Academic literature on the topic 'Hodge decomposition'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hodge decomposition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hodge decomposition"

1

Kozłowski, Wojciech. "Hodge type decomposition." Annales Polonici Mathematici 90, no. 2 (2007): 99–104. http://dx.doi.org/10.4064/ap90-2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Katzarkov, L., T. Pantev, and B. Toën. "Schematic homotopy types and non-abelian Hodge theory." Compositio Mathematica 144, no. 3 (May 2008): 582–632. http://dx.doi.org/10.1112/s0010437x07003351.

Full text
Abstract:
AbstractWe use Hodge theoretic methods to study homotopy types of complex projective manifolds with arbitrary fundamental groups. The main tool we use is the schematization functor$X \mapsto (X\otimes \mathbb {C})^{\mathrm {sch}}$, introduced by the third author as a substitute for the rationalization functor in homotopy theory in the case of non-simply connected spaces. Our main result is the construction of a Hodge decomposition on $(X\otimes \mathbb {C})^{\mathrm {sch}}$. This Hodge decomposition is encoded in an action of the discrete group $\mathbb {C}^{\times \delta }$ on the object $(X\otimes \mathbb {C})^{\mathrm {sch}}$ and is shown to recover the usual Hodge decomposition on cohomology, the Hodge filtration on the pro-algebraic fundamental group, and, in the simply connected case, the Hodge decomposition on the complexified homotopy groups. We show that our Hodge decomposition satisfies a purity property with respect to a weight filtration, generalizing the fact that the higher homotopy groups of a simply connected projective manifold have natural mixed Hodge structures. As applications we construct new examples of homotopy types which are not realizable as complex projective manifolds and we prove a formality theorem for the schematization of a complex projective manifold.
APA, Harvard, Vancouver, ISO, and other styles
3

Petronetto, F., A. Paiva, M. Lage, G. Tavares, H. Lopes, and T. Lewiner. "Meshless Helmholtz-Hodge Decomposition." IEEE Transactions on Visualization and Computer Graphics 16, no. 2 (March 2010): 338–49. http://dx.doi.org/10.1109/tvcg.2009.61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Frediani, Paola, Alessandro Ghigi, and Gian Pietro Pirola. "FUJITA DECOMPOSITION AND HODGE LOCI." Journal of the Institute of Mathematics of Jussieu 19, no. 4 (November 12, 2018): 1389–408. http://dx.doi.org/10.1017/s1474748018000452.

Full text
Abstract:
This paper contains two results on Hodge loci in $\mathsf{M}_{g}$. The first concerns fibrations over curves with a non-trivial flat part in the Fujita decomposition. If local Torelli theorem holds for the fibers and the fibration is non-trivial, an appropriate exterior power of the cohomology of the fiber admits a Hodge substructure. In the case of curves it follows that the moduli image of the fiber is contained in a proper Hodge locus. The second result deals with divisors in $\mathsf{M}_{g}$. It is proved that the image under the period map of a divisor in $\mathsf{M}_{g}$ is not contained in a proper totally geodesic subvariety of $\mathsf{A}_{g}$. It follows that a Hodge locus in $\mathsf{M}_{g}$ has codimension at least 2.
APA, Harvard, Vancouver, ISO, and other styles
5

Sanders, Jan A., and Jing Ping Wang. "Hodge decomposition and conservation laws." Mathematics and Computers in Simulation 44, no. 5 (December 1997): 483–93. http://dx.doi.org/10.1016/s0378-4754(97)00077-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Libgober, Anatoly. "Hodge decomposition of Alexander invariants." manuscripta mathematica 107, no. 2 (February 1, 2002): 251–69. http://dx.doi.org/10.1007/s002290100243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chukanov, S. N. "Signal processing of simplicial complexes." Journal of Physics: Conference Series 2182, no. 1 (March 1, 2022): 012017. http://dx.doi.org/10.1088/1742-6596/2182/1/012017.

Full text
Abstract:
Abstract The paper considered the signal processing of simplicial complexes. Hodge decomposition formula for discrete fields is given, which is similar to the Hodge decomposition formula for smooth vector fields. The construction and the estimation of the gradient, divergence and curl operators and Laplace matrices for discrete vector fields are considered.
APA, Harvard, Vancouver, ISO, and other styles
8

Troyanov, M. "On the Hodge Decomposition in Rn." Moscow Mathematical Journal 9, no. 4 (2009): 899–926. http://dx.doi.org/10.17323/1609-4514-2009-9-4-899-926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhatia, H., G. Norgard, V. Pascucci, and Peer-Timo Bremer. "The Helmholtz-Hodge Decomposition—A Survey." IEEE Transactions on Visualization and Computer Graphics 19, no. 8 (August 2013): 1386–404. http://dx.doi.org/10.1109/tvcg.2012.316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Henkin, Gennadi M., and Peter L. Polyakov. "Explicit Hodge decomposition on Riemann surfaces." Mathematische Zeitschrift 289, no. 1-2 (October 28, 2017): 711–28. http://dx.doi.org/10.1007/s00209-017-1972-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hodge decomposition"

1

Eriksson, Olle. "Hodge Decomposition for Manifolds with Boundary and Vector Calculus." Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-328318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

CARMO, FABIANO PETRONETTO DO. "POISSON EQUATION AND THE HELMHOLTZ-HODGE DECOMPOSITION WITH SPH OPERATORS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=12140@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
A equação diferencial parcial de Poisson é de fundamental importância em várias áreas de pesquisa, dentre elas: matemática, física e engenharia. Para resolvê-la numericamente utilizam-se vários métodos, tais como os já tradicionais métodos das diferenças finitas e dos elementos finitos. Este trabalho propõe um método para resolver a equação de Poisson, utilizando uma abordagem de sistema de partículas conhecido como SPH, do inglês Smoothed Particles Hydrodynamics. O método proposto para a solução da equação de Poisson e os operadores diferenciais discretos definidos no método SPH, chamados de operadores SPH, são utilizados neste trabalho em duas aplicações: na decomposição de campos vetoriais; e na simulação numérica de escoamentos de fluidos monofásicos e bifásicos utilizando a equação de Navier-Stokes.
Poisson`s equation is of fundamental importance in many research areas in engineering and the mathematical and physical sciences. Its numerical solution uses several approaches among them finite differences and finite elements. In this work we propose a method to solve Poisson`s equation using the particle method known as SPH (Smoothed Particle Hydrodynamics). The proposed method together with an accurate analysis of the discrete differential operators defined by SPH are applied in two related situations: the Hodge-Helmholtz vector field decomposition and the numerical simulation of the Navier-Stokes equations.
APA, Harvard, Vancouver, ISO, and other styles
3

RIBEIRO, PAULA CECCON. "UNCERTAINTY ANALYSIS OF 2D VECTOR FIELDS THROUGH THE HELMHOLTZ-HODGE DECOMPOSITION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=29431@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE EXCELENCIA ACADEMICA
PROGRAMA DE DOUTORADO SANDUÍCHE NO EXTERIOR
Campos vetoriais representam um papel principal em diversas aplicações científicas. Eles são comumente gerados via simulações computacionais. Essas simulações podem ser um processo custoso, dado que em muitas vezes elas requerem alto tempo computacional. Quando pesquisadores desejam quantificar a incerteza relacionada a esse tipo de aplicação, costuma-se gerar um conjunto de realizações de campos vetoriais, o que torna o processo ainda mais custoso. A Decomposição de Helmholtz-Hodge é uma ferramenta útil para a interpretação de campos vetoriais uma vez que ela distingue componentes conservativos (livre de rotação) de componentes que preservam massa (livre de divergente). No presente trabalho, vamos explorar a aplicabilidade de tal técnica na análise de incerteza de campos vetoriais 2D. Primeiramente, apresentaremos uma abordagem utilizando a Decomposição de Helmholtz-Hodge como uma ferramenta básica na análise de conjuntos de campos vetoriais. Dado um conjunto de campos vetoriais epsilon, obtemos os conjuntos formados pelos componentes livre de rotação, livre de divergente e harmônico, aplicando a Decomposição Natural de Helmholtz- Hodge em cada campo vetorial em epsilon. Com esses conjuntos em mãos, nossa proposta não somente quantifica, por meio de análise estatística, como cada componente é pontualmente correlacionado ao conjunto de campos vetoriais original, como também permite a investigação independente da incerteza relacionado aos campos livre de rotação, livre de divergente e harmônico. Em sequência, propomos duas técnicas que em conjunto com a Decomposição de Helmholtz-Hodge geram, de forma estocástica, campos vetoriais a partir de uma única realização. Por fim, propomos também um método para sintetizar campos vetoriais a partir de um conjunto, utilizando técnicas de Redução de Dimensionalidade e Projeção Inversa. Testamos os métodos propostos tanto em campos sintéticos quanto em campos numericamente simulados.
Vector field plays an essential role in a large range of scientific applications. They are commonly generated through computer simulations. Such simulations may be a costly process because they usually require high computational time. When researchers want to quantify the uncertainty in such kind of applications, usually an ensemble of vector fields realizations are generated, making the process much more expensive. The Helmholtz-Hodge Decomposition is a very useful instrument for vector field interpretation because it traditionally distinguishes conservative (rotational-free) components from mass-preserving (divergence-free) components. In this work, we are going to explore the applicability of such technique on the uncertainty analysis of 2-dimensional vector fields. First, we will present an approach of the use of the Helmholtz-Hodge Decomposition as a basic tool for the analysis of a vector field ensemble. Given a vector field ensemble epsilon, we firstly obtain the corresponding rotational-free, divergence-free and harmonic component ensembles by applying the Natural Helmholtz-Hodge Decomposition to each1 vector field in epsilon. With these ensembles in hand, our proposal not only quantifies, via a statistical analysis, how much each component ensemble is point-wisely correlated to the original vector field ensemble, but it also allows to investigate the uncertainty of rotational-free, divergence-free and harmonic components separately. Then, we propose two techniques that jointly with the Helmholtz-Hodge Decomposition stochastically generate vector fields from a single realization. Finally, we propose a method to synthesize vector fields from an ensemble, using both the Dimension Reduction and Inverse Projection techniques. We test the proposed methods with synthetic vector fields as well as with simulated vector fields.
APA, Harvard, Vancouver, ISO, and other styles
4

Strang, Alexander. "Applications of the Helmholtz-Hodge Decomposition to Networks and Random Processes." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1595596768356487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ribeiro, Carlos Augusto David. "Teorema de Hodge e aplicaÃÃes." Universidade Federal do CearÃ, 2008. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=4360.

Full text
Abstract:
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
O presente trabalho aborda um teorema classico de decomposiÃÃo do espaÃo das p-formas suaves sobre uma variedade Riemaniana compacta e orientada, conhecido como teorema da decomposiÃÃo de Hodge, assim como suas consequÃncias. No decorrer do mesmo, foi feita uma passagem por diversas ferramentas interessantes, como espaÃos Sobolev (capÃtulo 2) e EDP elÃptica (capÃtulo 3), assim como uma abordagem suscinta de formas diferenciÃveis.
This dissertation presents a classical theorem of decomposition of the space of smooths p-forms on compact oriented Riemannian manifold , known as the theorem of Hodge decomposition, and its consequences. During the same was made a passage for several interesting tools, such as Sobolev spaces(Chapter 2) and elliptical PDE (Chapter 3), as well as a succinct approach about diferenciable forms (Chapter 1).
APA, Harvard, Vancouver, ISO, and other styles
6

Lemoine, Antoine. "Décomposition de Hodge-Helmholtz discrète." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0227/document.

Full text
Abstract:
Nous proposons dans ce mémoire de thèse une méthodologie permettant la résolution du problème de la décomposition de Hodge-Helmholtz discrète sur maillages polyédriques. Le défi de ce travail consiste à respecter les propriétés de la décomposition au niveau discret. Pour répondre à cet objectif, nous menons une étude bibliographique nous permettant d'identifier la nécessité de la mise en oeuvre de schémas numériques mimétiques. La description ainsi que la validation de la mise en oeuvre de ces schémas sont présentées dans ce mémoire. Nous revisitons et améliorons les méthodes de décomposition que nous étudions ensuite au travers d'expériences numériques. En particulier, nous détaillons le choix d'un solveur linéaire ainsi que la convergence des quantités extraites sur un ensemble varié de maillages polyédriques et de conditions aux limites. Nous appliquons finalement la décomposition de Hodge-Helmholtz à l'étude de deux écoulements turbulents : un écoulement en canal plan et un écoulement turbulent homogène isotrope
We propose in this thesis a methodology to compute the Helmholtz-Hodge decomposition on discrete polyhedral meshes. The challenge of this work isto preserve the properties of the decomposition at the discrete level. In our literature survey, we have identified the need of mimetic schemes to achieve our goal. The description and validation of our implementation of these schemes are presented inthis document. We revisit and improve the methods of decomposition we then study through numerical experiments. In particular, we detail our choice of linear solvers and the convergence of extracted quantities on various series of polyhedral meshes and boundary conditions. Finally, we apply the Helmholtz-Hodge decomposition to the study of two turbulent flows: a turbulent channel flow and a homogeneous isotropic turbulent flow
APA, Harvard, Vancouver, ISO, and other styles
7

Schüler, Axel. "Äußere Algebren, de-Rham-Kohomologie und Hodge-Zerlegung für Quantengruppen." Doctoral thesis, Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-218057.

Full text
Abstract:
In dieser Arbeit wird die de-Rham-Kohomologie für die Quantengruppen zu den vier klassischen Serien von Lie-Gruppen bestimmt und es wird der Hodgeschen Zerlegungssatz gezeigt. Als entscheidendes Mittel wurde der Laplace-Beltrami-Operator L für Woronowicz’ äußere Algebren entwickelt. Für transzendente Werte von q und reguläre Kalkülparameter z ist L diagonalisierbar. Für die obigen Quantengruppen bestimmen wir die Eigenwerte von L, die neben q und z von zwei integralen dominanten Gewichten abhängen. Wie im klassischen Fall wird die de-Rham-Kohomologie durch harmonische Formen repräsentiert. Jedoch entspricht nur im Fall der A-Serie jeder harmonischen Form auch eine de-Rham-Kohomologieklasse. Im Falle der B-, C- und D-Serien sind biinvariante Formen nicht notwendig geschlossen. Es gilt aber, dass jede biinvariante Form harmonisch ist. Das zweite Hauptresultat ist die Hodge-Zerlegung für die Quantengruppen GLq(N) und SLq(N): Ist der Kalkülparameter z regulär, so lässt sich jede Form eindeutig zerlegen in die Summe aus einem Rand, einem Korand und einem Kohomologierepräsentanten. Ferner gilt, analog zum klassischen Fall, dass die folgenden drei Formenräume übereinstimmen: die biinvarianten Formen, die harmonischen Formen und die de-Rham-Kohomologie. Für die orthogonalen und symplektischen Quantengruppen gibt es keine vollständige Hodge-Zerlegung. Nur für die Elemente, die im Bild des Laplace-Beltrami-Operators liegen, gibt es eine eindeutige Zerlegung in Rand und Korand. Für die Standardkalküle auf den Quantengruppen GLq(N) und SLq(N) wird die Größe von Woronowicz’ äußerer Algebra bestimmt. Es wird gezeigt, dass der Raum der linksinvarianten k-Formen (N² über k)-dimensional ist. Die Algebra der biinvarianten Formen ist graduiert kommutativ. Ihre Poincaré-Reihe ist (1+t)(1+t³) ... (1+t^(2N-1)). Biinvariante Formen sind geschlossen
Consider one of the standard bicovariant first order differential calculi for the quantum groups GLq(N), SLq(N), SOq(N), or SPq(N), where q is a transcendental complex number. It is shown that the de Rham cohomology of Woronowicz' external algebra coincides with the de Rham cohomologies of its left-invariant, its right-invariant and its bi-invariant subcomplexes. In the cases GLq(N) and SLq(N), the cohomology ring is isomorphic to the left-invariant external algebra and to the vector space of harmonic forms. We prove a Hodge decomposition theorem in these cases. The main technical tool is the spectral decomposition of the quantum Laplace-Beltrami operator. As in the classical case all three spaces of differential forms coincide: bi- invariant forms, harmonic forms and the de-Rham-cohomology. For orthog- onal and symplectic quantum groups there is no complete Hodge decompo- sition. In case of the standard calculi on the quantum groups GLq(N) and SLq(N), the size of exterior algebra is computed. The space of left-invariant k-forms has dimension C(N², k) (binomial coefficient). The algebra of bi-invariant forms is graded commutative with Poincaré series (1+t)(1+t³) ... (1+t^(2N-1)). Bi-invariant forms are closed
APA, Harvard, Vancouver, ISO, and other styles
8

Arnold, Rachel Florence. "Complex Analysis on Planar Cell Complexes." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/32230.

Full text
Abstract:
This paper is an examination of the theory of discrete complex analysis that arises from the framework of a planar cell complex. Construction of this theory is largely integration-based. A combination of two cell complexes, the double and its associated diamond complex, allows for the development of a discrete Cauchy Integral Formula.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
9

Seyfert, Anton [Verfasser], Matthias [Akademischer Betreuer] Hieber, and Hideo [Akademischer Betreuer] Kozono. "The Helmholtz-Hodge Decomposition in Lebesgue Spaces on Exterior Domains and Evolution Equations on the Whole Real Time Axis / Anton Seyfert ; Matthias Hieber, Hideo Kozono." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2018. http://d-nb.info/1166315320/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suda, Tomoharu. "On some methods for the analysis of continuous dynamical systems." Kyoto University, 2020. http://hdl.handle.net/2433/253357.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(人間・環境学)
甲第22521号
人博第924号
新制||人||221(附属図書館)
2019||人博||924(吉田南総合図書館)
京都大学大学院人間・環境学研究科共生人間学専攻
(主査)准教授 木坂 正史, 教授 角 大輝, 教授 足立 匡義
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hodge decomposition"

1

Ogus, Arthur. F-crystals, Griffiths transversality and the Hodge decomposition. Paris: Société Mathématique de France, publié avec le concours du Centre National de la Recherche Scientifique, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ogus, Arthur. F-crystals, Griffiths transversality, and the Hodge decomposition. Paris: Sociéte mathématique de France, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ogus, Arthur. F-crystals, Griffiths transversality, and the Hodge decomposition. Paris: Sociéte mathétique de France, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ogus, Arthur. F-crystals, Griffiths transversality, and the Hodge decomposition. Paris: Sociéte mathétique de France, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schwarz, Günter. Hodge decomposition: A method for solving boundary value problems. Berlin: Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schwarz, Günter. Hodge Decomposition—A Method for Solving Boundary Value Problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0095978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hodge decomposition: A method for solving boundary value problems. Berlin: Springer, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schwarz, Günter. Hodge Decomposition - a Method for Solving Boundary Value Problems. Springer London, Limited, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zein, Fouad El, and Lˆe D˜ung Tr ´ang. Mixed Hodge Structures. Edited by Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths, and Lê Dũng Tráng. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161341.003.0003.

Full text
Abstract:
This chapter discusses mixed Hodge structures (MHS). It first defines the abstract category of Hodge structures and introduces spectral sequences. The decomposition on the cohomology of Kähler manifolds is used to prove the degeneration at rank 1 of the spectral sequence defined by the filtration F on the de Rham complex in the projective nonsingular case. The chapter then introduces an abstract definition of MHS as an object of interest in linear algebra. It then attempts to develop algebraic homology techniques on filtered complexes up to filtered quasi-isomorphisms of complexes. Finally, this chapter provides the construction of the MHS on any algebraic variety.
APA, Harvard, Vancouver, ISO, and other styles
10

Cataldo, Mark Andrea de, Luca Migliorini Lectures 4–5, and Mark Andrea de Cataldo. The Hodge Theory of Maps. Edited by Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths, and Lê Dũng Tráng. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161341.003.0006.

Full text
Abstract:
This chapter showcases two further lectures on the Hodge theory of maps, and they are mostly composed of exercises. The first lecture details a minimalist approach to sheaf cohomology, and then turns to the intersection cohomology complex, which is limited to the definition and calculation of the intersection complex Isubscript X of a variety of dimension d with one isolated singularity. Finally, this lecture discusses the Verdier duality. The second lecture sets out the Decomposition theorem, which is the deepest known fact concerning the homology of algebraic varieties. It then considers the relative hard Lefschetz and the hard Lefschetz for intersection cohomology groups.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hodge decomposition"

1

Schwarz, Günter. "The hodge decomposition." In Lecture Notes in Mathematics, 59–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0095981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Csató, Gyula, Bernard Dacorogna, and Olivier Kneuss. "The Hodge–Morrey Decomposition." In The Pullback Equation for Differential Forms, 121–33. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8313-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Xianfeng Gu, David, and Emil Saucan. "Exterior Calculus and Hodge Decomposition." In Classical and Discrete Differential Geometry, 393–420. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003350576-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fujiwara, Yoshi, and Rubaiyat Islam. "Hodge Decomposition of Bitcoin Money Flow." In Advanced Studies of Financial Technologies and Cryptocurrency Markets, 117–37. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4498-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kan, Unchitta, and Eduardo López. "Layered Hodge Decomposition for Urban Transit Networks." In Complex Networks & Their Applications X, 804–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93413-2_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rohde, Jan Christian. "The Galois Group Decomposition of the Hodge Structure." In Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication, 79–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00639-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kasuya, Hisashi. "Examples of Non-Kähler Solvmanifolds Admitting Hodge Decomposition." In Springer Proceedings in Mathematics & Statistics, 229–44. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55215-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Antonelli, P. L., and T. J. Zastawniak. "Diffusion, Laplacian and Hodge Decomposition on Finsler Spaces." In The Theory of Finslerian Laplacians and Applications, 141–49. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5282-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Varma, Sandeep. "On Linear Hodge Newton Decomposition for Reductive Monoids." In Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics, 97–118. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0938-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Polthier, Konrad, and Eike Preuß. "Identifying Vector Field Singularities Using a Discrete Hodge Decomposition." In Mathematics and Visualization, 113–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05105-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hodge decomposition"

1

Kaltenbacher, Manfred, and Stefan Schoder. "Computational Aeroacoustics Based on a Helmholtz-Hodge Decomposition." In 10th International Styrian Noise, Vibration & Harshness Congress: The European Automotive Noise Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-01-1493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fujiki, Yuuya, and Taichi Haruna. "Hodge Decomposition of Information Flow on Complex Networks." In 8th International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS). ACM, 2015. http://dx.doi.org/10.4108/icst.bict.2014.257876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

SALMELA, ANTTI. "GENERALISED HODGE DECOMPOSITION FOR THE SU(3) GAUSS LAW." In Proceedings of the 5th International Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704269_0049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yin, Xiaotian, Chien-Chun Ni, Jiaxin Ding, Wei Han, Dengpan Zhou, Jie Gao, and Xianfeng David Gu. "Decentralized human trajectories tracking using hodge decomposition in sensor networks." In SIGSPATIAL'15: 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2820783.2820844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kingston, Peter, and Magnus Egerstedt. "Distributed-infrastructure multi-robot routing using a Helmholtz-Hodge decomposition." In 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011). IEEE, 2011. http://dx.doi.org/10.1109/cdc.2011.6160632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gao, Hengzhen, Mrinal K. Mandal, Gencheng Guo, and Jianwei Wan. "Singular point detection using Discrete Hodge Helmholtz Decomposition in fingerprint images." In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2010. http://dx.doi.org/10.1109/icassp.2010.5495348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Henry, Morgane, Emmanuel Maitre, and Valerie Perrier. "Optimal transport using Helmholtz-Hodge decomposition and first-order primal-dual algorithms." In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7351708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Huan Wang and Junhui Deng. "Feature extraction of complex ocean flow field using the helmholtz-hodge decomposition." In 2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). IEEE, 2014. http://dx.doi.org/10.1109/icmew.2014.6890546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sims, John, Marco Gutierrez, and Maysa M. G. Macedo. "Directional Analysis of Cardiac Motion Field based on the Discrete Helmholtz Hodge Decomposition." In 2016 Computing in Cardiology Conference. Computing in Cardiology, 2016. http://dx.doi.org/10.22489/cinc.2016.141-312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sims, John, Anderson Santiago, João Salinet, and Marco Gutierrez. "Directional Analysis of 2D Cardiac Motion Slices Using the Discrete Helmholtz Hodge Decomposition." In 2019 Computing in Cardiology Conference. Computing in Cardiology, 2019. http://dx.doi.org/10.22489/cinc.2019.108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography