Academic literature on the topic 'Holey fibers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Holey fibers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Holey fibers"
Zheltikov, Aleksei M. "Holey fibers." Physics-Uspekhi 43, no. 11 (November 30, 2000): 1125–36. http://dx.doi.org/10.1070/pu2000v043n11abeh000839.
Full textZheltikov, Aleksei M. "Holey fibers." Uspekhi Fizicheskih Nauk 170, no. 11 (2000): 1203. http://dx.doi.org/10.3367/ufnr.0170.200011c.1203.
Full textFeng, Xian, Joanne C. Flanagan, Ken E. Frampton, Periklis Petropoulos, Nicholas M. White, Jonathan H. V. Price, Wei H. Loh, Harvey N. Rutt, and David J. Richardson. "Developing Single-Mode Tellurite Glass Holey Fiber for Infrared Nonlinear Applications." Advances in Science and Technology 55 (September 2008): 108–17. http://dx.doi.org/10.4028/www.scientific.net/ast.55.108.
Full textHendrickson, Scott M., Todd B. Pittman, and James D. Franson. "Microcavities Using Holey Fibers." Journal of Lightwave Technology 25, no. 10 (October 2007): 3068–71. http://dx.doi.org/10.1109/jlt.2007.905223.
Full textNakajima, Kazuhide, Kotaro Saito, Yusuke Yamada, Kenji Kurokawa, Tomoya Shimizu, Chisato Fukai, and Takashi Matsui. "Holey fibers for low bend loss." Nanophotonics 2, no. 5-6 (December 16, 2013): 341–53. http://dx.doi.org/10.1515/nanoph-2013-0030.
Full textXian Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro. "Nonsilica glasses for holey fibers." Journal of Lightwave Technology 23, no. 6 (June 2005): 2046–54. http://dx.doi.org/10.1109/jlt.2005.849945.
Full textKoshiba, Masanori, and Kunimasa Saitoh. "Applicability of classical optical fiber theories to holey fibers." Optics Letters 29, no. 15 (August 1, 2004): 1739. http://dx.doi.org/10.1364/ol.29.001739.
Full textBoucouvalas, Anthony, Christos Papageorgiou, Eurypides Georgantzos, and Theophanes Raptis. "Resonant Transmission Line Method for Unconventional Fibers." Applied Sciences 9, no. 2 (January 14, 2019): 270. http://dx.doi.org/10.3390/app9020270.
Full textShuguang Li, 李曙光, 张磊 Lei Zhang, 付博 Bo Fu, 郑义 Yi Zheng, 韩颖 Ying Han, and 赵兴涛 Xingtao Zhao. "Wave breaking in tapered holey fibers." Chinese Optics Letters 9, no. 3 (2011): 030601–30604. http://dx.doi.org/10.3788/col201109.030601.
Full textMonro, Tanya M., P. J. Bennett, N. G. R. Broderick, and D. J. Richardson. "Holey fibers with random cladding distributions." Optics Letters 25, no. 4 (February 15, 2000): 206. http://dx.doi.org/10.1364/ol.25.000206.
Full textDissertations / Theses on the topic "Holey fibers"
Kim, Jeong I. "Analysis and Applications of Microstructure and Holey Optical Fibers." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/29089.
Full textPh. D.
Issa, Nader. "Modes and propagation in microstructured optical fibres." University of Sydney. Physics and Optical Fibre Technology Centre, 2005. http://hdl.handle.net/2123/613.
Full textKuhlmey, Boris T. "Theoretical and Numerical Investigation of the Physics of Microstructured Optical Fibres." Thesis, The University of Sydney, 2003. http://hdl.handle.net/2123/560.
Full textKuhlmey, Boris T. "Theoretical and Numerical Investigation of the Physics of Microstructured Optical Fibres." University of Sydney and Universite Aix-Marseille III. School of Physics, 2003. http://hdl.handle.net/2123/560.
Full textKominsky, Daniel. "Development of Random Hole Optical Fiber and Crucible Technique Optical Fibers." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/28949.
Full textPh. D.
Chen, Yong. "Hole control in photonic crystal fibres." Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616649.
Full textBelardi, Walter. "Holey optical fibres for high nonlinearity devices." Thesis, University of Southampton, 2003. https://eprints.soton.ac.uk/42430/.
Full textAlfeeli, Bassam. "Ionizing Radiation Resistance of Random Hole Optical Fiber for Nuclear Instrumentation and Control Applications." Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/32661.
Full textMaster of Science
Baggett, Joanne Claire. "Bending losses in large mode area holey fibres." Thesis, University of Southampton, 2004. https://eprints.soton.ac.uk/65504/.
Full textYusoff, Zulfadzli. "Applications of highly nonlinear holey fibres in optical communications." Thesis, University of Southampton, 2004. https://eprints.soton.ac.uk/15465/.
Full textBooks on the topic "Holey fibers"
Moss, A. C. Fracture characteristics of carbon and aramis unidirectional composites in interlaminar shear and open hole tensile tests. Amsterdam: National Aerospace Laboratory, 1986.
Find full textHyer, M. W. Innovative design of composite structures: The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes. Blacksburg, VA: College of Engineering, Virginia Polytechnic Institute and State University, 1990.
Find full textHyer, M. W. Innovative design of composite structures: The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes. Blacksburg, VA: College of Engineering, Virginia Polytechnic Institute and State University, 1990.
Find full textHyer, M. W. Innovative design of composite structures: The use of curvilinear fiber format in composite structure design. Blacksburg, VA: College of Engineering, Virginia Polytechnic Institute and State University, 1990.
Find full textHyer, M. W. Innovative design of composite structures: Further studies in the use of a curvilinear fiber format to improve structural efficiency. Blacksburg, Va: College of Engineering, Virginia Polytechnic Institute and State University, 1988.
Find full textHyer, M. W. Innovative design of composite structures: Design, manufacturing, and testing of plates utilitzing [sic] curvilinear fiber trajectories : final report for NASA. Blacksburg, VA: College of Engineering, Virginia Polytechnic Institute and State University ; Hampton, VA, 1994.
Find full textHyer, M. W. Innovative design of composite structures: Axisymmetric deformations of unsymmetrically laminated cylinders loaded in axial compression : semiannual status report. Blacksburg, Va: College of Engineering, Virginia Polytechnic Institute and State University, 1990.
Find full textWillardson, Alan. Fibbers Journal: My Favorite Fishin' Holes. Independently Published, 2021.
Find full textUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Division., ed. Compression behavior of graphite-thermoplastic and graphite-epoxy panels with circular holes or impact damage. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1991.
Find full textNational Aeronautics and Space Administration (NASA) Staff. Innovative Design of Composite Structures: The Use of Curvilinear Fiber Format to Improve Buckling Resistance of Composite Plates with Central Circular Holes. Independently Published, 2018.
Find full textBook chapters on the topic "Holey fibers"
Leong, Julie Y. Y., Periklis Petropoulos, Heike Ebendorff-Heidepriem, Symeon Asimakis, Roger C. Moore, Ken Frampton, Vittoria Finazzi, et al. "Development of Highly Nonlinear Extruded Lead Silicate Holey Fibers with Novel Dispersive Properties." In Ceramic Transactions Series, 1–9. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118407974.ch1.
Full textPickrell, Gary R., Evgenya S. Smirnova, Stanton L. De Haven, and Robert S. Rogowski. "Hybrid Ordered Hole-Random Hole Optical Fibers." In Advances in Science and Technology, 2598–607. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-01-x.2598.
Full textSrinivasababu, Nadendla. "Tensile Behaviour of Centrally Holed Pineapple Fibre Reinforced Vinyl Ester Composites." In Pineapple Leaf Fibers, 235–47. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1416-6_11.
Full textPickrell, Gary R., and Navin J. Manjooran. "Incorporation of Biological Agents in Random Hole Optical Fibers." In Ceramic Transactions Series, 39–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118407974.ch5.
Full textFeng, Xian, Joanne C. Flanagan, Ken E. Frampton, Periklis Petropoulos, Nicholas M. White, Jonathan H. V. Price, Wei H. Loh, Harvey N. Rutt, and David J. Richardson. "Developing Single-Mode Tellurite Glass Holey Fiber for Infrared Nonlinear Applications." In Advances in Science and Technology, 108–17. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-12-5.108.
Full textWang, Ke, Brian Scott, Neal Pfeiffenberger, and Gary Pickrell. "Random-Hole Optical Fiber Sensors and Their Sensing Applications." In Ceramic Transactions Series, 129–34. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118511428.ch14.
Full textWoliński, T. R., W. J. Bock, R. Dabrowski, A. Jarmolik, J. Parka, and A. Zackiewicz. "Stress Effects in Highly Birefringent Optical Fibers with Liquid Crystalline Side Holes." In Laser in Forschung und Technik / Laser in Research and Engineering, 614–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80263-8_127.
Full textManjooran, Navin J., and Gary R. Pickrell. "Incorporation and Characterization of Carbon Nano Tubes in Random Hole Optical Fibers." In Ceramic Nanomaterials and Nanotechnologies IV, 87–94. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118408049.ch9.
Full textChen, Bin, Xiang He Peng, and Jing Hong Fan. "Round-Hole-Fiber Distribution in Hydrophilidae Cuticle and Biomimetic Research." In Advanced Biomaterials VI, 433–36. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-967-9.433.
Full textSeo, Hyejin, and Jaehee Park. "Plastic Optical Fiber Sensors Based on in-Line Micro-holes: A Review." In Intelligent Human Computer Interaction, 47–52. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68452-5_5.
Full textConference papers on the topic "Holey fibers"
Wojcik, Jan, Barbara Janoszczyk, Krzysztof Poturaj, Mariusz Makara, Pawel Mergo, and Aleksander Walewski. "Experimental holey fibers." In SPIE Proceedings, edited by Jan Dorosz and Ryszard S. Romaniuk. SPIE, 2003. http://dx.doi.org/10.1117/12.497589.
Full textMonro, T. M., P. J. Bennett, N. G. R. Broderick, and D. J. Richardson. "Holey fibers with randomly arranged air holes." In Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39. IEEE, 2000. http://dx.doi.org/10.1109/cleo.2000.907454.
Full textRichardson, D. J., J. H. Lee, Z. Yusoff, W. Belardi, K. Furusawa, J. H. V. Price, M. Kiang, et al. "Holey Fibers for Nonlinear Fiber Devices." In Optical Amplifiers and Their Applications. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/oaa.2002.omd1.
Full textKoh, Dongyean, Gil Hwan Kim, Hyung Su Cho, Sang Bae Lee, and Dongwook Park. "Numerical analysis of six-hole holey fibers." In Passive Components and Fiber-based Devices III. SPIE, 2006. http://dx.doi.org/10.1117/12.691471.
Full textMonro, Tanya M., Kentaro Furusawa, Ju-Han Lee, Jonathan H. V. Price, Zulfadzli Yusoff, Joanne C. Baggett, and David J. Richardson. "Advances in holey fibers." In High-Power Lasers and Applications, edited by L. N. Durvasula. SPIE, 2003. http://dx.doi.org/10.1117/12.484164.
Full textHendrickson, S. M., T. B. Pittman, and J. D. Franson. "Microcavities using holey fibers." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431624.
Full textMukasa, Kazunori, Ryo Miyabe, Katsunori Imamura, Keiichi Aiso, Ryuichi Sugizaki, and Takeshi Yagi. "Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications." In Optics East 2007, edited by Nibir K. Dhar, Achyut Kumar Dutta, and M. Saif Islam. SPIE, 2007. http://dx.doi.org/10.1117/12.732265.
Full textJin, Wei, Yi-Ping Wang, and Jian Ju. "Sensing with holey optical fibers." In Sixth International Symposium on Instrumentation and Control Technology: Signal Analysis, Measurement Theory, Photo-Electronic technology, and Artificial Intelligence, edited by Jiancheng Fang and Zhongyu Wang. SPIE, 2006. http://dx.doi.org/10.1117/12.717233.
Full textLi, Bingxin, Mingyang Chen, Fei Wang, Hui Zhang, Wenyan Xu, Rongjin Yu, and Shichen Li. "Highly birefringent plastic holey fibers." In Asia-Pacific Optical and Wireless Communications, edited by Steven Shen, Shuisheng Jian, Katsunari Okamoto, and Kenneth L. Walker. SPIE, 2004. http://dx.doi.org/10.1117/12.521896.
Full textMonro, Tanya M., D. J. Richardson, N. G. R. Broderick, and P. J. Bennett. "Dispersion in holey optical fibers." In Wavelength Division Multiplexing Components. Washington, D.C.: OSA, 1999. http://dx.doi.org/10.1364/wdm.1999.127.
Full textReports on the topic "Holey fibers"
Peyghambarian, Nasser, Robert A. Norwood, and Andre Persoons. In-Fiber Magneto-Optic Devices Based on Ultrahigh Verdet Constant Organic Materials and Holey Fibers. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada495425.
Full textChiu, Wilson K., Jason M. Maguire, and Marilyn J. Berliner. Phase Sensitivity of Conventional Single-Mode, PANDA, and Holey Optical Fibers: A Comparison Study. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada408460.
Full textKlingsporn, P. E. A precise technique for measurement of optical-fiber hole concentricity in the ferrule of an optical connector. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/435302.
Full text