Journal articles on the topic 'Hitting time of random walk'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hitting time of random walk.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Emms, D., R. Wilson, and E. Hancock. "Graph embedding using quantum hitting time." Quantum Information and Computation 9, no. 3&4 (March 2009): 231–54. http://dx.doi.org/10.26421/qic9.3-4-4.
Full textLardizabal, Carlos F. "Open quantum random walks and the mean hitting time formula." Quantum Information and Computation 17, no. 1&2 (January 2017): 79–105. http://dx.doi.org/10.26421/qic17.1-2-5.
Full textAldous, David. "Hitting times for random walks on vertex-transitive graphs." Mathematical Proceedings of the Cambridge Philosophical Society 106, no. 1 (July 1989): 179–91. http://dx.doi.org/10.1017/s0305004100068079.
Full textMeerschaert, Mark M., and Hans-Peter Scheffler. "Limit theorems for continuous-time random walks with infinite mean waiting times." Journal of Applied Probability 41, no. 3 (September 2004): 623–38. http://dx.doi.org/10.1239/jap/1091543414.
Full textMeerschaert, Mark M., and Hans-Peter Scheffler. "Limit theorems for continuous-time random walks with infinite mean waiting times." Journal of Applied Probability 41, no. 03 (September 2004): 623–38. http://dx.doi.org/10.1017/s002190020002043x.
Full textAfanasyev, Valeriy I. "On the non-recurrent random walk in a random environment." Discrete Mathematics and Applications 28, no. 3 (June 26, 2018): 139–56. http://dx.doi.org/10.1515/dma-2018-0014.
Full textBertoin, Jean. "On overshoots and hitting times for random walks." Journal of Applied Probability 36, no. 2 (June 1999): 593–600. http://dx.doi.org/10.1239/jap/1032374474.
Full textBertoin, Jean. "On overshoots and hitting times for random walks." Journal of Applied Probability 36, no. 02 (June 1999): 593–600. http://dx.doi.org/10.1017/s0021900200017344.
Full textHaslegrave, John, Thomas Sauerwald, and John Sylvester. "Time Dependent Biased Random Walks." ACM Transactions on Algorithms 18, no. 2 (April 30, 2022): 1–30. http://dx.doi.org/10.1145/3498848.
Full textKalikova, A. "Statistical analysis of random walks on network." Scientific Journal of Astana IT University, no. 5 (July 27, 2021): 77–83. http://dx.doi.org/10.37943/aitu.2021.99.34.007.
Full textBulinskaya, E. Vl. "Hitting times with taboo for a random walk." Siberian Advances in Mathematics 22, no. 4 (October 2012): 227–42. http://dx.doi.org/10.3103/s1055134412040013.
Full textSerlet, Laurent. "Hitting times for the perturbed reflecting random walk." Stochastic Processes and their Applications 123, no. 1 (January 2013): 110–30. http://dx.doi.org/10.1016/j.spa.2012.09.003.
Full textBEVERIDGE, ANDREW. "A Hitting Time Formula for the Discrete Green's Function." Combinatorics, Probability and Computing 25, no. 3 (June 29, 2015): 362–79. http://dx.doi.org/10.1017/s0963548315000152.
Full textNakajima, Tadashi. "Joint distribution of the first hitting time and first hitting place for a random walk." Kodai Mathematical Journal 21, no. 2 (1998): 192–200. http://dx.doi.org/10.2996/kmj/1138043873.
Full textFukai, Yasunari. "Hitting time of a half-line by two-dimensional random walk." Probability Theory and Related Fields 128, no. 3 (March 1, 2004): 323–46. http://dx.doi.org/10.1007/s00440-003-0306-y.
Full textPozzoli, Gaia, Mattia Radice, Manuele Onofri, and Roberto Artuso. "A Continuous-Time Random Walk Extension of the Gillis Model." Entropy 22, no. 12 (December 18, 2020): 1431. http://dx.doi.org/10.3390/e22121431.
Full textHONG, WENMING, and HUAMING WANG. "INTRINSIC BRANCHING STRUCTURE WITHIN (L-1) RANDOM WALK IN RANDOM ENVIRONMENT AND ITS APPLICATIONS." Infinite Dimensional Analysis, Quantum Probability and Related Topics 16, no. 01 (March 2013): 1350006. http://dx.doi.org/10.1142/s0219025713500069.
Full textDorogovtsev, A. A., and I. I. Nishchenko. "Loop-erased random walks associated with Markov processes." Theory of Stochastic Processes 25(41), no. 2 (December 11, 2021): 15–24. http://dx.doi.org/10.37863/tsp-1348277559-92.
Full textRadice, Mattia. "Non-homogeneous random walks with stochastic resetting: an application to the Gillis model." Journal of Statistical Mechanics: Theory and Experiment 2022, no. 12 (December 1, 2022): 123206. http://dx.doi.org/10.1088/1742-5468/aca587.
Full textPatel, Rushabh, Andrea Carron, and Francesco Bullo. "The Hitting Time of Multiple Random Walks." SIAM Journal on Matrix Analysis and Applications 37, no. 3 (January 2016): 933–54. http://dx.doi.org/10.1137/15m1010737.
Full textHoyer, Peter, and Zhan Yu. "Analysis of lackadaisical quantum walks." Quantum Information and Computation 20, no. 13&14 (November 2020): 1138–53. http://dx.doi.org/10.26421/qic20.13-14-4.
Full textKlein Haneveld, Leendert A. "ON IDENTITIES FOR A RANDOM WALK IN AN ORTHANT WITH ABSORBING BOUNDARY." Probability in the Engineering and Informational Sciences 17, no. 3 (June 6, 2003): 411–15. http://dx.doi.org/10.1017/s026996480317307x.
Full textYamamoto, Ken. "Solution and Analysis of a One-Dimensional First-Passage Problem with a Nonzero Halting Probability." International Journal of Statistical Mechanics 2013 (October 27, 2013): 1–9. http://dx.doi.org/10.1155/2013/831390.
Full textRoberto, Beraldi, Querzoni Leonardo, and Baldoni Roberto. "Low hitting time random walks in wireless networks." Wireless Communications and Mobile Computing 9, no. 5 (May 2009): 719–32. http://dx.doi.org/10.1002/wcm.625.
Full textBrightwell, Graham, and Peter Winkler. "Maximum hitting time for random walks on graphs." Random Structures & Algorithms 1, no. 3 (September 1990): 263–76. http://dx.doi.org/10.1002/rsa.3240010303.
Full textMeise, Christian. "On spectral gap estimates of a Markov chain via hitting times and coupling." Journal of Applied Probability 36, no. 2 (June 1999): 310–19. http://dx.doi.org/10.1239/jap/1032374455.
Full textMeise, Christian. "On spectral gap estimates of a Markov chain via hitting times and coupling." Journal of Applied Probability 36, no. 02 (June 1999): 310–19. http://dx.doi.org/10.1017/s0021900200017150.
Full textPalacios, José Luis. "On the Moments of Hitting Times for Random Walks on Trees." Journal of Probability and Statistics 2009 (2009): 1–4. http://dx.doi.org/10.1155/2009/241539.
Full textDshalalow, Jewgeni H., and Ryan T. White. "Random Walk Analysis in a Reliability System under Constant Degradation and Random Shocks." Axioms 10, no. 3 (August 23, 2021): 199. http://dx.doi.org/10.3390/axioms10030199.
Full textLehec, Joseph. "Cover Times and Generic Chaining." Journal of Applied Probability 51, no. 1 (March 2014): 247–61. http://dx.doi.org/10.1239/jap/1395771427.
Full textLehec, Joseph. "Cover Times and Generic Chaining." Journal of Applied Probability 51, no. 01 (March 2014): 247–61. http://dx.doi.org/10.1017/s0021900200010214.
Full textChen, Haiyan. "The generating functions of hitting times for random walk on trees." Statistics & Probability Letters 77, no. 15 (September 2007): 1574–79. http://dx.doi.org/10.1016/j.spl.2007.03.044.
Full textLawler, Gregory F. "Expected hitting times for a random walk on a connected graph." Discrete Mathematics 61, no. 1 (August 1986): 85–92. http://dx.doi.org/10.1016/0012-365x(86)90030-0.
Full textGerbaud, Antoine, Karine Altisen, Stéphane Devismes, and Pascal Lafourcade. "Comparison of mean hitting times for a degree-biased random walk." Discrete Applied Mathematics 170 (June 2014): 104–9. http://dx.doi.org/10.1016/j.dam.2014.01.021.
Full textGolomoziy, V. "On estimating exponential moment for the simultaneous renewal time for two random walks on a half line." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 2 (2021): 26–31. http://dx.doi.org/10.17721/1812-5409.2021/2.4.
Full textFUKAI, Yasunari. "HITTING TIME OF A HALF-LINE BY A TWO-DIMENSIONAL NON-SYMMETRIC RANDOM WALK." Kyushu Journal of Mathematics 69, no. 1 (2015): 145–71. http://dx.doi.org/10.2206/kyushujm.69.145.
Full textLöwe, Matthias, and Felipe Torres. "On hitting times for a simple random walk on dense Erdös–Rényi random graphs." Statistics & Probability Letters 89 (June 2014): 81–88. http://dx.doi.org/10.1016/j.spl.2014.02.017.
Full textSylvester, John. "Random walk hitting times and effective resistance in sparsely connected Erdős‐Rényi random graphs." Journal of Graph Theory 96, no. 1 (February 17, 2020): 44–84. http://dx.doi.org/10.1002/jgt.22551.
Full textJ., Abhijith, and Apoorva Patel. "Spatial search using flip-flop quantum walk." Quantum Information and Computation 18, no. 15&16 (December 2018): 1295–331. http://dx.doi.org/10.26421/qic18.15-16-3.
Full textZhang, Mei Juan. "Large deviations for hitting times of a random walk in random environment on a strip." Acta Mathematica Sinica, English Series 30, no. 3 (February 15, 2014): 395–410. http://dx.doi.org/10.1007/s10114-014-2683-9.
Full textHARTMAN, YAIR, YURI LIMA, and OMER TAMUZ. "An Abramov formula for stationary spaces of discrete groups." Ergodic Theory and Dynamical Systems 34, no. 3 (January 15, 2013): 837–53. http://dx.doi.org/10.1017/etds.2012.167.
Full textJarai, Antal, and Harry Kesten. "A Bound for the Distribution of the Hitting Time of Arbitrary Sets by Random Walk." Electronic Communications in Probability 9 (2004): 152–61. http://dx.doi.org/10.1214/ecp.v9-1119.
Full textKolokoltsov, V. N. "Generalized Continuous-Time Random Walks, Subordination by Hitting Times, and Fractional Dynamics." Theory of Probability & Its Applications 53, no. 4 (January 2009): 594–609. http://dx.doi.org/10.1137/s0040585x97983857.
Full textSheng, Yibin, and Zhongzhi Zhang. "Low-Mean Hitting Time for Random Walks on Heterogeneous Networks." IEEE Transactions on Information Theory 65, no. 11 (November 2019): 6898–910. http://dx.doi.org/10.1109/tit.2019.2925610.
Full textPalacios, JoséLuis. "Bounds on expected hitting times for a random walk on a connected graph." Linear Algebra and its Applications 141 (November 1990): 241–52. http://dx.doi.org/10.1016/0024-3795(90)90321-3.
Full textUchiyama, Kohei. "The First Hitting Time of a Single Point for Random Walks." Electronic Journal of Probability 16 (2011): 1960–2000. http://dx.doi.org/10.1214/ejp.v16-931.
Full textSu, Jing, Xiaomin Wang, and Bing Yao. "Mean Hitting Time for Random Walks on a Class of Sparse Networks." Entropy 24, no. 1 (December 24, 2021): 34. http://dx.doi.org/10.3390/e24010034.
Full textPène, Françoise, Benoît Saussol, and Roland Zweimüller. "Recurrence rates and hitting-time distributions for random walks on the line." Annals of Probability 41, no. 2 (March 2013): 619–35. http://dx.doi.org/10.1214/11-aop698.
Full textDas, Debraj, and Luca Giuggioli. "Dynamics of lattice random walk within regions composed of different media and interfaces." Journal of Statistical Mechanics: Theory and Experiment 2023, no. 1 (January 1, 2023): 013201. http://dx.doi.org/10.1088/1742-5468/aca8f9.
Full textBaeumer, Boris, Mark M. Meerschaert, and Erkan Nane. "Space–Time Duality for Fractional Diffusion." Journal of Applied Probability 46, no. 4 (December 2009): 1100–1115. http://dx.doi.org/10.1239/jap/1261670691.
Full text