Academic literature on the topic 'Hindgut microbiota'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hindgut microbiota.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hindgut microbiota"
Maes, Patrick W., Amy S. Floyd, Brendon M. Mott, and Kirk E. Anderson. "Overwintering Honey Bee Colonies: Effect of Worker Age and Climate on the Hindgut Microbiota." Insects 12, no. 3 (March 5, 2021): 224. http://dx.doi.org/10.3390/insects12030224.
Full textTinker, Kara A., and Elizabeth A. Ottesen. "The Core Gut Microbiome of the American Cockroach, Periplaneta americana, Is Stable and Resilient to Dietary Shifts." Applied and Environmental Microbiology 82, no. 22 (September 2, 2016): 6603–10. http://dx.doi.org/10.1128/aem.01837-16.
Full textSanto Domingo, Jorge W., Michael G. Kaufman, Michael J. Klug, and James M. Tiedje. "Characterization of the Cricket Hindgut Microbiota with Fluorescently Labeled rRNA-Targeted Oligonucleotide Probes." Applied and Environmental Microbiology 64, no. 2 (February 1, 1998): 752–55. http://dx.doi.org/10.1128/aem.64.2.752-755.1998.
Full textWertz, John T., and John A. Breznak. "Physiological Ecology of Stenoxybacter acetivorans, an Obligate Microaerophile in Termite Guts." Applied and Environmental Microbiology 73, no. 21 (September 7, 2007): 6829–41. http://dx.doi.org/10.1128/aem.00787-07.
Full textWang, Lei, Kai Wang, Lirong Hu, Hanpeng Luo, Shangzhen Huang, Hailiang Zhang, Yao Chang, et al. "Microbiological Characteristics of the Gastrointestinal Tracts of Jersey and Holstein Cows." Animals 14, no. 21 (November 1, 2024): 3137. http://dx.doi.org/10.3390/ani14213137.
Full textMcDermid, Karla J., Ronald P. Kittle, Anne Veillet, Sophie Plouviez, Lisa Muehlstein, and George H. Balazs. "Identification of Gastrointestinal Microbiota in Hawaiian Green Turtles (Chelonia mydas)." Evolutionary Bioinformatics 16 (January 2020): 117693432091460. http://dx.doi.org/10.1177/1176934320914603.
Full textLemke, Thorsten, Theo van Alen, Johannes H. P. Hackstein, and Andreas Brune. "Cross-Epithelial Hydrogen Transfer from the Midgut Compartment Drives Methanogenesis in the Hindgut of Cockroaches." Applied and Environmental Microbiology 67, no. 10 (October 1, 2001): 4657–61. http://dx.doi.org/10.1128/aem.67.10.4657-4661.2001.
Full textXu, Chuanhui, Jianhua Liu, Jianwei Gao, Xiaoyu Wu, Chenbin Cui, Hongkui Wei, Jian Peng, and Rong Zheng. "The Effect of Functional Fiber on Microbiota Composition in Different Intestinal Segments of Obese Mice." International Journal of Molecular Sciences 22, no. 12 (June 18, 2021): 6525. http://dx.doi.org/10.3390/ijms22126525.
Full textFan, Peixin, Corwin D. Nelson, J. Danny Driver, Mauricio A. Elzo, Francisco Peñagaricano, and Kwangcheol C. Jeong. "Host genetics exerts lifelong effects upon hindgut microbiota and its association with bovine growth and immunity." ISME Journal 15, no. 8 (March 1, 2021): 2306–21. http://dx.doi.org/10.1038/s41396-021-00925-x.
Full textJiao, Anran, Bing Yu, Jun He, Jie Yu, Ping Zheng, Yuheng Luo, Junqiu Luo, Xiangbing Mao, and Daiwen Chen. "Short chain fatty acids could prevent fat deposition in pigs via regulating related hormones and genes." Food & Function 11, no. 2 (2020): 1845–55. http://dx.doi.org/10.1039/c9fo02585e.
Full textDissertations / Theses on the topic "Hindgut microbiota"
Mikaelyan, Aram [Verfasser], and Andreas [Akademischer Betreuer] Brune. "Microhabitat-specificity of the hindgut microbiota in higher termites / Aram Mikaelyan. Betreuer: Andreas Brune." Marburg : Philipps-Universität Marburg, 2014. http://d-nb.info/1052995004/34.
Full textHe, Shaomei, Natalia Ivanova, Edward Kirton, Martin Allgaier, Claudia Bergin, Rudolf H. Scheffrahn, Nikos C. Kyrpides, Falk Warnecke, Susannah G. Tringe, and Philip Hugenholtz. "Comparative Metagenomic and Metatranscriptomic Analysis of Hindgut Paunch Microbiota in Wood- and Dung-Feeding Higher Termites." Uppsala universitet, Limnologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-200063.
Full textLaroche, Noémie. "Etude de l’effet de l’alimentation sur les helminthes, le microbiote intestinal et l’immunité du gros intestin du cheval." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCK034.
Full textWith the increasing development of strongyle strains resistant to chemical anthelmintics and their negative impact on the digestive health of horses and the environment, the need to find alternative ways to control strongyle infections in horses is now a key research question. Nutritional adjustments resulting in the maintenance of a stable and healthy intestinal ecosystem, could be a natural and sustainable way to control helminth infections, by promoting host tolerance. This thesis aimed to investigate the direct and indirect effects of modulating the composition of the equine diet and including dehydrated granules of sainfoin (Onobrychis Viciifolia), a polyphenol-rich plant known to have anthelmintic properties in other herbivorous species. The results showed that strongyles egg excretion increased when horses were fed a high starch diet compared to ahigh fiber diet. At the same time, a dysbiosis of the equine colonic microbiota was observed, suggesting indirect effects mediated by the latter. The anthelmintic effect of sainfoin granules was variable and appeared to be influenced by their polyphenolic composition. The study of several dehydrated sainfoin granules in vitro, in parallel with the metabolomic analysis of their polyphenolic profiles, opened the possibility of an antiparasitic polyphenolic profile of interest. In conclusion, the results of this work show that nutritional interventions could be a good alternative for the control of strongyles infections in horses, and that providing horses with a diet that preserves the balance of the helminth-microbiota-immunity tryptic could be the first key step
Jahnes, Benjamin C. "Host-Microbial Symbiosis Within the Digestive Tract of Periplaneta americana." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595510199092557.
Full textPester, Michael [Verfasser]. "Hydrogen metabolism in the hindgut of lower termites : fluxes of hydrogen-dependent and related processes and identification of the homoacetogenic microbiota / vorgelegt von Michael Pester." 2006. http://d-nb.info/982217463/34.
Full textBook chapters on the topic "Hindgut microbiota"
Lammers-Jannink, Kim C. M., Stefanía Magnúsdóttir, Wilbert F. Pellikaan, John Pluske, and Walter J. J. Gerrits. "Microbial protein metabolism in the monogastric gastrointestinal tract: a review." In Understanding gut microbiomes as targets for improving pig gut health, 435–66. Burleigh Dodds Science Publishing, 2022. http://dx.doi.org/10.19103/as.2021.0089.23.
Full textTorrallardona, David, Joan Tarradas, and Núria Tous. "The use of exogenous enzymes to optimize gut function in pigs." In Understanding gut microbiomes as targets for improving pig gut health, 285–338. Burleigh Dodds Science Publishing, 2022. http://dx.doi.org/10.19103/as.2021.0089.13.
Full textConference papers on the topic "Hindgut microbiota"
Weinert, J. R., and C. A. Williams. "The Hindgut Microbiome of Grazing Horses." In XXV International Grassland Congress. Berea, KY 40403: International Grassland Congress 2023, 2023. http://dx.doi.org/10.52202/071171-0350.
Full text