Journal articles on the topic 'Hl-2a'

To see the other types of publications on this topic, follow the link: Hl-2a.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hl-2a.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Duan, X. R., Y. Huang, D. Q. Liu, W. M. Xuan, L. Y. Chen, J. Rao, X. M. Song, et al. "Operation of HL-2A Tokamak." IEEE Transactions on Plasma Science 40, no. 3 (March 2012): 673–81. http://dx.doi.org/10.1109/tps.2011.2181425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duan, X. R., M. Xu, W. L. Zhong, Y. Liu, X. M. Song, D. Q. Liu, Y. Q. Wang, et al. "Progress of HL-2A experiments and HL-2M program." Nuclear Fusion 62, no. 4 (March 21, 2022): 042020. http://dx.doi.org/10.1088/1741-4326/ac3be6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Since the last IAEA Fusion Energy Conference in 2018, significant progress of the experimental program of HL-2A has been achieved on developing advanced plasma physics, edge localized mode (ELM) control physics and technology. Optimization of plasma confinement has been performed. In particular, high-β N H-mode plasmas exhibiting an internal transport barrier have been obtained (normalized plasma pressure β N reached up to 3). Injection of impurity improved the plasma confinement. ELM control using resonance magnetic perturbation or impurity injection has been achieved in a wide parameter regime, including types I and III. In addition, impurity seeding with supersonic molecular beam injection or laser blow-off techniques has been successfully applied to actively control the plasma confinement and instabilities, as well as plasma disruption with the aid of disruption prediction. Disruption prediction algorithms based on deep learning are developed. A prediction accuracy of 96.8% can be reached by assembling a convolutional neural network. Furthermore, transport resulting from a wide variety of phenomena such as energetic particles and magnetic islands has been investigated. In parallel with the HL-2A experiments, the HL-2M mega-ampere class tokamak was commissioned in 2020 with its first plasma. Key features and capabilities of HL-2M are briefly presented.
3

Zhou, Caipin, Jiancheng Yan, Yong Liu, and Dequan Liu. "Progress of the HL-2A Project." Fusion Science and Technology 42, no. 1 (July 2002): 102–6. http://dx.doi.org/10.13182/fst02-a216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Q. W., Yong Liu, X. T. Ding, J. Q. Dong, L. W. Yan, D. Q. Liu, W. M. Xuan, et al. "Overview of HL-2A experiment results." Nuclear Fusion 47, no. 10 (September 18, 2007): S635—S644. http://dx.doi.org/10.1088/0029-5515/47/10/s12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, M., X. R. Duan, J. Q. Dong, X. T. Ding, L. W. Yan, Yi Liu, X. M. Song, et al. "Overview of recent HL-2A experiments." Nuclear Fusion 55, no. 10 (October 1, 2015): 104022. http://dx.doi.org/10.1088/0029-5515/55/10/104022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zeng, Cao, Cui Chenghe, Liu Dequan, Cai Xiao, and Gao Xiaoyan. "Vacuum System for HL-2A Tokamak." Plasma Science and Technology 7, no. 1 (February 2005): 2632–36. http://dx.doi.org/10.1088/1009-0630/7/1/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Dequan, Caipin Zhou, Zeng Cao, Jiancheng Yan, and Yong Liu. "Construction of the HL-2A tokamak." Fusion Engineering and Design 66-68 (September 2003): 147–51. http://dx.doi.org/10.1016/s0920-3796(03)00165-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Duan, X. R., Yi Liu, M. Xu, L. W. Yan, Y. Xu, X. M. Song, J. Q. Dong, et al. "Overview of recent HL-2A experiments." Nuclear Fusion 57, no. 10 (June 28, 2017): 102013. http://dx.doi.org/10.1088/1741-4326/aa6a72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xu, M., X. R. Duan, Yi Liu, X. M. Song, D. Q. Liu, Y. Q. Wang, B. Lu, et al. "Overview of HL-2A recent experiments." Nuclear Fusion 59, no. 11 (July 24, 2019): 112017. http://dx.doi.org/10.1088/1741-4326/ab1d84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ding, X. T., Y. Zhou, Z. C. Deng, W. W. Xiao, Z. T. Liu, Z. B. Shi, L. W. Yan, W. Y. Hong, and Q. W. Yang. "New diagnostic systems on HL-2A." Review of Scientific Instruments 77, no. 10 (October 2006): 10F528. http://dx.doi.org/10.1063/1.2351889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

DUAN, XuRu, and WuLyu ZHONG. "Progress of HL-2A physical experiments." SCIENTIA SINICA Physica, Mechanica & Astronomica 49, no. 4 (March 7, 2019): 045204. http://dx.doi.org/10.1360/sspma2018-00284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Duan, X. R., X. T. Ding, J. Q. Dong, Q. W. Yang, L. W. Yan, Yi Liu, X. L. Zou, et al. "Overview of experimental results on HL-2A." Nuclear Fusion 49, no. 10 (September 9, 2009): 104012. http://dx.doi.org/10.1088/0029-5515/49/10/104012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Duan, X. R., X. T. Ding, J. Q. Dong, L. W. Yan, Yi Liu, Y. Huang, X. M. Song, et al. "An overview of recent HL-2A experiments." Nuclear Fusion 53, no. 10 (September 26, 2013): 104009. http://dx.doi.org/10.1088/0029-5515/53/10/104009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yudong, Pan, Wang Enyao, and Liu Yi. "HL-2A Tokamak Edge Modeling with B2." Plasma Science and Technology 5, no. 6 (December 2003): 2023–26. http://dx.doi.org/10.1088/1009-0630/5/6/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, H. X., Y. Zhou, Y. Li, Y. G. Li, J. Yi, Z. C. Deng, Z. Gao, T. Y. Wu, Z. J. Yin, and T. Akiyama. "A new dispersion interferometer on HL-2A." Review of Scientific Instruments 88, no. 10 (October 2017): 103502. http://dx.doi.org/10.1063/1.4997974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Pan, Y. D., J. H. Zhang, W. Li, and J. X. Li. "Divertor design for HL-2A tokamak modification." Journal of Nuclear Materials 415, no. 1 (August 2011): S952—S956. http://dx.doi.org/10.1016/j.jnucmat.2010.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Виняр, И. В., А. Я. Лукин, С. В. Скобликов, and П. В. Резниченко. "Инжектор топливных макрочастиц для токамака HL-2A." Приборы и техника эксперимента 2013, no. 5 (2013): 122–28. http://dx.doi.org/10.7868/s0032816213050108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, W., T. Y. Wu, Y. G. Li, and Y. P. Zhang. "Compact phase comparison system for the synthetic HCOOH laser diagnostic system in HL-2A." Journal of Instrumentation 17, no. 09 (September 1, 2022): P09037. http://dx.doi.org/10.1088/1748-0221/17/09/p09037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Recently, a synthetic formic-acid laser diagnostic system has been deployed in HL-2A tokamak. However, the main electronics of the subsystems were discrete devices, and multimodal data analysis remained out of reach. In this work, we developed a novel compact high sensitivity Phasemeter (CHSP) system to integrate interferometer, far-forward collective scattering diagnostic (FCS), and Faraday effect polarimeter. It provides a framework for real-time intelligent diagnosis such as plasma disruptions prediction. We also propose a Synchronous Fast Fourier Transform (SFFT) method for suppression of spectral leakage and noise reduction. Experimental results indicate that the electronics system accuracy is about 1.0× 1015/m-3, which fully meets the requirements of HL-2A. This work represents a crucial step toward a high-performance intelligent diagnosis in HL-2A.
19

Ogawa, Kunihiro, Yipo Zhang, Jie Zhang, Siriyaporn Sangaroon, Mitsutaka Isobe, and Yi Liu. "Predictive analysis for triton burnup ratio in HL-2A and HL-2M plasmas." Plasma Physics and Controlled Fusion 63, no. 4 (February 25, 2021): 045013. http://dx.doi.org/10.1088/1361-6587/abe054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, He, Zhihong Lu, Shin Kubo, Gangyu Chen, Chao Wang, Jun Zhou, Mei Huang, and Jun Rao. "Power measurement system of ECRH on HL-2A." EPJ Web of Conferences 87 (2015): 02021. http://dx.doi.org/10.1051/epjconf/20158702021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Xuan-Tong, Ding, Yang Qing-Wei, Yan Long-Wen, Zhu Gen-Liang, Xiao Zheng-Gui, Liu De-Quan, Cao Zeng, et al. "Pellet Enhanced Performance on the HL-2A Tokamak." Chinese Physics Letters 23, no. 9 (September 2006): 2502–5. http://dx.doi.org/10.1088/0256-307x/23/9/042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zhou, Y., Z. C. Deng, Y. G. Li, and J. Yi. "Multi-channel far-infrared HL-2A interferometer-polarimeter." Review of Scientific Instruments 83, no. 10 (October 2012): 10E336. http://dx.doi.org/10.1063/1.4739226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhou, Y., Z. C. Deng, Z. T. Liu, J. Yi, Y. W. Tang, B. Y. Gao, C. L. Tian, Y. G. Li, and X. T. Ding. "A new multichannel interferometer system on HL-2A." Review of Scientific Instruments 78, no. 11 (November 2007): 113503. http://dx.doi.org/10.1063/1.2805193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Y., X. T. Ding, Q. W. Yang, L. W. Yan, D. Q. Liu, W. M. Xuan, L. Y. Chen, et al. "Recent advances in the HL-2A tokamak experiments." Nuclear Fusion 45, no. 10 (October 2005): S239—S244. http://dx.doi.org/10.1088/0029-5515/45/10/s19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wen-Yu, Hong, Yan Long-Wen, Qian Jun, Pan Yu-Dong, Wang En-Yao, Luo Cui-Wen, Xu Zheng-Yu, et al. "Analyses of edge plasma characteristics in HL-2A." Chinese Physics 15, no. 3 (March 2006): 556–61. http://dx.doi.org/10.1088/1009-1963/15/3/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chunfeng, Dong, Cui Zhengying, Ji Xiaoquan, Zhou Hangyu, Feng Beibin, Sun Hongjuan, Li Yonggao, and Yang Qingwei. "Preliminary Analysis of HL-2A Global Energy Confinement." Plasma Science and Technology 11, no. 1 (February 2009): 23–27. http://dx.doi.org/10.1088/1009-0630/11/1/05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yan, Zhou, Deng Zhongchao, Yi Jiang, Li Yonggao, Li Liancai, Zheng Ling, Zhao Kaijun, Yang Qingwei, Ding Xuantong, and Duan Xuru. "Recent Progress of the HL-2A Laser Interferometer." Plasma Science and Technology 11, no. 4 (August 2009): 413–16. http://dx.doi.org/10.1088/1009-0630/11/4/09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

He, Zhixiong, Jiaqi Dong, Hongda He, Haibin Jiang, Zhe Gao, and Jinhua Zhang. "MHD Equilibrium Configuration Reconstructions for HL-2A Tokamak." Plasma Science and Technology 13, no. 4 (August 2011): 424–30. http://dx.doi.org/10.1088/1009-0630/13/4/08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gao, Jinming, Wei Li, Jie Lu, Zhiwei Xia, Ping Yi, Yi Liu, and Qingwei Yang. "Infrared Imaging Bolometer for the HL-2A Tokamak." Plasma Science and Technology 18, no. 6 (June 2016): 590–94. http://dx.doi.org/10.1088/1009-0630/18/6/02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Vinyar, I. V., A. Ya Lukin, S. V. Skoblikov, and P. V. Reznichenko. "A pellet injector of the HL-2A tokamak." Instruments and Experimental Techniques 56, no. 5 (September 2013): 607–12. http://dx.doi.org/10.1134/s0020441213050102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Xianming, Song, Jiang Chao, Li Qiang, Li Bo, Fan Mingjie, Chen Liaoyuan, Luo Cuiwen, et al. "HL-2A control system and its discharge management." Fusion Engineering and Design 66-68 (September 2003): 815–19. http://dx.doi.org/10.1016/s0920-3796(03)00325-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Liu, Dequan, Yong Liu, Jianchen Yan, Zeng Cao, Qingwei Yang, Caipin Zhou, and Xiaodong Li. "Commissioning and preliminary operation of HL-2A tokamak." Fusion Engineering and Design 74, no. 1-4 (November 2005): 167–70. http://dx.doi.org/10.1016/j.fusengdes.2005.06.335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Yuan, B. S., X. Q. Ji, Y. G. Li, Y. Xu, Y. Zhou, L. M. Yu, S. Y. Liang, and T. F. Sun. "Study of plasma equilibrium reconstruction on HL-2A." Fusion Engineering and Design 134 (September 2018): 5–10. http://dx.doi.org/10.1016/j.fusengdes.2018.06.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Huang, Yuan, Lin Nie, De-Liang Yu, Chun-Hua Liu, Zhen Feng, and Xu-Ru Duan. "Observation of chaotic ELMs in HL-2A tokamak." Chinese Physics B 20, no. 5 (May 2011): 055201. http://dx.doi.org/10.1088/1674-1056/20/5/055201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Li-Ming, Yu, Lei Guang-Jiu, Cao Jian-Yong, Yang Li-Mei, Jiang Shao-Feng, Han Xiao-Yu, Zhang Xian-Ming, et al. "Proton Ratio of HL-2A Bucket Ion Source." Chinese Physics Letters 27, no. 4 (April 2010): 042901. http://dx.doi.org/10.1088/0256-307x/27/4/042901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yan, L. W., W. Y. Hong, J. Cheng, M. X. Wang, J. Qian, Y. D. Pan, Y. Zhou, et al. "Radiating divertor experiments in the HL-2A tokamak." Journal of Nuclear Materials 390-391 (June 2009): 246–49. http://dx.doi.org/10.1016/j.jnucmat.2009.01.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Xu, H. B., G. L. Zhu, D. Q. Liu, I. Vinyar, M. J. Wang, and A. Lukin. "A New Pellet Injection System for HL-2A." Fusion Science and Technology 62, no. 2 (October 2012): 316–21. http://dx.doi.org/10.13182/fst12-a14622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Song, Xiao, Xian Ming Song, Fan Xia, Rui Mao, Chuan Wang, Jin Hua Zhang, and Liao Yuan Chen. "Study of Plasma Startup on HL-2A Tokamak." IEEE Transactions on Plasma Science 42, no. 3 (March 2014): 439–42. http://dx.doi.org/10.1109/tps.2014.2298855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Qing-Wei, Yang, Ding Xuan-Tong, Yan Long-Wen, Xuan Wei-Min, Liu De-Quan, Chen Liao-Yuan, Song Xian-Ming, et al. "First Divertor Operation on the HL-2A Tokamak." Chinese Physics Letters 21, no. 12 (December 2004): 2475–78. http://dx.doi.org/10.1088/0256-307x/21/12/043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Guo, Wenping, Yuan Huang, Chunhua Liu, Zhen Feng, Zhipei Hou, Wenyan Zhai, Hisamichi Funaba, Ichihiro Yamada, Yonggao Li, and Zhongbin Shi. "Upgrade of Thomson Scattering Diagnostic on HL-2A." Instruments 7, no. 1 (March 6, 2023): 12. http://dx.doi.org/10.3390/instruments7010012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The Thomson scattering diagnostic of the HL-2A tokamak device was upgraded to improve its multi-point diagnostic capability, including new collection optics, fibers bundles, and data analysis code. The small old collection lens was replaced by a six-piece lens with a Cooke optical design. The aperture of its first standard sphere face is 310.125 mm, which successfully increases the amount of collected scattering light by about three times. The new collection optic module allows for up to twenty-six spatial points. A kind of Y-type fiber bundle has also been used to ensure that the fiber end-face matches the image of the laser beam exactly. Additionally, the new data analysis code can provide preview results in seconds. Finally, the multi-point Te diagnostic ability has been significantly improved.
41

Tong, R. H., W. L. Zhong, J. Wen, Z. B. Shi, X. L. Zou, A. S. Liang, Z. C. Yang, et al. "Design of the cross-polarization scattering diagnostic on the HL-2A tokamak." Journal of Instrumentation 17, no. 02 (February 1, 2022): C02025. http://dx.doi.org/10.1088/1748-0221/17/02/c02025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract A new cross-polarization scattering (CPS) diagnostic has been developed on HL-2A, which aims to measure the local magnetic fluctuation inside the plasma. It is based on the scattering of an incident microwave beam into the perpendicular polarization by magnetic fluctuations. The CPS diagnostic has been designed in the Q-band (33–50 GHz), which consists of the electronic system, quasi-optical, and polarization rejector. The ray-tracing code is used to simulate the propagation of the probe and scattered rays. To test the performance of the quasi-optical system, a 3D test platform is built and detailed test results are shown. Two methods are developed for polarization rejector on HL-2A: wire grid polarizer and dual-polarized horn antenna (DPHA). The laboratory test result shows that the polarization rejection of both methods is better than 30 dB, which meets the needs for magnetic fluctuation detection. In the future, the CPS diagnosis will be used to study the electromagnetic turbulence behavior in the high-performance plasma of the HL-2A tokamak.
42

Qin, X., G. McKee, Z. Yan, B. Geiger, R. Ke, K. Jaehnig, L. Morton, Y. Wu, T. Wu, and M. Xu. "Integrated 2D beam emission spectroscopy diagnostic at the Huan-Liuqi-2A (HL-2A) tokamak." Review of Scientific Instruments 93, no. 10 (October 1, 2022): 103535. http://dx.doi.org/10.1063/5.0101806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Two newly developed, eight-channel, integrated Beam Emission Spectroscopy (BES) detectors have been installed at Huan-Liuqi-2A tokamak, which extends the existing 16 single-channel modular BES system with additional 16 spatial channels. The BES collects the Doppler-shifted Balmer D α emission with a spatial resolution of 1 cm (radial) × 1.5 cm (poloidal) and a temporal resolution of 0.5 µs to measure long-wavelength ( k⊥ ρ i < 1) density fluctuations. Compared to the modular BES, the dark noise of the integrated BES is reduced by 50%–60% on average. The signal-to-noise ratio of the integrated BES system is optimized by the high light throughput front-end optics, high quantum efficiency photodiodes, high-gain, low-noise preamplifiers, and sufficient cooling capacity provided by the thermoelectric cooling (TEC) units that maintain the detectors at −20 °C. Crosstalk between channels that share the same optical system is found to be negligible. High-quality density fluctuation data enables 2D (radial–poloidal) imaging of turbulence, which allows for multi-channel spectral analysis, multi-channel cross-correlation analysis and velocimetry analysis. Preliminary results show that BES successfully captures the spatiotemporal features of the local turbulence and obtains statistically consistent turbulence characterization results.
43

Yi Yu, Yi Yu, Shaobo Gong Shaobo Gong, Min Xu Min Xu, Boda Yuan Boda Yuan, Yifan Wu Yifan Wu, Lin Nie Lin Nie, Rui Ke Rui Ke, Minyou Ye Minyou Ye, and Xuru Duan Xuru Duan. "System validation of CO2-laser-based phase contrast imaging on HL-2A tokamak." Chinese Optics Letters 16, no. 12 (2018): 121201. http://dx.doi.org/10.3788/col201816.121201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Xu, M., X. R. Duan, Yi Liu, W. L. Zhong, M. Jiang, G. L. Xiao, P. W. Shi, et al. "Progress of Experimental Studies in the HL-2A Tokamak." Journal of Fusion Energy 39, no. 6 (December 2020): 313–35. http://dx.doi.org/10.1007/s10894-021-00282-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

DING, Xuantong, Weiwen XIAO, Xiaolan ZOU, Hongjuan SUN, Yi LIU, Lianghua YAO, Jun RAO, et al. "Present Progress of Plasma Transport Study on HL-2A." Plasma and Fusion Research 5 (2010): S1013. http://dx.doi.org/10.1585/pfr.5.s1013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Huang, Y., Y. Q. Wang, Z. P. Hou, L. L. Ren, C. H. Liu, Z. Feng, and C. W. Luo. "Multipoint vertical-Thomson scattering diagnostic on HL-2A tokamak." Review of Scientific Instruments 89, no. 10 (October 2018): 10C116. http://dx.doi.org/10.1063/1.5035556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yan, Longwen, Wenyu Hong, Jun Qian, Cuiwen Luo, and Li Pan. "Fast reciprocating probe system on the HL-2A tokamak." Review of Scientific Instruments 76, no. 9 (September 2005): 093506. http://dx.doi.org/10.1063/1.2052049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Qing-Wei, Yang, Zhou Hang-Yu, Feng Bei-Bin, Liu Yi, Pan Yu-Dong, Li Wei, Duan Xu-Ru, et al. "A New Criterion for Disruption Prediction on HL-2A." Chinese Physics Letters 23, no. 4 (March 30, 2006): 891–94. http://dx.doi.org/10.1088/0256-307x/23/4/036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yu, Y., S. B. Gong, M. Xu, C. J. Xiao, W. Jiang, W. L. Zhong, Z. B. Shi, et al. "Calibration of phase contrast imaging on HL-2A Tokamak." Journal of Instrumentation 12, no. 10 (October 16, 2017): C10005. http://dx.doi.org/10.1088/1748-0221/12/10/c10005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Feng, Z., Y. Q. Wang, Z. P. Hou, L. L. Ren, C. H. Liu, C. W. Luo, and Y. Huang. "Progress of Thomson scattering diagnostic on HL-2A tokamak." Journal of Instrumentation 12, no. 11 (November 10, 2017): C11012. http://dx.doi.org/10.1088/1748-0221/12/11/c11012.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography