Books on the topic 'Hilbert space operators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Hilbert space operators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Kubrusly, Carlos S. Hilbert Space Operators. Boston, MA: Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-1-4612-2064-0.
Full textSunder, V. S. Operators on Hilbert Space. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1816-9.
Full textApproximation of Hilbert space operators. 2nd ed. Harlow, Essex, England: Longman Scientific & Technical, 1989.
Find full textHiai, Fumio, and Hideki Kosaki. Means of Hilbert Space Operators. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/b13213.
Full textHiai, Fumio. Means of Hilbert space operators. Fukuoka, Japan: Graduate School of Mathematics, Kyushu University, 2002.
Find full textDunford, Nelson. Linear operators.: Self adjoint operators in Hilbert space. New York: Interscience Publishers, 1988.
Find full textLivšic, Moshe S., and Leonid L. Waksman. Commuting Nonselfadjoint Operators in Hilbert Space. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078925.
Full textAxler, Sheldon, Peter Rosenthal, and Donald Sarason, eds. A Glimpse at Hilbert Space Operators. Basel: Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0347-8.
Full textSołtan, Piotr. A Primer on Hilbert Space Operators. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92061-0.
Full textBlank, Jiří. Hilbert space operators in quantum physics. 2nd ed. [Dordrecht, Netherlands]: Springer, 2008.
Find full text1946-, Exner Pavel, and Havlíček Miloslav, eds. Hilbert space operators in quantum physics. New York: American Institute of Physics, 1994.
Find full textBlank, Jirí. Hilbert space operators in quantum Physics. New York: American Institute of Physics, 1994.
Find full textCiprian, Foiaş, Bercovici Hari 1953-, and Kérchy László 1951-, eds. Harmonic analysis of operators on Hilbert space. New York: Springer, 2010.
Find full textSchmüdgen, Konrad. Unbounded Self-adjoint Operators on Hilbert Space. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4753-1.
Full textSz.-Nagy, Béla, Ciprian Foias, Hari Bercovici, and László Kérchy. Harmonic Analysis of Operators on Hilbert Space. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6094-8.
Full textM, Glazman I., ed. Theory of linear operators in Hilbert space. New York: Dover Publications, 1993.
Find full textSchmüdgen, Konrad. Unbounded Self-adjoint Operators on Hilbert Space. Dordrecht: Springer Netherlands, 2012.
Find full textRetherford, J. R. Hilbert space: Compact operators and the trace theorem. Cambridge [England]: Cambridge University Press, 1993.
Find full text1941-, Rosenthal Peter, ed. An introduction to operators on the Hardy-Hilbert space. New York, N.Y: Springer, 2007.
Find full textDiagana, Toka. Non-archimedean linear operators and applications. Hauppauge, N.Y: Nova Science, 2008.
Find full textHilbert space and quantum mechanics. Hackensack,] New Jersey: World Scientific, 2015.
Find full textPisier, Gilles. The operator Hilbert space OH, complex interpolation, and tensor norms. Providence, R.I: American Mathematical Society, 1996.
Find full textic, Moshe S. Livs. Commuting nonselfadjoint operators in Hilbert space: Two independent studies. Berlin: Springer-Verlag, 1987.
Find full textBirman, M. S., and M. Z. Solomjak. Spectral Theory of Self-Adjoint Operators in Hilbert Space. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4586-9.
Full textBirman, M. Sh. Spectral theory of self-adjoint operators in Hilbert space. Dordrecht: D. Reidel Pub. Co., 1987.
Find full textIntroduction to spectral theory in Hilbert space. Mineola, N.Y: Dover Publications, 2008.
Find full text1948-, Friedman Yaakov, ed. Contractive projections in Cp. Providence, R.I: American Mathematical Society, 1992.
Find full textDiagana, Toka. Non-archimedean linear operators and applications. Hauppauge, N.Y: Nova Science, 2008.
Find full textOperator theory and arithmetic in H [infinity]. Providence, R.I: American Mathematical Society, 1988.
Find full textBernstein, Herbert J. An inequality for self-adjoint operators on a Hilbert space. New York: Courant Institute of Mathematical Sciences, New York University, 1985.
Find full textBernstein, Herbert J. An inequality for self-adjoint operators on a Hilbert space. New York: Courant Institute of Mathematical Sciences, New York University, 1985.
Find full textNest algebras: Triangular forms for operator algebras on Hilbert space. Harlow, Essex, England: Longman Scientific & Technical, 1988.
Find full textAxler, Sheldon Jay. A Glimpse at Hilbert Space Operators: Paul R. Halmos in Memoriam. Basel: Birkhäuser Basel, 2010.
Find full textGrubb, Gerd. Distributions and operators. New York: Springer, 2009.
Find full textSunder, V. S. Operators on Hilbert Space. Springer London, Limited, 2016.
Find full textOperators on Hilbert Space. Springer, 2016.
Find full textSaunder, V. S. Operators on Hilbert Space. Hindustan Book Agency, 2015.
Find full textSołtan, Piotr. A Primer on Hilbert Space Operators. Birkhäuser, 2018.
Find full textStructure of Hilbert Space Operators. World Scientific Publishing Company, 2006.
Find full textHiai, Fumio, and Hideki Kosaki. Means of Hilbert Space Operators. Springer London, Limited, 2003.
Find full textUnbounded Selfadjoint Operators On Hilbert Space. Springer, 2012.
Find full textWeidmann, Joachim, and Joseph Szücs. Linear Operators in Hilbert Spaces. Springer London, Limited, 2012.
Find full textWeidmann, Joachim, and Joseph Szücs. Linear Operators in Hilbert Spaces. Springer, 2012.
Find full textGau, Hwa-Long, and Pei Yuan Wu. Numerical Ranges of Hilbert Space Operators. University of Cambridge ESOL Examinations, 2021.
Find full textExner, Pavel, Jirí Blank, and Miloslav Havlícek. Hilbert Space Operators in Quantum Physics. Springer, 2010.
Find full textGau, Hwa-Long, and Pei Yuan Wu. Numerical Ranges of Hilbert Space Operators. University of Cambridge ESOL Examinations, 2021.
Find full textHilbert Space Operators in Quantum Physics. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8870-4.
Full textHilbert space operators in quantum physics. American Institute of Physics, cop., 2008.
Find full textHilbert space operators in quantum physics. American Institute of Physics, cop., 2008.
Find full textGau, Hwa-Long, and Pei Yuan Wu. Numerical Ranges of Hilbert Space Operators. University of Cambridge ESOL Examinations, 2021.
Find full text