Academic literature on the topic 'Hodge classe'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hodge classe.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hodge classe"
Fargues, Laurent. "G-torseurs en théorie de Hodge p-adique." Compositio Mathematica 156, no. 10 (October 2020): 2076–110. http://dx.doi.org/10.1112/s0010437x20007423.
Full textSantiago, Gabrielli Stefaninni, Laura Ribeiro, Irene Da Silva Coelho, Miliane Moreira Soares de Souza, and Shana De Mattos de Oliveira Coelho. "TESTE DE HODGE MODIFICADO EM ÁGAR CLED PARA TRIAGEM DE Proteus mirabilis PRODUTORES DE CARBAPENEMASE." Revista Univap 24, no. 46 (December 17, 2018): 1. http://dx.doi.org/10.18066/revistaunivap.v24i46.397.
Full textVoisin, Claire. "Hodge loci and absolute Hodge classes." Compositio Mathematica 143, no. 04 (July 2007): 945–58. http://dx.doi.org/10.1112/s0010437x07002837.
Full textMongardi, Giovanni, and John Christian Ottem. "Curve classes on irreducible holomorphic symplectic varieties." Communications in Contemporary Mathematics 22, no. 07 (November 15, 2019): 1950078. http://dx.doi.org/10.1142/s0219199719500780.
Full textvan Geemen, B., and A. Verra. "Quaternionic pryms and Hodge classes." Topology 42, no. 1 (January 2003): 35–53. http://dx.doi.org/10.1016/s0040-9383(02)00004-6.
Full textKoike, Kenji. "Algebraicity of some Weil Hodge Classes." Canadian Mathematical Bulletin 47, no. 4 (December 1, 2004): 566–72. http://dx.doi.org/10.4153/cmb-2004-055-x.
Full textCattani, Eduardo, Pierre Deligne, and Aroldo Kaplan. "On the locus of Hodge classes." Journal of the American Mathematical Society 8, no. 2 (May 1, 1995): 483. http://dx.doi.org/10.1090/s0894-0347-1995-1273413-2.
Full textMéo, Michel. "Chow forms and Hodge cohomology classes." Comptes Rendus Mathematique 352, no. 4 (April 2014): 339–43. http://dx.doi.org/10.1016/j.crma.2014.01.012.
Full textJ. Moonen, B. J., and Yu G. Zarhin. "Hodge classes and Tate classes on simple abelian fourfolds." Duke Mathematical Journal 77, no. 3 (March 1995): 553–81. http://dx.doi.org/10.1215/s0012-7094-95-07717-5.
Full textScavia, Federico. "Motivic classes and the integral Hodge Question." Comptes Rendus. Mathématique 359, no. 3 (April 20, 2021): 305–11. http://dx.doi.org/10.5802/crmath.178.
Full textDissertations / Theses on the topic "Hodge classe"
Blottière, David. "Réalisation de Hodge du polylogarithme d'un schéma abélien et dégénérescence des classes d'Eisenstein des familles modulaires de Hilbert-Blumenthal." Phd thesis, Université Paris-Nord - Paris XIII, 2006. http://tel.archives-ouvertes.fr/tel-00132405.
Full textNOVARIO, SIMONE. "LINEAR SYSTEMS ON IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/886303.
Full textIn this thesis we study some complete linear systems associated to divisors of Hilbert schemes of 2 points on complex projective K3 surfaces with Picard group of rank 1, together with the rational maps induced. We call these varieties Hilbert squares of generic K3 surfaces, and they are examples of irreducible holomorphic symplectic (IHS) manifold. In the first part of the thesis, using lattice theory, Nakajima operators and the model of Lehn–Sorger, we give a basis for the subvector space of the singular cohomology ring with rational coefficients generated by rational Hodge classes of type (2, 2) on the Hilbert square of any projective K3 surface. We then exploit a theorem by Qin and Wang together with a result by Ellingsrud, Göttsche and Lehn to obtain a basis of the lattice of integral Hodge classes of type (2, 2) on the Hilbert square of any projective K3 surface. In the second part of the thesis we study the following problem: if X is the Hilbert square of a generic K3 surface admitting an ample divisor D with q(D)=2, where q is the Beauville–Bogomolov–Fujiki form, describe geometrically the rational map induced by the complete linear system |D|. The main result of the thesis shows that such an X, except on the case of the Hilbert square of a generic quartic surface of P^3, is a double EPW sextic, i.e., the double cover of an EPW sextic, a normal hypersurface of P^5, ramified over its singular locus. Moreover, the rational map induced by |D| is a morphism and coincides exactly with this double covering. The main tools to obtain this result are the description of integral Hodge classes of type (2, 2) of the first part of the thesis and the existence of an anti-symplectic involution on such varieties due to a theorem by Boissière, Cattaneo, Nieper-Wißkirchen and Sarti.
Dans cette thèse, nous étudions certains systèmes linéaires complets associés aux diviseurs des schémas de Hilbert de 2 points sur des surfaces K3 projectives complexes avec groupe de Picard de rang 1, et les fonctions rationnelles induites. Ces variétés sont appelées carrés de Hilbert sur des surfaces K3 génériques, et sont un exemple de variété symplectique holomorphe irréductible (variété IHS). Dans la première partie de la thèse, en utilisant la théorie des réseaux, les opérateurs de Nakajima et le modèle de Lehn–Sorger, nous donnons une base pour le sous-espace vectoriel de l’anneau de cohomologie singulière à coefficients rationnels engendré par les classes de Hodge rationnels de type (2, 2) sur le carré de Hilbert de toute surface K3 projective. Nous exploitons ensuite un théorème de Qin et Wang ainsi qu’un résultat de Ellingsrud, Göttsche et Lehn pour obtenir une base du réseau des classes de Hodge intégraux de type (2, 2) sur le carré de Hilbert d’une surface K3 projective quelconque. Dans la deuxième partie de la thèse, nous étudions le problème suivant : si X est le carré de Hilbert d’une surface K3 générique tel que X admet un diviseur ample D avec q(D) = 2, où q est la forme quadratique de Beauville–Bogomolov–Fujiki, on veut décrire géométriquement la fonction rationnelle induite par le système linéaire complet |D|. Le résultat principal de la thèse montre qu’une telle X, sauf dans le cas du carré de Hilbert d’une surface quartique générique de P^3, est une double sextique EPW, c’est-à-dire le revêtement double d’une sextique EPW, une hypersurface normale de P^5, ramifié sur son lieu singulier. En plus la fonction rationnelle induite par |D| est exactement ce revêtement double. Les outils principaux pour obtenir ce résultat sont la description des classes de Hodge intégraux de type (2, 2) de la première partie de la thèse et l’existence d’une involution anti-symplectique sur de telles variétés par un théorème de Boissière, Cattaneo, Nieper-Wißkirchen et Sarti.
Gheorghita, Iulia. "Effective classes in the projectivized k-th Hodge bundle:." Thesis, Boston College, 2021. http://hdl.handle.net/2345/bc-ir:109066.
Full textWe study the classes of several loci in the projectivization of the k-th Hodge bundle over the moduli space of genus g curves and over the moduli space of genus g curves with n marked points. In particular we consider the class of the closure in the projectivization of the k-th Hodge bundle over the moduli space of genus g curves with n marked points of the codimension n locus where the n marked points are zeros of the k-differential. We compute this class when n=2 and provide a recursive formula for it when n>2. Moreover, when n=1 and k=1,2 we show its rigidity and extremality in the pseudoeffective cone. We also compute the classes of the closures in the projectivization of the k-th Hodge bundle over the moduli space of genus g curves of the loci where the k-differential has a zero at a Brill-Noether special point
Thesis (PhD) — Boston College, 2021
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Schnell, Christian. "The boundary behavior of cohomology classes and singularities of normal functions." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1218036000.
Full textMoya, Giusti Matias. "Sur l'existence des classes fantômes dans la cohomologie de certaines variétés de Shimura." Paris 7, 2014. http://www.theses.fr/2014PA077063.
Full textIn this work we study the existence of ghost classes in the cohomology of the Shimura varieties attached to the algebraic groups GSp_4 and GU(2, n-2) for n > 3. We use considerations on the weights of the mixed Hodge structures attached to the cohomology spaces involved in the definition of the space of ghost classes
Venturelli, Federico. "The Alexander polynomial of certain classes of non-symmetric line arrangements." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3422691.
Full textSacchetto, Lucas Kaufmann. "Fundamentos da geometria complexa: aspectos geométricos, topológicos e analiticos." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-18062012-194224/.
Full textThe main goal of this work is to present a detailed study of the foundations of Complex Geometry, highlighting its geometric, topological and analytical aspects. Beginning with a preliminary material, such as the basic results on holomorphic functions in one or more variables and the definition and first examples of a complex manifold, we move on to an introduction to sheaf theory and its cohomology, an essential tool to the rest of the work. After a discussion on divisors and line bundles we turn attention to Kähler Geometry and its central results, such as the Hodge Decomposition Theorem, the Hard Lefschetz Theorem and the Lefschetz Theorem on $(1,1)$-classes. After that, we study complex vector bundles and its geometry, focusing on the concepts of connections, curvature and Chern classes. Finally, we finish by describing some aspects of the topology of complex manifolds, such as the Lefschetz Hyperplane Theorem and some of its consequences.
Schlickewei, Ulrich [Verfasser]. "Hodge classes on self-products of K3 surfaces / vorgelegt von Ulrich Schlickewei." 2009. http://d-nb.info/1000464202/34.
Full textMoya, Giusti Matias Victor. "Sobre la existencia de clases fantasma en la cohomología de ciertas variedades de Shimura." Doctoral thesis, 2014. http://hdl.handle.net/11086/2878.
Full textEn este trabajo, estudiamos la existencia de clases fantasma en la cohomología de ciertas variedades de Shimura asociadas a grupos algebráicos de rango racional 2. Utilizamos ciertos argumentos sobre los pesos de las estructuras de Hodge mixtas asociadas a los espacios de cohomología involucrados en la definición del espacio de clases fantasma.
Books on the topic "Hodge classe"
J, Frazer W., ed. New Testament criticism: Lectures by Dr. C.W. Hodge before the junior class, Princeton Theological Seminary. Princeton: [s.n.], 1985.
Find full textCharles, Franc¸ois, and Christian Schnell. Notes on Absolute Hodge Classes. Edited by Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths, and Lê Dũng Tráng. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161341.003.0011.
Full textVoisin, Claire. Review of Hodge theory and algebraic cycles. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691160504.003.0002.
Full textCattani, Eduardo, Fouad El Zein, Phillip A. Griffiths, and Lê Dung Tráng. Hodge Theory (MN-49). Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161341.001.0001.
Full textHuybrechts, D. K3 Surfaces. Oxford University Press, 2007. http://dx.doi.org/10.1093/acprof:oso/9780199296866.003.0010.
Full textKatz, Sanford N. Family Law in America. 3rd ed. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197554319.001.0001.
Full textSeries, Michigan Historical Reprint. A commentary on the Confession of faith. With questions for theological students and Bible classes. By the Rev. Archibald Alexander Hodge ... Scholarly Publishing Office, University of Michigan Library, 2005.
Find full textBook chapters on the topic "Hodge classe"
Charles, François, and Christian Schnell. "Chapter Eleven. Notes on Absolute Hodge Classes." In Hodge Theory, 469–530. Princeton: Princeton University Press, 2014. http://dx.doi.org/10.1515/9781400851478.469.
Full textMurty, V. Kumar. "Hodge and Well Classes on Abelian Varieties." In The Arithmetic and Geometry of Algebraic Cycles, 83–115. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4098-0_4.
Full textVoisin, Claire. "Integral Hodge Classes, Decompositions of the Diagonal, and Rationality Questions." In Trends in Contemporary Mathematics, 137–49. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05254-0_11.
Full textMaillot, Vincent, and Damian Roessler. "On the Order of Certain Characteristic Classes of the Hodge Bundle of Semi-Abelian Schemes." In Number Fields and Function Fields—Two Parallel Worlds, 287–310. Boston, MA: Birkhäuser Boston, 2005. http://dx.doi.org/10.1007/0-8176-4447-4_14.
Full text"Hodge Classes." In Hodge Theory and Complex Algebraic Geometry I, 263–89. Cambridge University Press, 2002. http://dx.doi.org/10.1017/cbo9780511615344.012.
Full textGreen, Mark, Phillip Griffiths, and Matt Kerr. "Arithmetic of Period Maps of Geometric Origin." In Mumford-Tate Groups and Domains. Princeton University Press, 2012. http://dx.doi.org/10.23943/princeton/9780691154244.003.0009.
Full text"Chern class theory." In A Survey of the Hodge Conjecture, 103–18. Providence, Rhode Island: American Mathematical Society, 2016. http://dx.doi.org/10.1090/crmm/010/08.
Full textGreen, Mark, Phillip Griffiths, and Matt Kerr. "Classification of Mumford-Tate Subdomains." In Mumford-Tate Groups and Domains. Princeton University Press, 2012. http://dx.doi.org/10.23943/princeton/9780691154244.003.0008.
Full textGreen, Mark, Phillip Griffiths, and Matt Kerr. "The Mumford-Tate Group of a Variation of Hodge Structure." In Mumford-Tate Groups and Domains. Princeton University Press, 2012. http://dx.doi.org/10.23943/princeton/9780691154244.003.0004.
Full text"Murray, J., concurring." In What Obergefell v. Hodges Should Have Said, edited by Jack M. Balkin, 202–20. Yale University Press, 2020. http://dx.doi.org/10.12987/yale/9780300221558.003.0010.
Full text