Academic literature on the topic 'Hilbert serie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hilbert serie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hilbert serie"

1

Orús, Román, and Juan Uriagereka. "Sobre álgebra y sintaxis." Revista Española de Lingüística 2, no. 51 (December 18, 2021): 79–92. http://dx.doi.org/10.31810/rsel.51.2.5.

Full text
Abstract:
«Matrix syntax» es un modelo formal de relaciones sintácticas en el lenguaje. La estructura matemática resultante se asemeja a algunos aspectos de la mecánica cuántica. «Matrix syntax» nos permite describir una serie de fenómenos del lenguaje que de otro modo serían muy difíciles de explicar, como las cadenas lingüísticas, y podría decirse que es una teoría del lenguaje más económica que la mayoría de las teorías propuestas en el contexto del programa minimalista en lingüística. En particular, las oraciones se modelan de manera natural como vectores en un espacio de Hilbert con una estructura de producto tensorial, construida a partir de matrices de 2x2.
APA, Harvard, Vancouver, ISO, and other styles
2

Himstedt, Frank, and Peter Symonds. "Equivariant Hilbert series." Algebra & Number Theory 3, no. 4 (June 15, 2009): 423–43. http://dx.doi.org/10.2140/ant.2009.3.423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Iqbal, Zaffar. "Hilbert Series of Positive Braids." Algebra Colloquium 18, spec01 (December 2011): 1017–28. http://dx.doi.org/10.1142/s1005386711000897.

Full text
Abstract:
Deligne proved that the Hilbert series of all Artin monoids are rational functions. We give an algorithm to compute the Hilbert series of the braid monoids [Formula: see text]. We also show that the Hilbert series of the positive words in [Formula: see text] with a given prefix are rational functions.
APA, Harvard, Vancouver, ISO, and other styles
4

Jin, Jianjun, and Shuan Tang. "Generalized Hilbert series operators." Filomat 35, no. 13 (2021): 4577–86. http://dx.doi.org/10.2298/fil2113577j.

Full text
Abstract:
In this note we study the generalized Hilbert series operator H?, induced by a positive Bore measure ? on [0,1), between weighted sequence spaces. We characterize the measures ? for which H? is bounded between different sequence spaces. Finally, for certain special measures, we obtain the sharp norm estimates of the operators and establish some new generalized Hilbert series inequalities with the best constant factors.
APA, Harvard, Vancouver, ISO, and other styles
5

La Scala, Roberto, and Sharwan K. Tiwari. "Computing noncommutative Hilbert series." ACM Communications in Computer Algebra 52, no. 4 (May 30, 2019): 136–38. http://dx.doi.org/10.1145/3338637.3338645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ge, Maorong, Jiayuan Lin, and Yulan Wang. "Hilbert series and Hilbert depth of squarefree Veronese ideals." Journal of Algebra 344, no. 1 (October 2011): 260–67. http://dx.doi.org/10.1016/j.jalgebra.2011.07.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Herbig, Hans-Christian, Daniel Herden, and Christopher Seaton. "Hilbert series associated to symplectic quotients by SU2." International Journal of Algebra and Computation 30, no. 07 (July 24, 2020): 1323–57. http://dx.doi.org/10.1142/s0218196720500435.

Full text
Abstract:
We compute the Hilbert series of the graded algebra of real regular functions on the symplectic quotient associated to an [Formula: see text]-module and give an explicit expression for the first nonzero coefficient of the Laurent expansion of the Hilbert series at [Formula: see text]. Our expression for the Hilbert series indicates an algorithm to compute it, and we give the output of this algorithm for all representations of dimension at most [Formula: see text]. Along the way, we compute the Hilbert series of the module of covariants of an arbitrary [Formula: see text]- or [Formula: see text]-module as well as its first three Laurent coefficients.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Chang-Jian, and Sum Cheung. "Reverse Hilbert inequalities involving series." Publications de l'Institut Math?matique (Belgrade) 105, no. 119 (2019): 81–92. http://dx.doi.org/10.2298/pim1919081z.

Full text
Abstract:
Some reverse Hilbert's type inequalities involving series of nonnegative terms are established by the use of the technique of real analysis, which provides new estimates on inequalities of these type.
APA, Harvard, Vancouver, ISO, and other styles
9

Chardin, Marc, David Eisenbud, and Bernd Ulrich. "Hilbert series of residual intersections." Compositio Mathematica 151, no. 9 (June 9, 2015): 1663–87. http://dx.doi.org/10.1112/s0010437x15007289.

Full text
Abstract:
We give explicit formulas for the Hilbert series of residual intersections of a scheme in terms of the Hilbert series of its conormal modules. In a previous paper, we proved that such formulas should exist. We give applications to the number of equations defining projective varieties and to the dimension of secant varieties of surfaces and three-folds.
APA, Harvard, Vancouver, ISO, and other styles
10

Bigatti, Anna M. "Computation of Hilbert-Poincaré series." Journal of Pure and Applied Algebra 119, no. 3 (July 1997): 237–53. http://dx.doi.org/10.1016/s0022-4049(96)00035-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hilbert serie"

1

BERATTO, EMANUELE. "Infrared properties of three dimensional gauge theories via supersymmetric indices." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402369.

Full text
Abstract:
The thesis focuses on the study of various supersymmetric three-dimensional gauge theories, mainly with at least N = 3 supersymmetry. We range between very different theories and discuss several different aspects with the aim of validate our assumptions. Therefore, the leitmotiv of this work resides not so much in the topics we cover, but rather in the method that we use to obtain such results. This, in fact, consists in analysing the gauge invariant operators of the theory forming the so-called chiral ring. By having access to the chiral ring structure of the theory and to the operators forming it, we gain insight to the properties that needed to confirm or debunk our hypothesis. We will essentially use two different tools for counting and studying such chiral operators: the Hilbert series and the three-dimensional superconformal index. Thanks to the Hilbert series, we propose a quiver description for the mirror theories of the circle reduction of four-dimensional twisted χ(a2N) theories of class S. These mirrors are, in fact, described by "almost" star-shaped quivers containing both unitary and orthosymplectic gauge groups, along with hypermultiplets in the fundamental representation. On the other hand, by means of the superconformal index, we investigate the N = 2 preserving exactly marginal operators of the so called S-fold theories. In particular, we focus on two families of such theories, constructed by gauging the diagonal flavour symmetry of the T(U(N)) and T[2,12][2,12 ](SU(4)) theories. In addition, we also examine in detail the zero-form and one-form global symmetries of the Aharony-Bergman-Jafferis theories, with at least N = 6 supersymmetry, and with both orthosymplectic and unitary gauge groups. A number of dualities among all these theories are discovered and studied using the aforementioned tools.
The thesis focuses on the study of various supersymmetric three-dimensional gauge theories, mainly with at least N = 3 supersymmetry. We range between very different theories and discuss several different aspects with the aim of validate our assumptions. Therefore, the leitmotiv of this work resides not so much in the topics we cover, but rather in the method that we use to obtain such results. This, in fact, consists in analysing the gauge invariant operators of the theory forming the so-called chiral ring. By having access to the chiral ring structure of the theory and to the operators forming it, we gain insight to the properties that needed to confirm or debunk our hypothesis. We will essentially use two different tools for counting and studying such chiral operators: the Hilbert series and the three-dimensional superconformal index. Thanks to the Hilbert series, we propose a quiver description for the mirror theories of the circle reduction of four-dimensional twisted χ(a2N) theories of class S. These mirrors are, in fact, described by "almost" star-shaped quivers containing both unitary and orthosymplectic gauge groups, along with hypermultiplets in the fundamental representation. On the other hand, by means of the superconformal index, we investigate the N = 2 preserving exactly marginal operators of the so called S-fold theories. In particular, we focus on two families of such theories, constructed by gauging the diagonal flavour symmetry of the T(U(N)) and T[2,12][2,12 ](SU(4)) theories. In addition, we also examine in detail the zero-form and one-form global symmetries of the Aharony-Bergman-Jafferis theories, with at least N = 6 supersymmetry, and with both orthosymplectic and unitary gauge groups. A number of dualities among all these theories are discovered and studied using the aforementioned tools.
APA, Harvard, Vancouver, ISO, and other styles
2

Harris, Terri Joan Mrs. "HILBERT SPACES AND FOURIER SERIES." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/244.

Full text
Abstract:
I give an overview of the basic theory of Hilbert spaces necessary to understand the convergence of the Fourier series for square integrable functions. I state the necessary theorems and definitions to understand the formulations of the problem in a Hilbert space framework, and then I give some applications of the theory along the way.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Shengtian. "Orbifold Riemann-Roch and Hilbert series." Thesis, University of Warwick, 2011. http://wrap.warwick.ac.uk/49768/.

Full text
Abstract:
A general Riemann-Roch formula for smooth Deligne-Mumford stacks was obtained by Toen [Toë99]. Using this formula, we obtain an explicit Riemann-Roch formula for quasismooth substacks of weighted projective space, following the ideas in [Nir]. The Riemann-Roch formula enables us to study polarized orbifolds in terms of the associated Hilbert series. Given a polarized projectively Gorenstein quasismooth pair (X, Od∈Z O(d)), we want to parse the Hilbert series P(t) = ∑d>=0 h0(X,OX (d))td according to the orbifold loci. For X with only isolated orbifold points, we give a parsing such that each orbifold point corresponds to a closed term, which only depends on the orbifold type of the point and has Goresntein symmetry property and integral coefficients. Similarly, for the case when X has dimension <= 1 orbifold loci, we can also parse the Hilbert series into closed terms corresponding to orbifold curves and dissident points as well as isolated orbifold points. Our parsing of Hilbert series reflects the global symmetry property of the Gorenstein ring Od>=0 H0(X,OX (d))td in terms of its local data.
APA, Harvard, Vancouver, ISO, and other styles
4

Borkovitz, Debra Kay. "Maximal Hilbert series of quadratic-relator algebras." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Selig, Michael N. "On the Hilbert series of polarised orbifolds." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77578/.

Full text
Abstract:
We are interested in calculating the Hilbert series of a polarised orbifold (X;D) (that is D is an ample divisor on an orbifold X). Indeed, its numerical data is encoded in its Hilbert series, so that calculating this sometimes gives us information about the ring, notably possible generators and relations, using the Hilbert syzygies theorem. Vaguely, we have PX(t) = Num/Denom where Num is given by the relations and syzygies of R and Denom is given by the generators. Thus in particular we hope that we can use the numerical data of the ring to deduce possible explicit constructions. A reasonable goal is therefore to calculate the Hilbert series of a polarised (X;D); we write it in closed form, where each term corresponds to an orbifold stratum, is Gorenstein symmetric and with integral numerator of "short support". The study of the Hilbert series where the singular locus has dimension at most 1 leads to questions about more general rational functions of the form __N___ II(1-tai) with N integral and symmetric. We prove various parsings in terms of the poles at the Uai ; each individual term is Gorenstein symmetric, with integral numerator of "short support" and geometrically corresponds to some orbifold locus. Chapters 1 and 2 are expository material: Chapter 1 is basic introductory material whilst in Chapter 2 we explain the Hilbert series parsing in the isolated singularity case, as solved in Buckley et al. [2013] and Zhou [2011] and go over worked examples for practice. Chapter 3 uses the structure of the parsing in the isolated case and the expected structure in the non-isolated case to discuss generalisations to arbitrary rational functions with symmetry and poles only at certain roots of unity. We prove some special cases. Chapter 4 discusses the Hilbert series parsing in the curve orbifold locus case in a more geometrical setting. Chapter 5 discusses further generalisations and issues. In particular we discuss how the strategies used in Chapter 3 could work in a more general section, and the non symmetric case.
APA, Harvard, Vancouver, ISO, and other styles
6

Niese, Elizabeth M. "Combinatorial Properties of the Hilbert Series of Macdonald Polynomials." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/26702.

Full text
Abstract:
The original Macdonald polynomials $P_\mu$ form a basis for the vector space of symmetric functions which specializes to several of the common bases such as the monomial, Schur, and elementary bases. There are a number of different types of Macdonald polynomials obtained from the original $P_\mu$ through a combination of algebraic and plethystic transformations one of which is the modified Macdonald polynomial $\widetilde{H}_\mu$. In this dissertation, we study a certain specialization $\widetilde{F}_\mu(q,t)$ which is the coefficient of $x_1x_2 ... x_N$ in $\widetilde{H}_\mu$ and also the Hilbert series of the Garsia-Haiman module $M_\mu$. Haglund found a combinatorial formula expressing $\widetilde{F}_\mu$ as a sum of $n!$ objects weighted by two statistics. Using this formula we prove a $q,t$-analogue of the hook-length formula for hook shapes. We establish several new combinatorial operations on the fillings which generate $\widetilde{F}_\mu$. These operations are used to prove a series of recursions and divisibility properties for $\widetilde{F}_\mu$.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
7

Torri, Giuseppe. "Counting gauge invariant operators in supersymmetric theories using Hilbert series." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9989.

Full text
Abstract:
In this thesis, the problem of counting gauge invariant operators in certain supersymmetric theories is discussed. These objects have a very important role in supersymmetric gauge theories, since they can be used to describe the space of zero-energy solutions, called moduli space, of such theories. In order to approach the counting problem, a technique is used based on a function known in Algebraic Geometry as the Hilbert series. For the examined theories, this can be considered a a partition function counting gauge invariant operators in the field theory according to their charges under quantum global symmetries. In the first part of the thesis, particular focus will be given to the application of the Hilbert series to conformal Chern-Simons theories living on the world-volume of M2-branes probing different toric Calabi-Yau 4-fold singularities. It will be shown how the Hilbert series can be combined with the brane tiling formalism to characterise the mesonic moduli space of vacua of a given theory through its generators and the relations they satisfy. Then, toric duality for these theories will be presented, with special attention to the role played by Hilbert series in making such feature manifest between two or more theories. Finally, Chern-Simons theories living on M2-branes probing cones over smooth toric Fano 3-folds and their mesonic Hilbert series will be presented. In the second part, it will be shown how the Hilbert series can be applied to counting gauge invariant operators in supersymmetric generalisations of Quantum Chromodynamics, known as SQCD theories. The discussion will hinge on a specific class of theories, with N multiplets transforming in the fundamental and anti-fundamental and one in the adjoint representation of the gauge group. For each classical group, the Hilbert series of the moduli space will be used to determine the dimension on the spaces, their generators and to argue that they are all Calabi-Yau manifolds.
APA, Harvard, Vancouver, ISO, and other styles
8

Tiwari, Sharwan Kumar [Verfasser]. "Algorithms in Noncommutative Algebras: Gröbner Bases and Hilbert Series / Sharwan Kumar Tiwari." München : Verlag Dr. Hut, 2017. http://d-nb.info/1149579307/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barrera, Salazar Daniel. "Cohomologie surconvergente des variétés modulaires de Hilbert et fonctions L p-adiques." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10014/document.

Full text
Abstract:
Pour une représentation automorphe cuspidale de GL(2,F) avec F un corps de nombres totalement réel, tel que est de type (k, r) et satisfait une condition de pente non critique, l’on construit une distribution p-adique sur le groupe de Galois de l’extension abélienne maximale de F non ramifiée en dehors de p et 1. On démontre que la distribution obtenue est admissible et interpole les valeurs critiques de la fonction L complexe de la représentation automorphe. Cette construction est basée sur l’étude de la cohomologie de la variété modulaire de Hilbert à coefficients surconvergents
For each cohomological cuspidal automorphic representation for GL(2,F) where F is a totally real number field, such that is of type (k, r) tand satisfies the condition of non critical slope we construct a p-adic distribution on the Galois group of the maximal abelian extension of F unramified outside p and 1. We prove that the distribution is admissible and interpolates the critical values of L-function of the automorphic representation. This construction is based on the study of the overconvergent cohomology of Hilbert modular varieties
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Yongxiang. "ARBITRARY ORDER HILBERT SPECTRAL ANALYSIS DEFINITION AND APPLICATION TO FULLY DEVELOPED TURBULENCE AND ENVIRONMENTAL TIME SERIES." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2009. http://tel.archives-ouvertes.fr/tel-00439605.

Full text
Abstract:
La Décomposition Modale Empirique (Empirical Mode Decomposition - EMD) ou la Transformation de Hilbert-Huang (HHT) est une nouvelle méthode d'analyse temps-fréquence qui est particulièrement adaptée pour des séries temporelles nonlinéaires et non stationnaires. Cette méthode a été proposée par NE. HUANG. il y a plus de dix ans. Pendant les dix dernières années, plus de 1000 articles ont appliqué cette méthode dans le cadre de diverses applications ou domaines de recherche. Dans cette thèse, nous appliquons cette méthode à des séries temporelles de turbulence, pour la première fois, et à des séries temporelles environnementales. Nous avons obtenu comme résultat le fait que la méthode EMD correspond à un banc de filtre dyadique (ou quasi-dyadique) pour la turbulence pleinement développée. Pour caractériser les propriétés intermittentes d'une série temporelle invariante d'échelle, nous avons généralisé l'analyse spectrale de Hilbert-Huang classique à des moments d'ordre arbitraire $q$, pour effectuer ce que nous avons appelé ``analyse spectrale de Hilbert d'ordre arbitraire''. Ceci fournit un nouveau cadre pour analyser l'invariance d'échelle directement dans un espace amplitude-fréquence, en estimant une intégrale marginale d'une pdf jointe $p(\omega,\mathcal{A})$ de la fréquence instantanée $\omega$ et de l'amplitude $\mathcal{A}$. Nous validons tout d'abord la méthode en analysant des séries temporelles de mouvement Brownien fractionnaire, et en analysant des séries temporelles multifractales synthétiques, en tant que modèle respectivement de processus monofractals et multifractals. Nous comparons les résultats obtenus avec la nouvelle méthode, à l'analyse classique utilisant les fonctions de structure: nous trouvons numériquement que la méthodologie utilisant l'approche de Hilbert fournit un estimateur plus précis pour le paramètre d'intermittence. Avec une hypothèse de stationarité, nous proposons un modèle analytique pour la fonction d'autocorrélation des incréments de séries temporelles de vitesse $\Delta u_{\ell}(t)$, où $\Delta u_{\ell}(t)=u(t+\ell)-u(t)$, et $\ell$ est l'incrément temporel. Dans le cadre de ce modèle, nous prouvons analytiquement que, si une loi de puissance est valide pour la série d'origine, la position minimisant la fonction d'autocorrélation de la variable d'origine est égale exactement au temps de séparation $\ell$ lorsque $\ell$ appartient à la zone invariante d'échelle. Ce modèle prédit une loi de puissance pour la valeur minimum, comportement vérifié par une simulation de mouvement Brownien fractionnaire et à partir de données expérimentales de turbulence. En introduisant une fonction cumulative pour la fonction d'autocorrélation, la contribution en échelle est alors caractérisée dans l'espace de fréquence de Fourier. Nous observons que la contribution principale à la fonction d'autocorrélation provient des grandes échelles. La même idée est appliquée à la fonction de structure d'ordre 2. Nous obtenons que celle-ci est également fortement influencée par les grandes échelles, ce qui montre que ceci n'est pas une bonne approche pour extraire les exposants invariants d'échelle d'une série temporelle lorsque les données sont caractérisées par des grandes échelles énergétiques. Nous appliquons ensuite cette méthodologie Hilbert-Huang à une base de données de turbulence homogène et presque isotrope, pour caractériser les propriétés multifractales invariantes d'échelle des série temporelles de vitesse en turbulence pleinement développée. Nous obtenons un comportement invariant d'échelle pour la pdf jointe $p(\omega,\mathcal{A})$ avec un exposant proche de la valeur de Kolmogorov. Nous estimons les exposants $\zeta(q)$ dans un espace amplitude-fréquence, pour la première fois. L'hypothèse d'isotropie est testée échelle par échelle dans l'espace amplitude-fréquence. Nous obtenons que le rapport d'isotropie généralisé décroit linéairement avec le moment $q$. Nous effectuons également l'analyse d'une série temporelle de température (scalaire passif) possédant un effet de rampe marqué (ramp-cliff). Pour ces données, l'approche traditionnelle utilisant les fonctions de structure ne fonctionne pas. Mais la nouvelle méthode développée dans cette thèse fournit un net régime invariant d'échelle jusqu'au moment $q=8$. Les exposants $\xi_{\theta}(q)-1$ sont très proches des exposants $\zeta(q)$ obtenus par l'approche des fonctions de structure pour la vitesse longitudinale. Nous nous intéressons ensuite à l'auto-similarité étendue (Extended Self Similarity - ESS) dans le cadre Hilbert-Huang. En ce qui concerne la méthode ESS, qui est devenue classique en turbulence, nous adaptons l'approche pour le cas Hilbert-Huang dans un espace de fréquence, et nous constatons que le modèle lognormal, avec un coefficient adéquat, fournit une très bonne estimation des exposants invariants d'échelle. Finalement nous appliquons la nouvelle méthodologie à des données environnementales: des débits de rivières, et des données de turbulence marine dans la zone de surf. Dans ce dernier cas, la méthode ESS permet de séparer les ondes de vent de la turbulence à petite échelle.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hilbert serie"

1

1937-, Huang N. E., and Shen Samuel S, eds. The Hilbert-Huang transform and its applications. New Jersey: World Scientific, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

En-Ching, Hsu, ed. Hilbert-Huang transform analysis of hydrological and environmental time series. Dordrecht: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rao, A. Ramachandra. Hilbert-Huang transform analysis of hydrological and environmental time series. Dordrecht: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rao, A. Ramachandra. Hilbert-Huang transform analysis of hydrological and environmental time series. Dordrecht: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alberto, Corso, and Polini Claudia 1966-, eds. Commutative algebra and its connections to geometry: Pan-American Advanced Studies Institute, August 3--14, 2009, Universidade Federal de Pernambuco, Olinda, Brazil. Providence, R.I: American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shen, Samuel S., and N. E. Huang. Hilbert-Huang Transform and Its Applications. World Scientific Publishing Co Pte Ltd, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

United States Geological Survey. Hilbert quadrangle, Wisconsin, 1992: 7.5 minute series (topographic). Wisconsin Geological and Natural History Survey, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nakajima, Hiraku. Lectures on Hilbert Schemes of Points on Surfaces (University Lecture Series). American Mathematical Society, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Strongly Irreducible Operators on Hilbert Space (Research Notes in Mathematics Series). Chapman & Hall/CRC, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hilbert-Huang Transform Analysis Of Hydrological And Environmental Time Series. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6454-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hilbert serie"

1

Herzog, Bernd. "Hilbert series." In Kodaira-Spencer Maps in Local Algebra, 76–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0074032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Metcalfe, George, Nicola Olivetti, and Dov Gabbay. "Hilbert Systems." In Applied Logic Series, 37–66. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9409-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kemper, Gregor. "Hilbert Series and Dimension." In Graduate Texts in Mathematics, 151–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03545-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brockwell, Peter J., and Richard A. Davis. "Hilbert Spaces." In Springer Series in Statistics, 42–76. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4419-0320-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brockwell, Peter J., and Richard A. Davis. "Hilbert Spaces." In Springer Series in Statistics, 42–76. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4899-0004-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maruyama, Toru. "Fourier Series on Hilbert Spaces." In Monographs in Mathematical Economics, 1–21. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2730-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nakajima, Hiraku. "Hilbert scheme of points." In University Lecture Series, 5–16. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/ulect/018/02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ghorpade, Sudhir R., and Christian Krattenthaler. "The Hilbert Series of Pfaffian Rings." In Algebra, Arithmetic and Geometry with Applications, 337–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18487-1_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Luo, Wenzhi. "Poincaré Series and Hilbert Modular Forms." In Developments in Mathematics, 129–40. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-6044-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hromadka, Theodore V., Chung-Cheng Yen, and George F. Pinder. "Hilbert Space and Generalized Fourier Series." In Lecture Notes in Engineering, 42–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83038-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hilbert serie"

1

Sun, Baoju. "Hilbert Type Inequality for Finite Series." In 2016 5th International Conference on Measurement, Instrumentation and Automation (ICMIA 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmia-16.2016.140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Baoju. "A Hilbert Type Inequality for Finite Series." In 2017 7th International Conference on Manufacturing Science and Engineering (ICMSE 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/icmse-17.2017.66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ortega, Joaqui´n, and George H. Smith. "Empirical Assay of the Use of the Hilbert-Huang Transform for the Spectral Analysis of Storm Waves." In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57461.

Full text
Abstract:
The Hilbert-Huang Transform (HHT) was proposed by Huang et al. [2] as a method for the analysis of non-linear, non-stationary time series. This procedure requires the decomposition of the signal into intrinsic mode functions using a method called empirical mode decomposition. These functions represent the essential oscillatory modes contained in the original signal. Their characteristics ensure that a meaningful instantaneous frequency is obtained through the application of the Hilbert Transform. The Hilbert Transform is applied to each intrinsic mode function and the amplitude and instantaneous frequency for every time-step is computed. The resulting representation of the energy in terms of time and frequency is defined as the Hilbert Spectrum. In previous work [7] using the HHT for the analysis of storm waves it has been observed that the number of IMFs needed for the decomposition and the amount of energy associated to different IMFs differ from what has been observed for the analysis of waves under ‘normal’ sea conditions by other authors. In this work we explore in detail the effect that the sampling rate has in the empirical mode decomposition and in the Hilbert Spectrum for storm waves. The results show that the amount of energy associated to different IMFs varies with the sampling rate and also that the number of IMFs needed for the empirical mode decomposition changes with record length.
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Baoju. "On the extension of Hilbert Inequality for Finite Series." In 3rd International Conference on Mechatronics, Robotics and Automation. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmra-15.2015.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pesce, Celso P., Andre´ L. C. Fujarra, and Leonardo K. Kubota. "The Hilbert-Huang Spectral Analysis Method Applied to VIV." In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92119.

Full text
Abstract:
Vortex-Induced Vibration (VIV) is a highly nonlinear dynamic phenomenon. Usual spectral analysis methods rely on the hypotheses of linear and stationary dynamics. A new method envisaged to treat nonlinear and non-stationary signals was presented by Huang et al. [1] : The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. This technique, called thereafter the Hilbert-Huang transform (or spectral analysis) method, is here applied to VIV phenomena, aiming at disclosing some hidden dynamic characteristics, such as the time-modulation and jumps of multi-branched response frequencies and their related energy spectra.
APA, Harvard, Vancouver, ISO, and other styles
6

Sarkar, Soumik, Kushal Mukherjee, and Asok Ray. "Symbolic analysis of time series signals using generalized Hilbert transform." In 2009 American Control Conference. IEEE, 2009. http://dx.doi.org/10.1109/acc.2009.5159908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hashemi, Amir. "Polynomial-time algorithm for Hilbert series of Borel type ideals." In ISSAC07: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2007. http://dx.doi.org/10.1145/1277500.1277516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gkikas, G. D. "Development of a Novel Time-Frequency Enhanced Volterra System Identification Method for the Modeling of a Nonlinear OWC Wave Energy Converter Under Irregular Sea Wave Excitation." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23436.

Full text
Abstract:
A system identification method combining the virtues of the Volterra series and Hilbert-Huang transform and developed for the modelling of the nonlinear dynamic pressure fluctuation inside the chamber of an Oscillating Water Column wave energy converter (OWC-WEC) is presented. The proposed method is validated for the case where the excitation corresponds to a general nonlinear stationary signal.
APA, Harvard, Vancouver, ISO, and other styles
9

Davis, Jeffery Jonathan, and Robert Kozma. "Amplitude-phase relationship of brain dynamics viewed by ECoG using FIR-based Hilbert analysis." In 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017. http://dx.doi.org/10.1109/ssci.2017.8285234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lu, Zhengdong, Todd K. Leen, Yonghong Huang, and Deniz Erdogmus. "A reproducing kernel Hilbert space framework for pairwise time series distances." In the 25th international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1390156.1390235.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hilbert serie"

1

Histova, Elitza. Hilbert Series and Invariants in Exterior Algebras. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2020. http://dx.doi.org/10.7546/crabs.2020.02.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography