view by the electric field induced by specific electrodes, and simultaneous cell imaging by Fourier Transform Holography. The main advantage of such coupled electro-optical system for cell imaging and analysis are the improved control, the precision and sensitivity regarding cell morphology all together merged in a compact imaging platform. The capability of the platform can be extended to analysis of cells’ behavior and morphologic deviation during the electrochemical processes of DEP.A major challenge in microscopy field is to reduce the production costs. The two types of lensless microscopy presented in this thesis aims to introduce new imaging tools that allows scientists to obtain low-cost high-resolution images in label-free conditions. Additionally, the microfluidics chip is a first demonstration of a new integrated platform for cell live analysis into a single Lab-on-a-chip device
Laudereau, Jean-Baptiste. "Acousto-optic imaging : challenges of in vivo imaging." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066414/document.
Full textBiological tissues are very strong light-scattering media. As a consequence, current medical imaging devices do not allow deep optical imaging unless invasive techniques are used. Acousto-optic (AO) imaging is a light-ultrasound coupling technique that takes advantage of the ballistic propagation of ultrasound in biological tissues to access optical contrast with a millimeter resolution. Coupled to commercial ultrasound (US) scanners, it could add useful information to increase US specificity. Thanks to photorefractive crystals, a bimodal AO/US imaging setup based on wave-front adaptive holography was developed and recently showed promising ex vivo results. In this thesis, the very first ones of them are described such as melanoma metastases in liver samples that were detected through AO imaging despite acoustical contrast was not significant. These results highlighted two major difficulties regarding in vivo imaging that have to be addressed before any clinical applications can be thought of.The first one concerns current AO sequences that take several tens of seconds to form an image, far too slow for clinical imaging. The second issue concerns in vivo speckle decorrelation that occurs over less than 1 ms, too fast for photorefractive crystals. In this thesis, I present a new US sequence that allows increasing the framerate of at least one order of magnitude and an alternative light detection scheme based on spectral holeburning in rare-earth doped crystals that allows overcoming speckle decorrelation as first steps toward in vivo imaging
Maršíková, Barbora. "Trojrozměrné zobrazování v holografickém mikroskopu pomocí koherenční brány." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-392840.
Full textVašíček, David. "Fluorescenční zobrazovací techniky v multimodálním holografickém mikroskopu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231466.
Full textKřížová, Aneta. "Koherencí řízený holografický mikroskop ve výzkumu životního cyklu buňky." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230277.
Full textŠkrabalová, Denisa. "Holografický modul pro světelnou mikroskopii." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-402635.
Full textPratsch, Christoph. "New methods for high resolution 3D imaging with X-rays." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19238.
Full textWe have characterized the limitations of the most powerful and widely used 3D X-ray imaging approach, transmission X-ray microscopy with tomographic reconstruction. We show that 3D resolution in this approach is limited by the depth of field. To investigate alternatives, we perform simulations of a confocal transmission X-ray microscope and a FIB-SXM. We show that FIB-SXM is a very promising approach that could o er 3D isotropic resolution at 10 nm with dramatically improved signal to noise. We also introduce a new holography method that could prove bene cial for full eld imaging with short coherent X-ray pulses and yield new insights into ultrafast physics.
Whitcombe, Michael James. "Red-sensitive imaging systems for holography." Thesis, Royal Holloway, University of London, 1987. http://repository.royalholloway.ac.uk/items/93c5198a-27d2-4c1d-ba1b-744bdc04fac0/1/.
Full textDuckworth, Thomas Andrew. "Fourier transform holography for magnetic imaging." Thesis, University of Exeter, 2013. http://hdl.handle.net/10871/16152.
Full textMarín, Garcia Jordi. "Off-axis holography in microwave imaging systems." Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/285129.
Full textIn past decades research in terahertz technology was solely motivated by instruments for topics such as astrophysics, planetary and earth sciences. Molecular line spectroscopy detection, identification and mapping of thermal emission and absorption signatures from low pressure gases comprised the main focus for most scientific requirements and motivated the development of terahertz instrumentation and technology. In spite of the scientific contributions of terahertz radiation, its spectrum is still one of the least used electromagnetics bands in commercial use. The unavailability of sources, sensors, sub-systems and instruments has been a cumbersome issue over the past years for its wide-spread use in commercial instrumentation. The combination of technological advances coming from the space-based community, along with the emergence of new applications, have managed to drive again the interest from both public and private sectors which has renown and skyrocketed the funding and research in terahertz applications. Aside from the aforementioned scientific interest, terahertz radiation has appealing characteristics such as good imaging resolution (as compared to lower frequencies), material penetration, spectroscopic capabilities, water absorption and low energy levels. The work of this thesis is part of a Spanish national research project called Terasense. The main focus of the project is to equip national academic research institutions with a completely new set of instrumentations and capabilities in order to advance towards the current state of the art in millimeter and sub-millimeter wave technologies. The main objective of this thesis is to explore the viability of microwave and millimeter-wave imaging systems based on intensity-only holographic techniques. This dissertation is mostly focused on the Off-Axis Holography technique. Not only from a theoretical perspective but specially from an actual implementation standpoint. In order to do so, different experimental setups and devices have been designed and manufactured. Iteration between hardware and software has created a framework for devising and testing different imaging techniques under consideration. The frequency range W-Band (75-110 GHz) has been chosen as the main goal for all systems under study, however different setups will first be constructed, characterized and tested at X-Band (8-12 GHz) in order to build up the expertise required to work at millimeter-wave frequencies.
Parshall, Daniel. "Phase imaging digital holography for biological microscopy." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000285.
Full textPuyo, Léo. "Application clinique de l'holographie laser Doppler en ophtalmologie." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET022.
Full textThis PhD aimed at introducing laser Doppler holography (LDH) into the field of ophthalmology in order to image blood flow in the eye posterior pole. Perfusion abnormalities play a central role in the development of ocular pathologies, which calls for the development of suitable instruments to elucidate it. LDH had previously demonstrated its ability to perform non-invasive and quantitative blood flow imaging with a high temporal resolution, but only in rodents. In this thesis, it is demonstrated that with a fast camera and a short-time Fourier transform analysis of the Doppler broadening, LDH can image blood flow changes in the human retina during cardiac cycles with a resolution of a few milliseconds. LDH is able to measure distinct systolodiastolic variations in retinal arteries and veins, and can be used for a full field mapping of the local resistivity index that allows unambiguous identification of retinal arteries and veins. LDH can also be used to reveal the choroid with a contrast quality similar to that of state of art instruments based on indocyanin-green angiography and optical coherence tomography, but unlike these methods LDH additionally provides a quantitative blood flow contrast. This ability was used to bring to light large differences of blood flow between choroidal arteries and veins, which is a feature that can be exploited to perform another arteriovenous differentiation appropriate for choroidal vessels. The higher Doppler frequency shifts of light scattered in choroidal arteries allows LDH to be especially efficient to reveal them, in some cases from their formation at short posterior ciliary arteries all the way to the arterioles branching. Overall, the unmatched temporal resolution with which LDH is able to measure blood flow and the new insight it provides into the choroid are especially full of promise for further clinical applications
Brodoline, Alexey. "Holographie numérique appliquée à l’imagerie 3D rapide de la circulation sanguine chez le poisson-zèbre." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS058/document.
Full textIn this manuscript, we present an imaging technique based on digital holography.It enables to image in 3D and in time the blood circulation in a zebrafish larva. The 3D information is acquired in a single frame of the camera, which makes possible to track the movement of red blood cells in the vascular system. We will first discuss the traditional techniques of bio and blood flow imaging, then we will remind the principles of holography. Afterwards, we will describe the imaging method we developed and the experimental results obtained. We will then present the improvements that have been made to the technique. Finally, we will briefly discuss the application of the compressed sensing to the blood flow imaging in zebrafish
Schockaert, Cédric. "Three dimensional object analysis and tracking by digital holography microscopy." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210718.
Full textThis thesis aims to develop general and robust algorithms that are devoted to automate the analysis process in the 3D space and in time of objects present in a volume studied by a specific imaging system that permits to record holograms. Indeed, the manual processing of a huge amount of holograms is not realistic and has to be automated by software implementing precise algorithms. In this thesis, the imaging system that records holograms is a Mach-Zehnder interferometer working in transmission and studied objects are either of biological nature (crystals, vesicles, cancer cells) or latex particles. We propose and test focus criteria, based on an identical focus metric, for both amplitude and phase objects. These criteria allow the determination of the best focus plane of an object when the numerical investigation is performed. The precision of the best focus plane is lower than the depth of field of the microscope. From this refocus theory, we develop object detection algorithms that build a synthetic image where objects are bright on a dark background. This detection map of objects is the first step to a fully automatic analysis of objects present in one hologram. The combination of the detection algorithm and the focus criteria allow the precise measurement of the 3D position of the objects, and of other relevant characteristics like the object surface in its focus plane, or its convexity or whatever. These extra relevant measures are carried out with a segmentation algorithm adapted to the studied objects of this thesis (opaque objects, and transparent objects in a uniform refractive index environment). The last algorithm investigated in this research work is the data association in time of objects from hologram to hologram in order to extract 3D trajectories by using the predictive Kalman filtering theory.
These algorithms are the abstract bricks of two software: DHM Object Detection and Analysis software, and Kalman Tracking software. The first software is designed for both opaque and transparent objects. The term object is not defined by one other characteristic in this work, and as a consequence, the developed algorithms are very general and can be applied on various objects studied in transmission by DHM. The tracking software is adapted to the dynamic applications of the thesis, which are flows of objects. Performance and results are exposed in a specific chapter.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Dunsby, Christopher William. "Wide-field coherence-gated imaging techniques including photorefractive holography." Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407465.
Full textDocurro, Manuel J. "Three-dimensional autostereoscopic imaging by computer based holography techniques." FIU Digital Commons, 2003. http://digitalcommons.fiu.edu/etd/3069.
Full text