Academic literature on the topic 'Higher order logics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Higher order logics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Higher order logics"
Finkelstein, David. "Higher-order quantum logics." International Journal of Theoretical Physics 31, no. 9 (September 1992): 1627–38. http://dx.doi.org/10.1007/bf00671777.
Full textHella, Lauri, and José M. Turull-Torres. "Expressibility of Higher Order Logics." Electronic Notes in Theoretical Computer Science 84 (September 2003): 129–40. http://dx.doi.org/10.1016/s1571-0661(04)80850-8.
Full textAguirre, Alejandro, Gilles Barthe, Marco Gaboardi, Deepak Garg, Shin-ya Katsumata, and Tetsuya Sato. "Higher-order probabilistic adversarial computations: categorical semantics and program logics." Proceedings of the ACM on Programming Languages 5, ICFP (August 22, 2021): 1–30. http://dx.doi.org/10.1145/3473598.
Full textDal Lago, Ugo, Simone Martini, and Davide Sangiorgi. "Light Logics and Higher-Order Processes." Electronic Proceedings in Theoretical Computer Science 41 (November 28, 2010): 46–60. http://dx.doi.org/10.4204/eptcs.41.4.
Full textDAL LAGO, UGO, SIMONE MARTINI, and DAVIDE SANGIORGI. "Light logics and higher-order processes." Mathematical Structures in Computer Science 26, no. 6 (November 17, 2014): 969–92. http://dx.doi.org/10.1017/s0960129514000310.
Full textHella, Lauri, and José María Turull-Torres. "Computing queries with higher-order logics." Theoretical Computer Science 355, no. 2 (April 2006): 197–214. http://dx.doi.org/10.1016/j.tcs.2006.01.009.
Full textCrary, Karl. "Higher-order representation of substructural logics." ACM SIGPLAN Notices 45, no. 9 (September 27, 2010): 131–42. http://dx.doi.org/10.1145/1932681.1863565.
Full textBenzmüller, Christoph, Dov Gabbay, Valerio Genovese, and Daniele Rispoli. "Embedding and automating conditional logics in classical higher-order logic." Annals of Mathematics and Artificial Intelligence 66, no. 1-4 (September 25, 2012): 257–71. http://dx.doi.org/10.1007/s10472-012-9320-z.
Full textAndrews, James H. "An untyped higher order logic with Y combinator." Journal of Symbolic Logic 72, no. 4 (December 2007): 1385–404. http://dx.doi.org/10.2178/jsl/1203350794.
Full textSági, Gábor. "A completeness theorem for higher order logics." Journal of Symbolic Logic 65, no. 2 (June 2000): 857–84. http://dx.doi.org/10.2307/2586575.
Full textDissertations / Theses on the topic "Higher order logics"
Assaf, Ali. "A framework for defining computational higher-order logics." Palaiseau, Ecole polytechnique, 2015. https://theses.hal.science/tel-01235303v4/document.
Full textFreire, Cibele Matos. "Complexidade descritiva das lÃgicas de ordem superior com menor ponto fixo e anÃlise de expressividade de algumas lÃgicas modais." Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6359.
Full textIn Descriptive Complexity, we investigate the use of logics to characterize computational classes os problems through complexity. Since 1974, when Fagin proved that the class NP is captured by existential second-order logic, considered the rst result in this area, other relations between logics and complexity classes have been established. Wellknown results usually involve rst-order logic and its extensions, and complexity classes in polynomial time or space. Some examples are that the rst-order logic extended by the least xed-point operator captures the class P and the second-order logic extended by the transitive closure operator captures the class PSPACE. In this dissertation, we will initially analyze the expressive power of some modal logics with respect to the decision problem REACH and see that is possible to express it with temporal logics CTL and CTL. We will also analyze the combined use of higher-order logics extended by the least xed-point operator and obtain as result that each level of this hierarchy captures each level of the deterministic exponential time hierarchy. As a corollary, we will prove that the hierarchy of HOi(LFP), for i 2, does not collapse, that is, HOi(LFP) HOi+1(LFP)
TEICA, ELENA. "FORMAL CORRECTNESS AND COMPLETENESS FOR A SET OF UNINTERPRETED RTL TRANSFORMATIONS." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1001432470.
Full textFreire, Cibele Matos. "Complexidade descritiva das lógicas de ordem superior com menor ponto fixo e análise de expressividade de algumas lógicas modais." reponame:Repositório Institucional da UFC, 2010. http://www.repositorio.ufc.br/handle/riufc/17668.
Full textApproved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-06-14T19:48:16Z (GMT) No. of bitstreams: 1 2010_dis_cmfreire.pdf: 426798 bytes, checksum: 4ad13c09839833ee22b0396a445e8a26 (MD5)
Made available in DSpace on 2016-06-14T19:48:16Z (GMT). No. of bitstreams: 1 2010_dis_cmfreire.pdf: 426798 bytes, checksum: 4ad13c09839833ee22b0396a445e8a26 (MD5) Previous issue date: 2010
In Descriptive Complexity, we investigate the use of logics to characterize computational classes os problems through complexity. Since 1974, when Fagin proved that the class NP is captured by existential second-order logic, considered the rst result in this area, other relations between logics and complexity classes have been established. Wellknown results usually involve rst-order logic and its extensions, and complexity classes in polynomial time or space. Some examples are that the rst-order logic extended by the least xed-point operator captures the class P and the second-order logic extended by the transitive closure operator captures the class PSPACE. In this dissertation, we will initially analyze the expressive power of some modal logics with respect to the decision problem REACH and see that is possible to express it with temporal logics CTL and CTL . We will also analyze the combined use of higher-order logics extended by the least xed-point operator and obtain as result that each level of this hierarchy captures each level of the deterministic exponential time hierarchy. As a corollary, we will prove that the hierarchy of HOi(LFP), for i 2, does not collapse, that is, HOi(LFP) HOi+1(LFP)
Em Complexidade Descritiva investigamos o uso de logicas para caracterizar classes problemas pelo vies da complexidade. Desde 1974, quando Fagin provou que NP e capturado pela logica existencial de segunda-ordem, considerado o primeiro resultado da area, outras relac~oes entre logicas e classes de complexidade foram estabelecidas. Os resultados mais conhecidos normalmemte envolvem logica de primeira-ordem e suas extens~oes, e classes de complexidade polinomiais em tempo ou espaco. Alguns exemplos são que a l ogica de primeira-ordem estendida com o operador de menor ponto xo captura a clsse P e que a l ogica de segunda-ordem estendida com o operador de fecho transitivo captura a classe PSPACE. Nesta dissertação, analisaremos inicialmente a expressividade de algumas l ogicas modais com rela cão ao problema de decisão REACH e veremos que e poss vel express a-lo com as l ogicas temporais CTL e CTL . Analisaremos tamb em o uso combinado de l ogicas de ordem superior com o operador de menor ponto xo e obteremos como resultado que cada n vel dessa hierarquia captura cada n vel da hierarquia determin stica em tempo exponencial. Como corol ario, provamos que a hierarquia de HOi(LFP) não colapsa, ou seja, HOi(LFP) HOi+1(LFP)
FREIRE, Cibele Matos. Complexidade descritiva das lógicas de ordem superior com menor ponto fixo e análise de expressividade de algumas lógicas modais. 2010. 54 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências, Departamento de Computação, Fortaleza-CE, 2010.
Krishnaswami, Neelakantan R. "Verifying Higher-Order Imperative Programs with Higher-Order Separation Logic." Research Showcase @ CMU, 2012. http://repository.cmu.edu/dissertations/164.
Full textZardini, Elia. "Living on the slippery slope : the nature, sources and logic of vagueness." Thesis, St Andrews, 2008. http://hdl.handle.net/10023/508.
Full textNesi, Monica. "Formalising process calculi in higher order logic." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627495.
Full textCamilleri, Albert John. "Executing behavioural definitions in Higher Order Logic." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.232795.
Full textSultana, Nikolai. "Higher-order proof translation." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/247345.
Full textFritz, Peter. "Intensional type theory for higher-order contingentism." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:b9415266-ad21-494a-9a78-17d2395eb8dd.
Full textBooks on the topic "Higher order logics"
Paulson, Lawrence C. The representation of logics in higher-order logic. Cambridge: University of Cambridge, Computer Laboratory, 1987.
Find full textCarreño, Victor A., César A. Muñoz, and Sofiène Tahar, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45685-6.
Full textSlind, Konrad, Annette Bunker, and Ganesh Gopalakrishnan, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b100400.
Full textMohamed, Otmane Ait, César Muñoz, and Sofiène Tahar, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71067-7.
Full textBasin, David, and Burkhart Wolff, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/b11935.
Full textBertot, Yves, Gilles Dowek, Laurent Théry, André Hirschowitz, and Christine Paulin, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48256-3.
Full textSchneider, Klaus, and Jens Brandt, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74591-4.
Full textGrundy, Jim, and Malcolm Newey, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0055125.
Full textGoos, Gerhard, Juris Hartmanis, Jan van Leeuwen, Joakim von Wright, Jim Grundy, and John Harrison, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0105392.
Full textBerghofer, Stefan, Tobias Nipkow, Christian Urban, and Makarius Wenzel, eds. Theorem Proving in Higher Order Logics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03359-9.
Full textBook chapters on the topic "Higher order logics"
Kropf, Thomas. "Higher-Order Logics." In Introduction to Formal Hardware Verification, 207–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03809-3_5.
Full textLu, Jianguo, Masateru Harao, and Masami Hagiya. "Higher Order Generalization." In Logics in Artificial Intelligence, 368–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-49545-2_25.
Full textCharalambidis, Angelos, Konstantinos Handjopoulos, Panos Rondogiannis, and William W. Wadge. "Extensional Higher-Order Logic Programming." In Logics in Artificial Intelligence, 91–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15675-5_10.
Full textGordon, Michael J. C. "Mechanizing Programming Logics in Higher Order Logic." In Current Trends in Hardware Verification and Automated Theorem Proving, 387–439. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3658-0_10.
Full textLescanne, Pierre. "Common Knowledge Logic in a Higher Order Proof Assistant." In Programming Logics, 271–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37651-1_11.
Full textHella, Lauri, and José María Turull-Torres. "Complete Problems for Higher Order Logics." In Computer Science Logic, 380–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11874683_25.
Full textTurull-Torres, José Maria. "Relational Complexity and Higher Order Logics." In Lecture Notes in Computer Science, 311–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30024-5_17.
Full textHintikka, Jaakko. "Standard vs. Nonstandard Logic: Higher-Order, Modal, and First-Order Logics." In Language, Truth and Logic in Mathematics, 130–43. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-2045-8_7.
Full textHintermeier, Claus, Hélène Kirchner, and Peter D. Mosses. "R n - and G n -logics." In Higher-Order Algebra, Logic, and Term Rewriting, 90–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61254-8_21.
Full textBenzmüller, Christoph, and Bruno Woltzenlogel Paleo. "Higher-Order Modal Logics: Automation and Applications." In Reasoning Web. Web Logic Rules, 32–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21768-0_2.
Full textConference papers on the topic "Higher order logics"
Crary, Karl. "Higher-order representation of substructural logics." In the 15th ACM SIGPLAN international conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1863543.1863565.
Full textMaruyama, Yoshihiro. "Higher-Order Fuzzy Logics and their Categorical Semantics: Higher-Order Linear Completeness and Baaz Translation via Substructural Tripos Theory." In 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2021. http://dx.doi.org/10.1109/fuzz45933.2021.9494453.
Full textBenzmüller, Christoph. "A (Simplified) Supreme Being Necessarily Exists, says the Computer: Computationally Explored Variants of Gödel's Ontological Argument." In 17th International Conference on Principles of Knowledge Representation and Reasoning {KR-2020}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/kr.2020/80.
Full textRose, Judy, and Samantha Low-Choy. "Modern Pedagogical Approaches to Teaching Mixed Methods to Social Science Researchers." In Fifth International Conference on Higher Education Advances. Valencia: Universitat Politècnica València, 2019. http://dx.doi.org/10.4995/head19.2019.9509.
Full textLiu, Qiang, and Yongmei Liu. "Multi-agent Epistemic Planning with Common Knowledge." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/264.
Full textSchwering, Christoph. "A Reasoning System for a First-Order Logic of Limited Belief." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/173.
Full textCharalambidis, Angelos, Panos Rondogiannis, and Antonis Troumpoukis. "Higher-order logic programming." In PPDP '16: 18th International Symposium on Principles and Practice of Declarative Programming. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2967973.2968607.
Full textHowe, Douglas J. "Higher-order abstract syntax in classical higher-order logic." In the Fourth International Workshop. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1577824.1577826.
Full textLi, Linna, and Wei Zhang. "Higher-Order Logic Recommender System." In 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. IEEE, 2008. http://dx.doi.org/10.1109/wiiat.2008.196.
Full textQian, Zhenyu. "Higher-order equational logic programming." In the 21st ACM SIGPLAN-SIGACT symposium. New York, New York, USA: ACM Press, 1994. http://dx.doi.org/10.1145/174675.177889.
Full textReports on the topic "Higher order logics"
Archer, Myla M., Ben L. DiVito, and Cesar Munoz. Proceedings STRATA 2003. First International Workshop on Design and Application of Strategies/Tactics in Higher Order Logics; Focus on PVS Experiences. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada418902.
Full textJindal, A., R. Overbeek, and W. McCune. A parallel processing approach for implementing high-performance first-order logic deduction systems. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6215473.
Full text