Academic literature on the topic 'High voltage insulating'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High voltage insulating.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "High voltage insulating"

1

Park, Herie, Dong-Young Lim, and Sungwoo Bae. "Surface Discharge Mechanism on Epoxy Resin in Electronegative Gases and Its Application." Applied Sciences 10, no. 19 (September 24, 2020): 6673. http://dx.doi.org/10.3390/app10196673.

Full text
Abstract:
This study presents the surface discharge characteristics of insulating gases, including sulfur hexafluoride (SF6), dry air, and N2, under a non-uniform field. Surface discharge experiments were conducted, with the gas pressure ranging from 0.1 to 0.6 MPa, on samples of epoxy dielectrics under an AC voltage. The experimental results showed that the surface insulation performance significantly improved in insulating gases possessing electronegative gases, such as SF6 and dry air. Surface flashover voltages of SF6 were saturated with an increasing pressure, compared to dry air and N2. The surface discharge mechanism is proposed to explain the improvement and saturation of dielectric characteristics of the electronegative gas in complex dielectric insulations, as well as its influence on the surface flashover voltage. As an application, an insulation design method is discussed with regards to replacing SF6 gas in high-voltage power equipment based on the knowledge of the physics behind gas discharge.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Guangquan, Xueqin Zhang, Bo Wang, Yujun Guo, Guoqiang Gao, and Guangning Wu. "Study on the Discharge Characteristics along the Surface and Charge Movement Characteristics of Insulating Media in an Airflow Environment." Energies 15, no. 10 (May 18, 2022): 3706. http://dx.doi.org/10.3390/en15103706.

Full text
Abstract:
The gas–solid interface of high-voltage insulating equipment is a weaker part of insulating equipment insulation, and preventing the occurrence of discharge along the surface of insulating equipment is a critical problem for high-voltage insulation. This article investigates the discharge characteristics and charge movement characteristics of insulating media under an airflow environment. The surface discharge characteristics of the insulating medium in the airflow environment were obtained by using a high-velocity airflow test platform, and the surface discharge voltage characteristics, discharge path characteristics, and force conditions of the discharge process were analyzed. The surface charge motion characteristics of the insulating medium in the high-velocity airflow environment were also tested, and the distribution characteristics, dissipation characteristics and conduction mechanism of the surface charge of the insulating medium in the high-velocity airflow environment were revealed. The research results showed that: the discharge voltage along the insulating medium surface gradually increases with the increasing velocity of airflow; the discharge path along the surface of the insulating medium gradually shifts backward under the action of airflow; under the action of airflow, the charge on the insulating medium surface is blown away, thus reducing the charge concentration on the insulating medium surface; the trap level center of the insulating medium gradually decreases under the action of airflow, which provides the conditions for the charge blowing effect on the insulating medium surface. This investigation supplies the theory support for the protection of insulation equipment in an airflow environment and technical guidance for the insulation design of insulating equipment in an airflow environment to ensure the secure and steady running of insulating equipment in high-speed trains and high-voltage transmission lines.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Chao, Lin Lin, and Weidong Qu. "Study on insulation performance optimization of EMU high-voltage equipment box." Journal of Physics: Conference Series 2195, no. 1 (February 1, 2022): 012040. http://dx.doi.org/10.1088/1742-6596/2195/1/012040.

Full text
Abstract:
Abstract The EMU high-voltage electrical equipment on the roof not only bears the erosion of various harsh and extreme environments, but also bears the impact of various over-voltage, and the insulation performance of the electrical equipment on the roof is seriously threatened. This paper studies the insulation optimization design method of EMU high-voltage electrical equipment, puts forward the method of adding a certain length of insulating sheath on the electrical equipment to improve the insulation performance of high-voltage equipment box, and tests the insulation optimization measures on high-voltage circuit breaker and EMU high-voltage cable. The result shows that the installation of insulating sheath is feasible to improve the insulation performance of EMU high-voltage equipment box.
APA, Harvard, Vancouver, ISO, and other styles
4

Hayashi, Toshihiko, Toru Izumi, Tetsuro Hemmi, and Katsunori Asano. "Insulating Properties of Package for Ultrahigh-Voltage, High-Temperature Devices." Materials Science Forum 740-742 (January 2013): 1036–39. http://dx.doi.org/10.4028/www.scientific.net/msf.740-742.1036.

Full text
Abstract:
Insulating properties of package for ultrahigh-voltage, high-temperature devices have been investigated. While all the packages have enough insulating strength at room temperature, deterioration of the insulating property at high temperature has been found with some packages. The authors have found that this deterioration is attributed to degrade the insulation property of AlN ceramics for DBC substrate at high temperature and that there is a various degree in the deterioration.
APA, Harvard, Vancouver, ISO, and other styles
5

Rozga, Pawel, and Abderahhmane Beroual. "High Voltage Insulating Materials—Current State and Prospects." Energies 14, no. 13 (June 25, 2021): 3799. http://dx.doi.org/10.3390/en14133799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Gang, Hongda Li, Mingcheng Gao, and Long Che. "Numerical simulation of the breakdown process of dielectric in high voltage pulse discharge." Journal of Physics: Conference Series 2479, no. 1 (April 1, 2023): 012009. http://dx.doi.org/10.1088/1742-6596/2479/1/012009.

Full text
Abstract:
Abstract In order to study the breakdown process of the insulating medium of the needle-needle electrode under the action of high-voltage pulse discharge, the HV-LAB simulation software was used to study the discharge channel formed in the three kinds of insulating media, namely water, transformer oil, and air, and the three-dimensional model of the discharge breakdown insulating medium was designed. The process of discharge channel expansion, voltage, current, power, and energy loss in the discharge channel is analyzed. The results show that in the process of high-voltage pulse discharge breakdown of the insulating medium, the formation time of the discharge channel of transformer oil is long, the energy is accumulated, the number of discharge channels is less, the horizontal isopotential lines are dense, and the energy is concentrated. Under the same discharge conditions, the energy consumption of transformer oil in the process of high-voltage pulse discharge is the least. The results of this study can provide a reference for the selection of high-voltage crushing insulation medium.
APA, Harvard, Vancouver, ISO, and other styles
7

Tian, Chen, Zhiping Zhu, Jianping Liao, Zhifeng Liu, Fan Gao, Yufei Chen, and Zhenggang Wang. "The study of the electrical properties of nano insulating oil for submarine cables." E3S Web of Conferences 522 (2024): 01019. http://dx.doi.org/10.1051/e3sconf/202452201019.

Full text
Abstract:
At present, the alkylbenzene insulation oil for submarine cables of 220kV and above in China relies on imports, which poses high maintenance costs and supply interruption risks. Nano modified insulating oil has excellent electrical properties and broad application prospects in power systems. Therefore, nano SiO2 modified insulating oil was prepared, and the effects of APTES modified and unmodified nano SiO2 on the viscosity, breakdown voltage, and dielectric loss factor of the insulating oil were compared. The results showed that the viscosity of alkylbenzene insulating oil did not change significantly after the addition of nanoparticles, which met the operating standards for submarine cable oil; The breakdown voltage of the modified nano insulating oil has significantly increased, with a breakdown voltage of 0.12g/L being the highest. The breakdown voltage of the unmodified nano insulating oil has significantly decreased. The dielectric loss factors of modified and unmodified nano insulating oils do not vary significantly. This article provides theoretical and practical references for the domestic substitution research of submarine cable insulation oil.
APA, Harvard, Vancouver, ISO, and other styles
8

Rafiq, Muhammad, Muhammad Shafique, Anam Azam, Muhammad Ateeq, Israr Ahmad Khan, and Abid Hussain. "Sustainable, Renewable and Environmental-Friendly Insulation Systems for High Voltages Applications." Molecules 25, no. 17 (August 27, 2020): 3901. http://dx.doi.org/10.3390/molecules25173901.

Full text
Abstract:
With the inception of high voltage (HV), requisites on the insulating permanence of HV equipment is becoming increasingly crucial. Mineral/synthetic oil liquid insulation—together with solid insulation materials (paper, pressboard)—is the fundamental insulation constituent in HV apparatuses; their insulation attributes perform a substantial part in a reliable and steady performance. Meanwhile, implications on the environment, scarcity of petroleum oil supplies and discarding complications with waste oil have stimulated investigators to steer their attention towards sustainable, renewable, biodegradable and environmentally friendly insulating substances. The contemporary insulating constituent’s evolution is driven by numerous dynamics—in particular, environmental obligations and other security and economic issues. Consequently, HV equipment manufacturers must address novel specifications concerning to these new standards. Renewable, sustainable and environmentally friendly insulating materials are continuously substituting conventional insulating items in the market place. These are favorable to traditional insulating materials, due to their superior functionality. The also offer explicit security and eco-friendly advantages. This article discusses cutting-edge technology of environmentally friendly insulating materials, including their fabrication, processing and characterization. The new renewable, insulating systems used in HV equipment are submitted and their fundamental gains stated in comparison with conventional insulating materials. Several experimental efforts carried out in various parts of the world are presented, offering an outline of the existing research conducted on renewable insulating systems. The significance of this article lies in summarizing prior investigations, classifying research essence, inducements and predicting forthcoming research trends. Furthermore, opportunities and constraints being experienced in the field of exploration are evidently reported. Last but not least, imminent research proposals and applications are recommended.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhorniak, Liudmyla, Alexej Afanasiev, Vitaliy Schus, and Oleksandr Levchenko. "To the problem of the shielding systems efficiency in constructions of extra-high voltage electrical apparatus." Bulletin of NTU "KhPI". Series: Problems of Electrical Machines and Apparatus Perfection. The Theory and Practice, no. 1 (11) (July 23, 2024): 3–9. http://dx.doi.org/10.20998/2079-3944.2024.1.01.

Full text
Abstract:
In the article, the authors proposed a method for estimating the electric load parameters to calculate the distribution of the electric field strength of the solid insulating structure of gas-filled high-voltage devices with axial symmetry. This structure consists of a support and insulating busbar filled with SF6 gas as an internal insulating medium. This technique allows to evaluate the parameters of the electrical load (voltage and field strength) depen-ding on the design features of the device and the shielding system used to equalize the electric field. The proposed methodology allows to evaluate the effectiveness of the influence of design parameters of the protection system for gas-filled high-voltage equipment (instrument transformers, arresters, surge arresters, etc.) when designing and improving individual design solutions. The calculation results are in good agreement with the data of experimental studies and statistical information obtained as a result of monitoring the operation of insulating structures, taking into account actual operating conditions and the influence of external factors. The implementation of this technique allows us to take into account the influence of external factors and operational characteristics inherent in instrument transformers and surge suppressors. In the proposed methodology, as an example, we consider a supporting insulating coating that is in operation under the most unfavorable conditions, such as external pollution, moisture and their combination, overvoltage of various origins, etc. The theoretical conclusions are confirmed by the results of calculations using the example of the support-insulating cover of the surge suppressor of the OПН-500 series. A more accurate determination of the effectiveness of the proposed methodology for predicting the field strength distribution parameters under the influence of a shielding system can be achieved by conducting an additional series of calculations and experimental tests of specific insulating structures. Thus, it was concluded that the obtained results can be used to evaluate the external insulation characteristics of both surge suppressors and gas-filled instrument transformers, as well as similar high-voltage equipment of switchgears and transformer substations in conditions of ultra- and transformer substations ultra-high voltages
APA, Harvard, Vancouver, ISO, and other styles
10

Mukherjee, Shubhankan, Adhir Baran Chattopadhyay, and Sunil Thomas. "Electrostatic field theoretic approach to analyze the partial discharge phenomenon pertaining to insulation degradation." International Journal of Engineering & Technology 7, no. 2 (June 1, 2018): 842. http://dx.doi.org/10.14419/ijet.v7i2.12095.

Full text
Abstract:
This paper elucidates the application of electrostatic field theory to analyze partial discharge due to the void formation inside the insulating material. Formation of voids leads to accumulation of static charges leading to capacitance build-up. The most probable cause of insulation failure is due to the subjection of high voltage. Prolonged high voltage poses a threat and leads to insulation failure. Failures occur in the tip gap between the conductor and insulating material’s inner periphery. Probable causes of such failures are corona discharge, surface discharge and treeing, leading to formation of Lichtenberger figures in the material and cavity discharge. This paper presents a way of fabricating the inner lining of the insulator with a semiconductor layer obeying avalanche breakdown at breakdown voltage or voltages at which partial discharge is likely to occur. With the onset of high voltage which can cause a discharge, the semiconductor experiences avalanche breakdown giving out a single photon ejection by Geiger mode (principle). A superior prevention method of using Teflon for insulation instead of XLPE/PILC has been suggested and simulated using COMSOL. Detection using Avalanche photo-detector(LiDAR) may enable us to track the probable location of the occurrence of partial discharge and isolate the system.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "High voltage insulating"

1

Rux, Lorelynn Mary. "The physical phenomena associated with stator winding insulation condition as detected by the ramped direct high-voltage method." Master's thesis, Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-04042004-112949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huldén, Pierre. "Conductivity measurement on thick insulating plaque samples." Thesis, KTH, Elektroteknisk teori och konstruktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-150956.

Full text
Abstract:
The conductivity is one of the main properties of HVDC cable insulation materials and needs to be evaluated carefully. Since measurement on cables is time consuming, often thin specimens and normal conductivity measurement cells are used to compare the materials. In this way however, the bulk effects will be less represented in the measurement and the results will be less representative. Instead, one needs to perform the measurements on thick plate samples and with higher voltage levels. This work focuses on the conductivity measurements on thick HVDC insulation plate samples subject to a high electric field and carefully controlled conditions. In the literature, there are many different methods of measuring the leakage current such as dielectric spectroscopy, PD, IV and PEA measurements. In this thesis a three electrode setup is used to measure the leakage current where the electrodes are placed inside the oven.  This is to be able to control both temperature and high voltage under similar and different conditions where it is possible to change these two parameters during measurement. This was made by two Labview programs; one for creating a schedule and one control program which controls the equipment in the cell.  The task was to make sure that the cell functioned by obtaining repeatable and reasonable measurements.  The results that were obtained were reasonable and verified that the cell functioned. The executed measurements were performed in order to achieve a better understanding of error factors in the measurement system, ranging from preparing the sample to measuring the leakage current. The purpose with the cell is it to investigate the quality of the HVDC insulation by conductivity measurements on millimetre thick plate samples.
Den elektriska konduktiviteten är en av de viktigaste egenskaperna av HVDC kablars isolationsmaterial, XLPE, och den måste utvärderas noggrant. Mätning på fullskaliga kablar är tidskrävande och för att jämföra material används istället ofta tunna prover och normerade konduktivitetmätningsceller. En nackdel med denna metod är att bulkeffekterna blir mindre framträdande i mätningen och resultaten kommer att vara mindre representativa. Istället måste man utföra mätningen på tjockare prover och vid högre spänning. Detta examensarbete fokuserar på mätning av ledningsförmåga hos tjocka HVDC- isolationsprover under noggrant kontrollerade förhållanden och starka elektriska fält. I litteraturen finns det många olika metoder att mäta läckströmmar på, till exempel dielektrisk spektroskopi, PD, IV och PEA mätningar för att nämna några. I denna avhandling kommer ett tre-elektrod system att användas där en temperatursensor är monterad på ena elektroden. Systemet används för att både mäta läckströmmar och temperatur vid provet. Detta gör det möjligt att kontrollera temperatur och spänning oberoende av varandra vilket gjordes med hjälp av två Labview program. Det ena för att skapa ett schema och det andra användes som kontrollprogram för att styra utrustningen i cellen. Uppgiften var att kontrollera cellens funktion genom att erhålla rimliga repeterbara mätningar. Mätningarna gav rimliga resultat vilket indikerade att cellen fungerar tillfredställande. Syftet med mätningarna var att få en bättre förståelse för felfaktorer i mätsystemet som kan vara allt från att förbereda provet till att mäta läckström. Syftet med cellen är att undersöka isolationsegenskaperna på millimetertjocka pressade XLPE prover.
APA, Harvard, Vancouver, ISO, and other styles
3

Zavattoni, Laëtitia. "Conduction phenomena through gas and insulating solids in HVDC gas insulated substations, and consequences on electric field distribution." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT063/document.

Full text
Abstract:
L'émergence des énergies renouvelables a entraîné le développement de nouvelles technologies pour la distribution de l'énergie sur de longues distances. Ces dernières sont basées sur le transport via de hautes tensions continues (HVDC) pour éviter les pertes capacitives. Ce réseau de distribution est interconnecté via des Postes Sous Enveloppes Métalliques (PSEM), dont l'isolation est composée de gaz sous pression (SF6) et d'isolants solides (résine époxy), qui doivent résister sous HVDC. Dans ces dispositifs, le champ électrique n'est plus déterminé par la permittivité relative des matériaux, mais par leurs résistivités et les phénomènes d'accumulation de charges. Dans le cas d'un isolant solide présentant une interface avec un gaz, des électrons ou des ions vont être susceptibles de se déplacer suivant les lignes de champ électrique et charger la surface de l'isolant solide. Le comportement des propriétés des isolants (solides et gazeux) constitue un enjeu majeur dans le développement de PSEM HVDC, notamment dans la compréhension des mécanismes d'accumulation et relaxation des charges.Dans ce travail de thèse, la caractérisation de l'isolant solide a d'abord été étudiée, basée sur des mesures de courants faibles bruits. Il est ainsi possible de mesurer le courant de fuite dans le volume et sur la surface des échantillons, dans une enceinte sous pression, à haut champ électrique et pour différentes températures. Ces mesures ont mis en évidence que les résistivités de volume et de surface sont fortement impactées par l'augmentation de la température et la teneur en eau des échantillons. Il a également été montré que la résistivité de surface a un comportement non-linéaire en fonction du champ électrique. Un modèle numérique a été développé pour simuler les résultats obtenus, et implémenter les propriétés de surface de l'isolant solide.Les propriétés isolantes du gaz ont également été étudiées pour différentes géométries de champ électrique, dans le but d'estimer la contribution du courant passant à travers le gaz, sur l'accumulation de charge en surface de l'isolant solide. Des courants non négligeables sont mesurés dans le gaz (~pA-nA). Pour déterminer les mécanismes responsables de la présence de tels courants, il a été caractérisé selon plusieurs paramètres (la rugosité de la surface de l'électrode, la nature du matériau, le champ électrique, la température et l'humidité relative). Cela a mis en évidence que les variations de courants dépendent du conditionnement du dispositif, et sont donc fortement influencés par l'humidité relative adsorbée sur les surfaces du dispositif (électrodes et cuves). En présence d'un système sec, de faibles courants sont mesurés (~pA), et augmentent en fonction de la température. A l'inverse, dans le cas d'un système humide, le courant diminue avec l'augmentation de la température. Ces résultats, combinés à l'influence de la rugosité de l'électrode, suggèrent fortement un mécanisme d'injection de charge à la surface de l'électrode, favorisé en présence d'eau adsorbée.Enfin, les résultats obtenus pour les deux isolants solides et gazeux sont utilisés pour élaborer un modèle numérique ayant une forme proche de celle de l'application industrielle, et permettent d'observer la modification de la distribution du champ électrique en présence de la concentration en eau et du gradient de température. Une estimation du courant circulant au travers des isolants est donc possible.En conclusion, ce travail donne les variations des résistivités de volume et de surface dans une résine époxy en fonction de la température et du champ électrique. Il met également en évidence la forte influence de l'humidité relative et de la température sur les mécanismes d'injection de charges qui contribuent au courant mesuré à travers le gaz. Cette caractérisation approfondie permet de développer une simulation qui prédit les variations de la distribution du champ électrique au sein d'un PSEM sous tension continue
The emergence of renewable energy leads to a development of new technologies for energy distribution across long distances. The latter will be based on High Voltage Direct Current (HVDC) to avoid capacitance losses. This network is interconnected using Gas Insulated Substation (GIS), which insulation is composed of pressurized gas (SF6) and solid insulators (epoxy resin), which have to withstand HVDC. The electric field is not anymore determined by permittivity of materials, but by resistivities and charge accumulation. In the case of an insulator with an interface with gas, electrons or ions will move across electric field lines and will charge the surface of the solid insulator. The behavior of insulator's properties (gas and solid) constitutes a major challenge for the development of HVDC GIS, to understand the charge relaxation/accumulation mechanisms.In this work, the characterization of solid insulator has first been investigated, based on a low-noise current measurement method. It is thus possible to measure the leakage current through samples and onto their surface, in a pressurized gas, at high electric field and for different temperatures. Those measurements permit to evidence that both volume and surface resistivities are strongly impacted by the increase of temperature and water concentration. It has also been shown that surface resistivity has a non-linear behavior with electric field. A numerical model was developed, to simulate experimental results, showing that the surface properties of the insulator can be implemented.Furthermore, the insulating properties of the gas were also investigated through different electric field geometry (coaxial and uniform), in order to estimate the contribution of current through gas on the charge accumulated on solid insulators. It has been found that a non-negligible current passes through the gas (~pA to nA). To determine the mechanisms responsible for such currents, the latter has been characterized depending on several parameters (electrode surface roughness, material nature, electric field, temperature and relative humidity). It revealed that the variations of currents are strongly impacted by the conditioning of the device and thus by the relative humidity adsorbed on electrodes and enclosure surfaces. In presence of a dry system (dry gas and device) low current were measured (~pA), which increases with temperature. On the contrary, in case of a “wet” system (humid gas and device) the current decreases with increasing temperature. Those results combined with the influence of the electrode roughness, strongly suggest a mechanism of charge injection at the electrode surface, enhanced by water adsorption.Finally, the results obtained for both solid and gaseous insulations are used to develop a numerical model with a shape close to the industrial application, and observe the modification of electric field distribution in presence of water concentration and temperature gradient. An estimation of current flowing through the insulator and gas is thus possible in case of uniform and gradient temperature.In conclusion, this work gives the variations of both volume and surface resistivities in an epoxy resin with temperature and electric field. It also evidences the major influence of relative humidity and temperature on charge injection mechanisms which contribute to the current measured through gas. The extensive characterization performed, enables to develop a simulation which predicts the variations of electric field distribution within an HVDC GIS
APA, Harvard, Vancouver, ISO, and other styles
4

Yahyaoui, Hanen. "Matériaux isolants pour appareillages haute tension dans le domaine du courant continu : comportement et vieillissement." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS267.

Full text
Abstract:
Les projets de mise en place dans les prochaines décennies de « super réseaux intelligents », qui prévoient la construction de centrales de production à des milliers de kms des centres de consommation, nécessite le développement à large échelle du transport de très fortes puissances par câbles à courant continu. Les principaux verrous à ce développement se situent au niveau du câble et des appareillages adéquats, qui doivent être conçus sur des critères spécifiques et comporter des matériaux isolants ayant des propriétés particulières. Outre la variation de la résistivité qui dépend fortement du champ électrique et de la température, il est établi que des charges sont injectées dans la matière isolante, donnant lieu à une charge d'espace modifiant la répartition du champ électrique. Dans le cas d'un renforcement du champ électrique, la présence de charges d'espace peut conduire à une accélération du vieillissement électrique et, par suite, à un phénomène auto-accélérant pour la rupture diélectrique. Le comportement de ces matériaux sous fortes contraintes continues et en particulier leur vieillissement reste aujourd'hui mal connu.Ce travail de thèse concerne ainsi l'étude du comportement diélectrique de résines époxydes chargées d'alumine utilisées comme supports isolants dans les disjoncteurs à isolation gazeuse en vue d'évaluer leur aptitude à être utilisées dans des appareillages de coupure haute tension continue. Les différentes propriétés diélectriques de ce matériau à l'état initial (facteur de pertes, résistivité volumique, seuils et coefficients de non linéarité, résistivité surfacique, rigidité diélectrique, évolution des charges d'espace) sont déterminées et étudiées sous contrainte électrique continue et à différentes températures.Afin de mieux évaluer l'effet à long terme de la charge d'espace sur le matériau et d'en tirer des informations approfondies pour la conception des futurs composants pour la haute tension à courant continu, une étude de vieillissement accéléré sous contraintes électriques (champs continus) et thermiques (différentes températures) est réalisée. En plus de la charge d'espace, les autres paramètres analysés (permittivité, pertes diélectriques) constituent également des marqueurs potentiels du vieillissement du matériau. L'analyse de l'évolution de ces marqueurs constitue une phase nécessaire dans la compréhension du comportement du matériau pour une utilisation en haute tension à courant continu
The development of high voltage dc equipment requires design according to specific criteria and including materials with appropriate properties. Indeed, while in ac the dielectric behaviour is mainly determined by permittivity, which varies little for the used materials with field and temperature at power frequency, the dc behavior is determined by highly non-linear volume and surface conductivity-related phenomena. Thus, it is well known that, in dc conditions, electric charge is injected and trapped in the bulk and on the surface, affecting the distribution of the electric field. Space charge accumulation is able to increase significantly the values of the field, thus accelerating ageing and increasing the risk of breakdown. The electrode nature, the field and temperature dependence of the electrical conductivity of the insulating material are key factors involved in the high dc field phenomena.Epoxy resins form an important category of polymeric insulating materials used in a wide range of electric power installations and equipment. In particular, they have been used especially as insulating supports for ac Gas Insulated Switchgear (GIS), because of their electrical and mechanical properties. However, the behaviour of these materials under high dc stress is less known and needs thorough investigation in view of dc applications.The purpose of this thesis is to investigate dielectric behavior of epoxy resins in order to assess their suitability for use in high DC voltage switchgear and define actions and criteria support for the design of such devices.We start by presenting the most important chemical thermal and dielectric properties of polymers as well as the various properties of the epoxy resin.Dielectric properties of the material at initial state with continuous temperature and electrical stress (loss factor, volume resistivity, thresholds and nonlinearity coefficients, surface resistivity, breakdown, evolution of space charge) are determined and investigated under dc fields at different temperatures
APA, Harvard, Vancouver, ISO, and other styles
5

Silva, Igor. "Propriétés des matériaux isolants pour application dans les appareillages moyenne tension à tension continue." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT043.

Full text
Abstract:
Les récentes avancées dans la technologie du courant continu, du côté du transport à haute tension et de la consommation à basse tension, ont propulsé le courant continu de moyenne tension (MVDC) au premier plan. Cette thèse explore les propriétés isolantes en courant continu de deux matériaux couramment utilisés dans l'équipement de distribution : de l'époxy chargé en micro-silice et le silicone elastomère.Dans une configuration monocouche, chaque matériau a fait l'objet d'une enquête approfondie, mettant l'accent sur les caractéristiques de sorption d'eau et la conduction électrique. Des mesures de courant ont été effectuées pour analyser la conduction dans divers niveaux de champs, à différentes températures et conditions d'absorption d'eau. De plus, la méthode Laser Pressure Pulse (LIPP) a été utilisée pour des mesures de charge d'espace en tant que technique complémentaire. L'étude s'est étendue à une configuration bicouche, combinant les deux matériaux, nous permettant ainsi de confirmer un modèle prédisant les propriétés du multicouche et sa distribution de champs en fonction des valeurs des monocouches.La conduction en courant continu dans l'époxy a montré une forte dépendance à l'absorption d'eau, l'humidité influençant la non-linéarité et modifiant le mécanisme de conduction. À l'inverse, le silicone a démontré une conduction limitée par l'électrode, avec des variations de courant liées à la sorption d'eau par le biais d'un mécanisme limité par saturation. Dans une configuration bicouche hypothétique, où l'époxy représente un manchon et le silicone sert de terminaison de câble, le champ est censé se concentrer dans l'époxy dans des environnements secs, passant au silicone à mesure que l'humidité augmente. La thèse se conclut par des discussions sur les stratégies de sélection des matériaux et la conception de configurations multicouches
Recent advancements in direct-current technology from the high-voltage transport and low-voltage consumption have brought medium-voltage DC (MVDC) to the forefront. This thesis delves into the insulating DC properties of two commonly used materials in distribution equipment: epoxy filled with silica and silicone rubber.In a monolayer configuration, each material underwent extensive investigation, focusing on water sorption characteristics and electrical conduction. Current measurements were conducted to analyze conduction under various fields, temperatures, and water uptake conditions. Additionally, the Laser Pressure Pulse (LIPP) method was employed for space charge measurements as a complementary technique. The study extended to a bilayer configuration, combining both materials, with insights from monolayer experiments informing the properties of the bilayer and predicting field distribution.The DC conduction in epoxy exhibited high dependence on water absorption, with moisture influencing non-linearity and altering the conduction mechanism. Conversely, silicone demonstrated electrode-limited conduction, with current variations tied to water sorption through a saturation-limited mechanism. In a hypothetical bilayer configuration, where epoxy represents a type-C bushing and silicone serves as the cable termination, the field is expected to concentrate in the epoxy in dry environments, shifting to silicone as humidity increases. The thesis concludes with discussions on material selection strategies and the design of multi-layer configurations
APA, Harvard, Vancouver, ISO, and other styles
6

Freye, Claudius [Verfasser], Frank [Akademischer Betreuer] Jenau, and Thomas [Gutachter] Leibfried. "Methoden und Aspekte zur Leitfähigkeitsanalyse von Isolationsmaterialien der Kabeltechnologie und zur Isolationskoordination für Systeme der Hochspannungsgleichstromübertragung (HGÜ) : Methods and aspects for conductivity analysis of insulating materials in cable technology and for insulation coordination in high-voltage direct current transmission (HVDC) systems / Claudius Freye ; Gutachter: Thomas Leibfried ; Betreuer: Frank Jenau." Dortmund : Universitätsbibliothek Dortmund, 2020. http://d-nb.info/1214887627/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bialek, Thomas Owen. "Evaluation and modeling of high-voltage cable insulation using a high-voltage impulse." Diss., Mississippi State : Mississippi State University, 2005. http://library.msstate.edu/content/templates/?a=72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Luo, Jing. "Novel insulation techniques for high voltage pulse transformers." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/13327.

Full text
Abstract:
This thesis describes a research investigation into novel designs of high voltage pulse transformers using magnetic insulation, which is the only practicable form of insulation for much of the equipment presently used in ultrahigh voltage pulsed-power work, including transmission lines and plasma opening switches. Although its use in transformers would bring important advantages in both size and weight reductions, a number of seemingly insurmountable problems have however so far prevented this. Two novel arrangements are presented in this thesis: one of these is a 500 kV transformer with self-magnetic insulation, and the other one is a 1 MV 'Tesla' transformer with external magnetic insulation. It is shown that both of these overcome the problems inherent in earlier designs and also offer considerable scope for further development in a number of important areas. It is believed that they represent the first working examples of magnetically-insulated transformers anywhere in the world. Modelling considerations of the transformers developed include both theoretical models and predicted characteristics. The filamentary technique used to describe mathematically the arrangements being investigated involves decomposition of the main conducting components into filamentary elements. The resulting equivalent electrical network includes all the mutual interactions that exist between the different filamentary elements, takes magnetic diffusion fully into account and enables the resistances and self and mutual inductances that are effective under fast transient conditions to be calculated. Theoretical results provided by the resulting mathematical models have been successfully validated by comparison with reliable experimental data. Much of the work detailed in the thesis has already been presented in high quality academic journals and at prestigious international conferences, and a solid theoretical and experimental basis has been laid down for future development and new progress into pulsed power system research.
APA, Harvard, Vancouver, ISO, and other styles
9

Hare, Richard W. "Modelling space charge in solid dielectrics." Thesis, University of Bristol, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.482030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wallström, Stina. "Biofilms on silicone rubber for outdoor high voltage insulation." Doctoral thesis, KTH, Fiber- och polymerteknik, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171.

Full text
Abstract:
Silicone rubber high voltage insulators are sometimes colonised by microorganisms which form a biofilm on the surface of the infected unit. In this work insulators exposed to the outdoor environment in Sweden, Sri Lanka and Tanzania respectively have been studied. The biofilms colonising the insulators were shown to be of roughly the same composition regardless of their origin. Algae in association with bacteria dominated the biofilms and provided nutrition to mold growth. The isolated microorganisms were further used to study the effect of a biofilm on different silicone rubber materials. New tools for diagnosing biological growth on polymeric materials were developed and used to analyse the silicone rubber samples. No evidence of biodegradation of the polydimethylsiloxane (PDMS) molecule has been found in this work. However, this does not mean that PDMS rubbers used in high voltage insulators can be called bioresistant. Silicone insulating materials always contain additives and these may promote or hinder growth. For this reason, an extensive test program was developed, in order to evaluate the effect of different additives on the degree of biological growth. The program spanned from fast and easy methods, useful for screening large amount of samples, to the construction of specially designed microenvironment chambers in which mixed biofilms, similar to those formed on the surface of silicone rubber insulators in the field, were successfully grown. The test program showed that the flame retardant zinc borate protected the materials, whereas alumina trihydrate (ATH) did not hinder biological growth. On the contrary, environmental scanning microscopy (ESEM) in combination with X-ray energy dispersive spectroscopy (EDS) showed that the surface roughening caused by the addition of ATH to the silicone rubber matrix made the materials more difficult to clean. Furthermore when the hydrophobic surface of a silicone rubber insulator is covered by a hydrophilic biofilm this leads to a reduction of the surface hydrophobicity of the material. This may alter the electrical properties of the insulator. It is therefore important to develop methods to identify biofouled units. In this work, laser-induced fluorescence (LIF) spectroscopy was explored as a tool for the detection of biofilms on silicone rubbers. The experiments revealed that weak traces of algae or fungal growth, even those not visible to the naked eye, could be detected by this technique. In addition, it was shown that photography and subsequent digital image analysis could be utilised to estimate the area covered by biofilm growth. The results obtained indicate that LIF spectroscopy in combination with image analysis could be used for field diagnostics of biological growth on insulators in service.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "High voltage insulating"

1

Zhu, Daming. The detection of partial discharge in high voltage insulating materials, cable and cable terminations using acoustic emission techniques. Manchester: University of Manchester, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kind, Dieter, and Hermann Kärner. High-Voltage Insulation Technology. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ushakov, Vasily Y. Insulation of High-Voltage Equipment. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07918-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arora, Ravindra, and Wolfgang Mosch. High Voltage and Electrical Insulation Engineering. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470947906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arora, Ravindra. High voltage and electrical insulation engineering. Piscataway, NJ: IEEE Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Canadian Society of Civil Engineers., ed. High voltage insulator manufacture. [Montréal?: s.n., 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abderrazzaq, Mohammad Hassan. High voltage composite insulation of water absorption. Manchester: University of Manchester, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kind, Dieter. High-voltage insulation technology: Textbook for electrical engineers. Braunschweig: Vieweg, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Engineers, Institution of Electrical, ed. Insulators for high voltages. London, U.K: Peter Peregrinus on behalf of the Institution of Electrical Engineers, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kreuger, F. H. Partial discharge detection in high-voltage equipment. London: Butterworths, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "High voltage insulating"

1

Küchler, Andreas. "Insulating Materials." In High Voltage Engineering, 301–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-642-11993-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kind, Dieter, and Hermann Kärner. "Insulating Materials in High-Voltage Technology." In High-Voltage Insulation Technology, 62–96. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ushakov, Vasily Y. "Insulating Materials and System Design Selection." In Insulation of High-Voltage Equipment, 3–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07918-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pagger, Ernst Peter, Norasage Pattanadech, Frank Uhlig, and Michael Muhr. "Application of New Insulating Liquid in High Voltage Equipment." In Biological Insulating Liquids, 141–230. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22460-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ushakov, Vasily Y. "Methods for Improving the Dielectric Properties of Electric Insulating Materials and Media." In Insulation of High-Voltage Equipment, 265–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07918-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vedral, Josef. "Partial Discharges in Insulating Systems of HV Electric Machines." In Non-destructive Diagnostic of High Voltage Electrical Systems, 109–27. New York: River Publishers, 2023. http://dx.doi.org/10.1201/9781003394198-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sufian, A. T., E. Elzagzoug, and D. H. Smith. "Optical Chromatic Monitoring of High-Voltage Transformer Insulating Oils." In Advanced Chromatic Monitoring, 47–58. First edition. | Boca Raton : CRC Press, 2020. | Series:: CRC Press, 2020. http://dx.doi.org/10.1201/9780367815202-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Záliš, Karel. "Using expert systems in evaluation of high voltage insulating systems." In Intelligent Systems for Manufacturing, 147–56. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-0-387-35390-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ushakov, Vasily Ya, Alexey V. Mytnikov, and Ikromjon U. Rakhmonov. "Insulating Materials and Media Used in High-Voltage Elements of Electric Power Systems." In Power Systems, 81–116. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38252-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maladen, R., C. Preve, and D. Piccoz. "Validation of a New Eco-friendly Insulating Gas for Medium and High Voltage Equipment." In Lecture Notes in Electrical Engineering, 171–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58172-9_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "High voltage insulating"

1

Wang, Chaofan, Zhengyong Huang, Kai Zhang, Haochen Zuo, Jiachen Yao, Chen Zhao, Jian Li, and Feipeng Wang. "Study on Dielectric Properties of Natural Ester Based Synthetic Insulating Oil." In 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yan, Sichen, Feipeng Wang, Jian Li, Bojun Li, Ying Zhang, Shi Li, and Jian Zhou. "PVDF-SiO2 Composite Nanofilm for Insulating Oil Reviving." In 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kubiak, Mateusz, Filip Stuchala, Pawel Rozga, Fatih Atalar, and Alsey Ersoy. "Experimental Validation of Impregnation Efficiency of GTL based Transformer Insulating Oils." In 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zuo, Haochen, Zhengyong Huang, Jian Li, Kai Zhang, Chaofan Wang, and Jawad Ahmad. "Simulation Study on the Morphology of Streamer Propagation in Insulating Oil." In 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fagundes, Thallia F. D., Estàcio T. W. Neto, and Gustavo P. Lopes. "Measurement of Partial Discharges in Distribution Transformers Immersed in Insulating Liquids." In 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, Chen, Zhengyong Huang, Weigen Chen, Jian Li, Chaofan Wang, Kai Zhang, Jawad Ahmad, and Kaiyi Tian. "Study on Physical Properties of Liquid Crystal Based FR3 Insulating Oil." In 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zeng, Ningyu, Juyi Pu, Zhengyong Huang, Bowen Lu, and Jian Li. "The Effect of Air Bubbles on Streamer in Natural Ester Insulating Oils." In 2024 IEEE International Conference on High Voltage Engineering and Applications (ICHVE), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/ichve61955.2024.10676299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Trnka, Pavel, Jaroslav Hornak, Ondrej Michal, Martin Muzik, and Pavel Prosr. "Biodegradable Insulating Liquids used in Paper Oil Insulating System." In 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2020. http://dx.doi.org/10.1109/ichve49031.2020.9279637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tang, X., W. Sima, Y. Chen, P. Sun, J. Xu, and Y. Huang. "Research on insulation failure characteristics of encapsulated insulating resin under impulse electric." In 22nd International Symposium on High Voltage Engineering (ISH 2021). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2022.0295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guojun Lu, Qingdan Huang, Haoyong Song, and Dezhi Zhang. "Influences of moisture content on insulation properties of vegetable insulating oil." In 2014 International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2014. http://dx.doi.org/10.1109/ichve.2014.7035470.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "High voltage insulating"

1

Eager, G. S. Jr, G. W. Seman, and B. Fryszczyn. Determination of threshold and maximum operating electric stresses for selected high voltage insulations: Investigation of aged polymeric dielectric cable. Final report. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/212744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography