To see the other types of publications on this topic, follow the link: Holey fibers.

Journal articles on the topic 'Holey fibers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Holey fibers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zheltikov, Aleksei M. "Holey fibers." Physics-Uspekhi 43, no. 11 (November 30, 2000): 1125–36. http://dx.doi.org/10.1070/pu2000v043n11abeh000839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zheltikov, Aleksei M. "Holey fibers." Uspekhi Fizicheskih Nauk 170, no. 11 (2000): 1203. http://dx.doi.org/10.3367/ufnr.0170.200011c.1203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Feng, Xian, Joanne C. Flanagan, Ken E. Frampton, Periklis Petropoulos, Nicholas M. White, Jonathan H. V. Price, Wei H. Loh, Harvey N. Rutt, and David J. Richardson. "Developing Single-Mode Tellurite Glass Holey Fiber for Infrared Nonlinear Applications." Advances in Science and Technology 55 (September 2008): 108–17. http://dx.doi.org/10.4028/www.scientific.net/ast.55.108.

Full text
Abstract:
We review our progress in developing single-mode tellurite glass holey fiber for infrared nonlinear applications. Tellurite glass preforms with complex holey structure were fabricated by using glass extrusion technique. The fabrication of single-mode tellurite holey fibers with the effective mode area ranging from 2.6-3000mm2 and the effective nonlinearity γ ranging from 0.23- 280W-1km-1 were demonstrated. By controlling the microstructured features in the holey cladding, the dispersion profile and the zero dispersion wavelength of this type of single-material optical fiber were tailored within a broad range. Broadband supercontinuum spectra from 0.9 to 2.5mm were generated from the fabricated fibers by using femtosecond laser. Attenuations due to the impurities, such as transition metal ions, rare-earth ions and hydroxyl groups, were also investigated in the bulk tellurite glass and fiber from visible to mid-infrared regimes.
APA, Harvard, Vancouver, ISO, and other styles
4

Hendrickson, Scott M., Todd B. Pittman, and James D. Franson. "Microcavities Using Holey Fibers." Journal of Lightwave Technology 25, no. 10 (October 2007): 3068–71. http://dx.doi.org/10.1109/jlt.2007.905223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nakajima, Kazuhide, Kotaro Saito, Yusuke Yamada, Kenji Kurokawa, Tomoya Shimizu, Chisato Fukai, and Takashi Matsui. "Holey fibers for low bend loss." Nanophotonics 2, no. 5-6 (December 16, 2013): 341–53. http://dx.doi.org/10.1515/nanoph-2013-0030.

Full text
Abstract:
AbstractBending-loss insensitive fiber (BIF) has proved an essential medium for constructing the current fiber to the home (FTTH) network. By contrast, the progress that has been made on holey fiber (HF) technologies provides us with novel possibilities including non-telecom applications. In this paper, we review recent progress on hole-assisted type BIF. A simple design consideration is overviewed. We then describe some of the properties of HAF including its mechanical reliability. Finally, we introduce some applications of HAF including to high power transmission. We show that HAF with a low bending loss has the potential for use in various future optical technologies as well as in the optical communication network.
APA, Harvard, Vancouver, ISO, and other styles
6

Xian Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro. "Nonsilica glasses for holey fibers." Journal of Lightwave Technology 23, no. 6 (June 2005): 2046–54. http://dx.doi.org/10.1109/jlt.2005.849945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Koshiba, Masanori, and Kunimasa Saitoh. "Applicability of classical optical fiber theories to holey fibers." Optics Letters 29, no. 15 (August 1, 2004): 1739. http://dx.doi.org/10.1364/ol.29.001739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boucouvalas, Anthony, Christos Papageorgiou, Eurypides Georgantzos, and Theophanes Raptis. "Resonant Transmission Line Method for Unconventional Fibers." Applied Sciences 9, no. 2 (January 14, 2019): 270. http://dx.doi.org/10.3390/app9020270.

Full text
Abstract:
We provide a very general review of the resonant transmission line method for optical fiber problems. The method has been found to work seamlessly for a variety of difficult problems including elliptical and eccentric core fibers as well as “holey” photonic crystal fibers. This new version has been shown to offer great versatility with respect to cases of unconventional, inhomogeneous index profiles.
APA, Harvard, Vancouver, ISO, and other styles
9

Shuguang Li, 李曙光, 张磊 Lei Zhang, 付博 Bo Fu, 郑义 Yi Zheng, 韩颖 Ying Han, and 赵兴涛 Xingtao Zhao. "Wave breaking in tapered holey fibers." Chinese Optics Letters 9, no. 3 (2011): 030601–30604. http://dx.doi.org/10.3788/col201109.030601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Monro, Tanya M., P. J. Bennett, N. G. R. Broderick, and D. J. Richardson. "Holey fibers with random cladding distributions." Optics Letters 25, no. 4 (February 15, 2000): 206. http://dx.doi.org/10.1364/ol.25.000206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lizier, J. T., and G. E. Town. "Splice losses in holey optical fibers." IEEE Photonics Technology Letters 13, no. 8 (August 2001): 794–96. http://dx.doi.org/10.1109/68.935806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

GUAN, N. "Holey Fibers for Low Bending Loss." IEICE Transactions on Electronics E89-C, no. 2 (February 1, 2006): 191–96. http://dx.doi.org/10.1093/ietele/e89-c.2.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shibata, N., A. Nakazono, N. Taguchi, and S. Tanaka. "Forward Brillouin scattering in holey fibers." IEEE Photonics Technology Letters 18, no. 2 (January 2006): 412–14. http://dx.doi.org/10.1109/lpt.2005.862367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Furusawa, K., Z. Yusoff, F. Poletti, T. M. Monro, N. G. R. Broderick, and D. J. Richardson. "Brillouin characterization of holey optical fibers." Optics Letters 31, no. 17 (August 9, 2006): 2541. http://dx.doi.org/10.1364/ol.31.002541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chau, Yuan-Fong, Gui-Min Lin, Chiung-Chou Liao, Shinn-Fwu Wang, and Jeng-Hua Wei. "Numerical Investigations on Birefringent Holey Fibers by Modified Elliptical Air Holes in Fiber Cladding." Japanese Journal of Applied Physics 50, no. 11R (November 1, 2011): 112502. http://dx.doi.org/10.7567/jjap.50.112502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chau, Yuan-Fong, Gui-Min Lin, Chiung-Chou Liao, Shinn-Fwu Wang, and Jeng-Hua Wei. "Numerical Investigations on Birefringent Holey Fibers by Modified Elliptical Air Holes in Fiber Cladding." Japanese Journal of Applied Physics 50 (October 27, 2011): 112502. http://dx.doi.org/10.1143/jjap.50.112502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Pal, Parama, and Wayne H. Knox. "End-sealing short dispersion micromanaged tapered holey fibers by hole-collapsing." Optics Express 15, no. 21 (2007): 13531. http://dx.doi.org/10.1364/oe.15.013531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hornbostel, M., F. J. DiSalvo, S. Hillyard, and J. Silcox. "STEM characterization of a 6Å diameter Mo3Se3 fiber." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 820–21. http://dx.doi.org/10.1017/s0424820100149933.

Full text
Abstract:
LiMo3Se3 is a highly anisotropic conductor containing 6Å diameter one dimensional chains of Mo3Se3 triangles. This compound can be dissolved in polar solvents to produce solutions containing micron length Mo3Se3 fibers. Choice of solvent and solution concentrations allows some control of fiber diameters, from a few hundred angstroms down to the molecular limit of a single 6Å diameter chain. These fibers have been deposited from solution on holey carbon substrates by vacuum evaporation of the solvent to produce free-standing, one dimensional wires.High resolution microscopy at 100kV was carried out in a VG HB501A STEM and confirms the presence of many different sized bundles extending all the way down to the single strands. Figure 1a shows an ADF image of a medium sized strand which commonly occured in a sample prepared with the solvent propylene carbonate. The flexibility of the fiber and its seeming attraction to the edges of carbon holes is apparent as it snakes its way along the surface.
APA, Harvard, Vancouver, ISO, and other styles
19

Monro, T. M., D. J. Richardson, N. G. R. Broderick, and P. J. Bennett. "Holey optical fibers: an efficient modal model." Journal of Lightwave Technology 17, no. 6 (June 1999): 1093–102. http://dx.doi.org/10.1109/50.769313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Monro, T. M., D. J. Richardson, N. G. R. Broderick, and P. J. Bennett. "Modeling large air fraction holey optical fibers." Journal of Lightwave Technology 18, no. 1 (January 2000): 50–56. http://dx.doi.org/10.1109/50.818906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Tse, Ming-Leung V., Peter Horak, Francesco Poletti, and David J. Richardson. "Designing Tapered Holey Fibers for Soliton Compression." IEEE Journal of Quantum Electronics 44, no. 2 (February 2008): 192–98. http://dx.doi.org/10.1109/jqe.2007.910446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ebendorff-Heidepriem, H., P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro. "Bismuth glass holey fibers with high nonlinearity." Optics Express 12, no. 21 (2004): 5082. http://dx.doi.org/10.1364/opex.12.005082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Baggett, Joanne C., Tanya M. Monro, Kentaro Furusawa, Vittoria Finazzi, and D. J. Richardson. "Understanding bending losses in holey optical fibers." Optics Communications 227, no. 4-6 (November 2003): 317–35. http://dx.doi.org/10.1016/j.optcom.2003.09.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

OSONO, Kazumasa, Bing YAO, and Masao TACHIKURA. "Utilization of Holey Fibers with Low Bending Loss." Review of Laser Engineering 34, no. 1 (2006): 26–30. http://dx.doi.org/10.2184/lsj.34.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Champert, P. A., S. V. Popov, and J. R. Taylor. "Generation of multiwatt, broadband continua in holey fibers." Optics Letters 27, no. 2 (January 15, 2002): 122. http://dx.doi.org/10.1364/ol.27.000122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Poletti, Francesco, Peter Horak, and David J. Richardson. "Soliton Spectral Tunneling in Dispersion-Controlled Holey Fibers." IEEE Photonics Technology Letters 20, no. 16 (August 2008): 1414–16. http://dx.doi.org/10.1109/lpt.2008.927881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Koshiba, Masanori, and Kunimasa Saitoh. "Simple evaluation of confinement losses in holey fibers." Optics Communications 253, no. 1-3 (September 2005): 95–98. http://dx.doi.org/10.1016/j.optcom.2005.04.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Koshiba, M., and K. Saitoh. "Polarization-dependent confinement losses in actual holey fibers." IEEE Photonics Technology Letters 15, no. 5 (May 2003): 691–93. http://dx.doi.org/10.1109/lpt.2003.809923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Travers, J. C., S. V. Popov, and J. R. Taylor. "Extended blue supercontinuum generation in cascaded holey fibers." Optics Letters 30, no. 23 (December 1, 2005): 3132. http://dx.doi.org/10.1364/ol.30.003132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zejun Zhang, Yasuhide Tsuji, and Masashi Eguchi. "Study on Crosstalk-Free Polarization Splitter With Elliptical-Hole Core Circular-Hole Holey Fibers." Journal of Lightwave Technology 32, no. 23 (December 1, 2014): 4558–64. http://dx.doi.org/10.1109/jlt.2014.2361143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zhang, Zejun, Yasuhide Tsuji, and Masashi Eguchi. "Design of Polarization Splitter With Single-Polarized Elliptical-Hole Core Circular-Hole Holey Fibers." IEEE Photonics Technology Letters 26, no. 6 (March 2014): 541–43. http://dx.doi.org/10.1109/lpt.2013.2296592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mukasa, K., R. Miyabe, K. Imamura, and T. Yagi. "Hole-Assisted Fibers With $\lambda _{0}$ Around 1000 nm and Holey Fibers With $\lambda _{0}$ Around 500 nm." Journal of Lightwave Technology 27, no. 11 (June 2009): 1716–24. http://dx.doi.org/10.1109/jlt.2009.2021988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Eguchi, Masashi, and Yasuhide Tsuji. "Bending loss of elliptical-hole core circular-hole holey fibers bent in arbitrary bending directions." Applied Optics 49, no. 32 (November 2, 2010): 6207. http://dx.doi.org/10.1364/ao.49.006207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Broderick, N. G. R., T. M. Monro, P. J. Bennett, and D. J. Richardson. "Nonlinearity in holey optical fibers: measurement and future opportunities." Optics Letters 24, no. 20 (October 15, 1999): 1395. http://dx.doi.org/10.1364/ol.24.001395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Baggett, Joanne C., Tanya M. Monro, Kentaro Furusawa, and D. J. Richardson. "Comparative study of large-mode holey and conventional fibers." Optics Letters 26, no. 14 (July 15, 2001): 1045. http://dx.doi.org/10.1364/ol.26.001045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Monro, T. M., V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson. "Broad-band second-harmonic generation in holey optical fibers." IEEE Photonics Technology Letters 13, no. 9 (September 2001): 981–83. http://dx.doi.org/10.1109/68.942667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Ning Guan, S. Habu, K. Takenaga, K. Himeno, and A. Wada. "Boundary element method for analysis of Holey optical fibers." Journal of Lightwave Technology 21, no. 8 (August 2003): 1787–92. http://dx.doi.org/10.1109/jlt.2003.815502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Traynor, N. J., A. Monteville, L. Provino, D. Landais, O. Le Goffic, T. N. Nguyen, T. Chartier, D. Tregoat, and J. C. Travers. "Fabrication and Applications of Low Loss Nonlinear Holey Fibers." Fiber and Integrated Optics 28, no. 1 (January 16, 2009): 51–59. http://dx.doi.org/10.1080/01468030802272526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Young-Geun Han, Young Jun Lee, Gil Hwan Kim, Hung Su Cho, Sang Bae Lee, Chang Hyun Jeong, Chi Hwan Oh, and Hee Jeon Kang. "Transmission characteristics of fiber Bragg gratings written in holey fibers corresponding to air-hole size and their application." IEEE Photonics Technology Letters 18, no. 16 (August 2006): 1783–85. http://dx.doi.org/10.1109/lpt.2006.880762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Li Shu-Guang, Ji Yu-Ling, Zhou Gui-Yao, Hou Lan-Tian, Wang Qing-Yue, Hu Ming-Lie, Li Yan-Feng, Wei Zhi-Yi, Zhang Jun, and Liu Xiao-Dong. "Supercontinuum generation in holey microstructure fibers by femtosecond laser pulses." Acta Physica Sinica 53, no. 2 (2004): 478. http://dx.doi.org/10.7498/aps.53.478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dupriez, P., F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne. "Efficient white light generation in secondary cores of holey fibers." Optics Express 15, no. 7 (2007): 3729. http://dx.doi.org/10.1364/oe.15.003729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Broderick, N. G. R., T. M. Monro, P. J. Bennett, and D. J. Richardson. "Nonlinearity in holey optical fibers:?measurement and future opportunities—errata." Optics Letters 24, no. 22 (November 15, 1999): 1647. http://dx.doi.org/10.1364/ol.24.001647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Town, G. E., and J. T. Lizier. "Tapered holey fibers for spot-size and numerical-aperture conversion." Optics Letters 26, no. 14 (July 15, 2001): 1042. http://dx.doi.org/10.1364/ol.26.001042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Avdokhin, A. V., S. V. Popov, and J. R. Taylor. "Continuous-wave, high-power, Raman continuum generation in holey fibers." Optics Letters 28, no. 15 (August 1, 2003): 1353. http://dx.doi.org/10.1364/ol.28.001353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Fujisawa, Takeshi, and Masanori Koshiba. "Finite element characterization of chromatic dispersion in nonlinear holey fibers." Optics Express 11, no. 13 (June 30, 2003): 1481. http://dx.doi.org/10.1364/oe.11.001481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Petropoulos, P., Heike Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. Richardson, and T. Monro. "Highly nonlinear and anomalously dispersive lead silicate glass holey fibers." Optics Express 11, no. 26 (December 29, 2003): 3568. http://dx.doi.org/10.1364/oe.11.003568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Brilland, Laurent, Fréderic Smektala, Gilles Renversez, Thierry Chartier, Johan Troles, Thanh Nguyen, Nicholas Traynor, and Achille Monteville. "Fabrication of complex structures of Holey Fibers in Chalcogenide glass." Optics Express 14, no. 3 (2006): 1280. http://dx.doi.org/10.1364/oe.14.001280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mohammed Salim, Omar Nameer. "New neuro-fuzzy system-based holey polymer fibers drawing process." AIP Advances 7, no. 10 (October 2017): 105301. http://dx.doi.org/10.1063/1.4998270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Saitoh, Kunimasa, Yukihiro Tsuchida, Masanori Koshiba, and Niels Asger Mortensen. "Endlessly single-mode holey fibers: the influence of core design." Optics Express 13, no. 26 (2005): 10833. http://dx.doi.org/10.1364/opex.13.010833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Poletti, Francesco, Angela Camerlingo, Periklis Petropoulos, and David J. Richardson. "Dispersion Management in Highly Nonlinear, Carbon Disulfide Filled Holey Fibers." IEEE Photonics Technology Letters 20, no. 17 (September 2008): 1449–51. http://dx.doi.org/10.1109/lpt.2008.928079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography