Academic literature on the topic 'Hofmann reaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hofmann reaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hofmann reaction"
Rane, Dhananjay S., and Man M. Sharma. "New strategies for the Hofmann reaction." Journal of Chemical Technology AND Biotechnology 59, no. 3 (March 1994): 271–77. http://dx.doi.org/10.1002/jctb.280590310.
Full textMartínez, Claudio, and Kilian Muñiz. "An Iodine-Catalyzed Hofmann-Löffler Reaction." Angewandte Chemie International Edition 54, no. 28 (May 28, 2015): 8287–91. http://dx.doi.org/10.1002/anie.201501122.
Full textDebnath, Pradip. "Recent Advances in the Hofmann Rearrangement and Its Application to Natural Product Synthesis." Current Organic Chemistry 23, no. 22 (January 8, 2020): 2402–35. http://dx.doi.org/10.2174/1385272823666191021115508.
Full textGao, Wenjing, Yameng Wan, Zhiguo Zhang, Hao Wu, Tongxin Liu, and Guisheng Zhang. "The Hofmann reaction involving annulation of o-(pyridin-2-yl)aryl amides selectively and rapidly leads to potential photocatalytically active 6H-pyrido[1,2-c]quinazolin-6-one derivatives." Green Chemistry 22, no. 22 (2020): 7955–61. http://dx.doi.org/10.1039/d0gc02777d.
Full textRANE, D. S., and M. M. SHARMA. "ChemInform Abstract: New Strategies for the Hofmann Reaction." ChemInform 25, no. 41 (August 18, 2010): no. http://dx.doi.org/10.1002/chin.199441082.
Full textTroev, K., and D. Max Roundhill. "HOFMANN ELIMINATION REACTION WITH PHOSPHORUS CONTAINING ALKYLAMMONIUM SALTS." Phosphorous and Sulfur and the Related Elements 37, no. 3-4 (June 1988): 243–45. http://dx.doi.org/10.1080/03086648808079044.
Full textMartinez, Claudio, and Kilian Muniz. "ChemInform Abstract: An Iodine-Catalyzed Hofmann-Loeffler Reaction." ChemInform 46, no. 45 (October 22, 2015): no. http://dx.doi.org/10.1002/chin.201545130.
Full textSumi, Kenzo, Takao Ikariya, and Ryoji Noyori. "Efficient synthesis of optically active 2-amino-2'-diphenylphosphino-1,1'-binaphthyl and its derivatives." Canadian Journal of Chemistry 78, no. 6 (June 1, 2000): 697–703. http://dx.doi.org/10.1139/v99-248.
Full textXu, Qing, Huamei Xie, Er-Lei Zhang, Xiantao Ma, Jianhui Chen, Xiao-Chun Yu, and Huan Li. "Selective catalytic Hofmann N-alkylation of poor nucleophilic amines and amides with catalytic amounts of alkyl halides." Green Chemistry 18, no. 14 (2016): 3940–44. http://dx.doi.org/10.1039/c6gc00938g.
Full textRao, M. L. Bhaskara, and Santi R. Palit. "Preparation of a Polyampholyte from Polyacrylonitrile by the Hofmann Reaction." Journal of Polymer Science Part C: Polymer Symposia 22, no. 2 (March 13, 2007): 587–90. http://dx.doi.org/10.1002/polc.5070220204.
Full textDissertations / Theses on the topic "Hofmann reaction"
Del, Castillo Fernández Estefanía. "Applications of the Hofmann-Löffler reaction for C-H functionalization in Total Synthesis." Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/670691.
Full textEsta tesis doctoral representa algunos avances en el campo de la funcionalización de enlace C-H alifáticos. Es necesario el desarrollo de nuevos métodos para la funcionalización selectiva en moléculas orgánicas. Para llevar a cabo estas estrategias, los radicales de nitrógeno parecen perfectos candidatos para generar selectivamente enlaces de C-X en posiciones no activadas. Estos radicales de nitrógeno han sido usados como intermedios reactivos en química sintética en las últimas decadas, llevando a cabo la química de transferencia de átomos de hidrógeno, donde la conocida reacción de Hofmann-Löffler fue pionera. El primer Proyecto esta basado en el concepto de reacción de Hofmann interrumpida para la halogenación selectiva de moléculas orgánicas. Para ello, empleamos sulfonamidas y esteres de sulfamatos como grupos dirigentes de procesos de 1.5 y 1,6 de transferencia de átomos de hidrógeno para generar radicales centrados en carbono en posiciones γ or δ. Estos radicales son atrapados por átomos de halógenos dando acceso a compuestos orgánicos con múltiples halógenos en su estructura como estructuras cíclicas y acíclicas. En algunos casos, halogenacion vecinal o geminal fue observada. La segunda y tercera parte de la tesis esta relacionada con el uso de la reacción de Hofmann-Löffler para la formación del anillo de pirrolidina en alcaloides. La combinación de yodo hipervalente con cantidad catalítica de yodo pareció ser una buena estrategia para la aminación en la última etapa de la síntesis enantioselectiva de la nicotina. Por último, en la tercera parte de la Tesis demostramos que esta metodología podría aplicarse a moléculas más complejas pudiendo sintetizar la estructura del hasubanan de forma enantioselectiva donde la formación de pirrolidina se produce en los últimos pasos de la síntesis.
This doctoral Thesis summarizes advances in the field of C-H functionalization of aliphatic bonds. Methods for remote functionalization are necessary to expand the transformations available in the organic molecules. For this transformation, nitrogen-centered radicals are the perfect candidates to promote selective C-X bond formation over unactivated and distal C-H bonds. Nitrogen-centered radicals have been widely used as reactive intermediates in synthetic chemistry in the last decades, carrying out hydrogen atom transfer chemistry, where the well-known Hofmann-Löffler reaction was pioneering. The first research project is based on the concept of ‘interrupted Hofmann-Löffler’ reaction to the selective halogenation of organic molecules. For that, we employed sulfonamides or sulfamates esters as directing/protecting group of the transformation. These directing groups promote 1,5 or 1,6-hydrogen atom transfer generating the carbon-centered radical at γ or δ-positions. This radical is trapped by the addition of a halogen atom at this position. This protocol provided access to multiple halogenated organic compounds, such as cyclic and acyclic structures. In some cases, vicinal and geminal halogenation is observed. The second and the third part of my doctoral Thesis is related to the application of the Hofmann-Löffler reaction for the formation of the pyrrolidine ring into some alkaloids. The combination of hypervalent iodine(III) species with catalytic amount of molecular iodine seemed to be a robust tool for late-stage amination in the enantioselective synthesis of nicotine. In this regard, in the last part of the Thesis we demonstrated that this methodology could be applied to more complex molecules being able to synthesize the enantioselective hasubanan core where the pyrrolidine formation occurred in the last steps of the synthesis.
Hofmann, Monika [Verfasser], and Harald [Akademischer Betreuer] Kolmar. "Influence of the Maillard reaction on the allergenicity of food allergens / Monika Hofmann. Betreuer: Harald Kolmar." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2014. http://d-nb.info/1110979533/34.
Full textNicolas, Mathieu. "Synthèse de copolymères ioniques réactifs pour la fonctionnalisation de nanocellulose : application au développement de membranes échangeuses d’ions." Thesis, Lyon, 2021. https://tel.archives-ouvertes.fr/tel-03789605.
Full textIon exchange membranes (or electrolyte membranes) currently used in electrochemical storage devices (batteries and fuel cells) are generally the result of a polluting, complex and expensive synthesis. The most studied architecture is a perfluorosulfonated ionomer known as Nafion, which fulfills almost all the prerequisites of a high-performance ion membrane: high mechanical and thermochemical resistance, high ionic conduction and low swelling. Nanocellulose is a biosourced polymer material that can be used for the production of membranes, also called nanopapers with excellent mechanical strength. However, these materials must be chemically modified to fulfill the role of a polymer electrolyte membrane. The objective of this thesis is therefore to synthesize new electrolyte membranes from the surface grafting of reactive copolyélectrolytes to nanocelluloses. This “grafting onto” technique is based on the presence of reactive primary amine functions within the copolyélectrolyte. These may react by reductive amination with aldehyde functions located on the surface of nanocelluloses and previously introduced by a sodium periodate (NaIO4) oxidation step. In the first place, radical copolymerization was used to synthesize these reactive polyelectrolytes following two distinct approaches. The first approach consisted in modifying a poly(styrene sulfonate)-co-poly(acrylamide) precopolymer (PSS-PAA) by the Hofmann reaction to form a poly(styrene sulfonate)-co-poly(vinylamine) (PSS-PVAm) containing between 6 and 58% of amine functions. The second approach was based on the chemical modification of a poly(styrene sulfonate)-co-poly(chloromethyl styrene) copolymer (PSS-PCMS) by a diamine via nucleophilic substitution to obtain the amino derivative poly(styrene sulfonate)-co-poly(benzylamine) (PSS-PBA). In a second part, the grafting of commercial polyamines and synthetized copolyelectrolytes onto oxidized nanocelluloses by reductive amination was studied. In particular, it was shown that the amount of grafted commercial polyamine could be simply adjusted with the main experimental parameters, reaching an IEC of 4.5 meq/g. However, the grafting of the synthesized copolyelectrolytes was limited by issues of solubilization of cellulosic fragments. The study of the influence of the membrane composition on ionic conductivity and mechanical properties showed an increase in conductivity up to 1.1 mS/cm (3.1 meq/g), while the maximum tensile strength (4.0 MPa) was measured for an intermediate IEC value of 1.6 meq/g
Hofmann, Tobias Wolfgang [Verfasser], and Joachim [Akademischer Betreuer] Spatz. "Applying microdroplets as label-free sensors for reactions inside the droplets / Tobias Wolfgang Hofmann ; Betreuer: Joachim Spatz." Heidelberg : Universitätsbibliothek Heidelberg, 2013. http://d-nb.info/1177148498/34.
Full textHofmann, Tobias [Verfasser], and Joachim [Akademischer Betreuer] Spatz. "Applying microdroplets as label-free sensors for reactions inside the droplets / Tobias Wolfgang Hofmann ; Betreuer: Joachim Spatz." Heidelberg : Universitätsbibliothek Heidelberg, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-146445.
Full textSankaramangalam, Ulhas Sharath [Verfasser], Lambert [Akademischer Betreuer] Alff, Thomas [Akademischer Betreuer] Schröder, Wolfgang [Akademischer Betreuer] Donner, and Klaus [Akademischer Betreuer] Hofmann. "Defect Engineering in HfO2/TiN-based Resistive Random Access Memory (RRAM) Devices by Reactive Molecular Beam Epitaxy / Sharath Sankaramangalam Ulhas ; Lambert Alff, Thomas Schröder, Wolfgang Donner, Klaus Hofmann." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2018. http://d-nb.info/1156462061/34.
Full textHofmann, Jan Philipp [Verfasser]. "Structural dynamics of chlorinated ruthenium dioxide model catalysts under reaction conditions / von Jan Philipp Hofmann." 2009. http://d-nb.info/1001871391/34.
Full textBook chapters on the topic "Hofmann reaction"
Li, Jie Jack. "Hofmann rearrangement (Hofmann degradation reaction)." In Name Reactions, 168. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04835-1_134.
Full textLi, Jie Jack. "Hofmann rearrangement (Hofmann degradation reaction)." In Name Reactions, 192. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05336-2_144.
Full textLi, Jie Jack. "Hofmann—Martius reaction." In Name Reactions, 170–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04835-1_136.
Full textLi, Jie Jack. "Hofmann-Martius reaction." In Name Reactions, 194–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05336-2_146.
Full textLi, Jie Jack. "Hofmann—Löffler—Freytag reaction." In Name Reactions, 169. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04835-1_135.
Full textLi, Jie Jack. "Hofmann–Löffler–Freytag reaction." In Name Reactions, 292–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01053-8_128.
Full textLi, Jie Jack. "Hofmann–Löffler–Freytag reaction." In Name Reactions, 321–22. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03979-4_137.
Full textLi, Jie Jack. "Hofmann-Löffler-Freytag reaction." In Name Reactions, 193. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05336-2_145.
Full textLi, Jie Jack. "Hofmann–Löffler–Freytag Reaction." In Name Reactions, 259–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-50865-4_69.
Full textLi, Jie Jack. "Hofmann rearrangement." In Name Reactions, 290–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01053-8_127.
Full text