Academic literature on the topic 'High voltage fragmentation technology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High voltage fragmentation technology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "High voltage fragmentation technology"
Yan, Fazhi, Jiang Xu, Shoujian Peng, Quanle Zou, Bin Zhou, Kun Long, and Zhiguo Zhao. "Breakdown process and fragmentation characteristics of anthracite subjected to high-voltage electrical pulses treatment." Fuel 275 (September 2020): 117926. http://dx.doi.org/10.1016/j.fuel.2020.117926.
Full textLin, Baiquan, Xiangliang Zhang, Fazhi Yan, Chuanjie Zhu, and Chang Guo. "Improving the Conductivity and Porosity of Coal with NaCl Solution for High-Voltage Electrical Fragmentation." Energy & Fuels 32, no. 4 (March 28, 2018): 5010–19. http://dx.doi.org/10.1021/acs.energyfuels.8b00535.
Full textKovalchuk, B. M., A. V. Kharlov, V. A. Vizir, V. V. Kumpyak, V. B. Zorin, and V. N. Kiselev. "High-voltage pulsed generator for dynamic fragmentation of rocks." Review of Scientific Instruments 81, no. 10 (October 2010): 103506. http://dx.doi.org/10.1063/1.3497307.
Full textMativenga, Paul T., Norshah A. Shuaib, Jack Howarth, Fadri Pestalozzi, and Jörg Woidasky. "High voltage fragmentation and mechanical recycling of glass fibre thermoset composite." CIRP Annals 65, no. 1 (2016): 45–48. http://dx.doi.org/10.1016/j.cirp.2016.04.107.
Full textCho, Sang Ho, Sang Sun Cheong, Mitsuhiro Yokota, and Katsuhiko Kaneko. "The Dynamic Fracture Process in Rocks Under High-Voltage Pulse Fragmentation." Rock Mechanics and Rock Engineering 49, no. 10 (July 9, 2016): 3841–53. http://dx.doi.org/10.1007/s00603-016-1031-z.
Full textSmit, Johan J., Thomas Andritsch, and Oleg A. Chevtchenko. "New materials in high voltage technology." e & i Elektrotechnik und Informationstechnik 129, no. 4 (June 2012): 180–85. http://dx.doi.org/10.1007/s00502-012-0025-0.
Full textSantos, P. M., A. P. Casimiro, M. Lança, and M. I. Castro Simas. "High-voltage solutions in CMOS technology." Microelectronics Journal 33, no. 8 (August 2002): 609–17. http://dx.doi.org/10.1016/s0026-2692(02)00041-1.
Full textSaunders, MP, PE Holmes, and BA Boxall. "A mixed technology high voltage process." Physica B+C 129, no. 1-3 (March 1985): 260–64. http://dx.doi.org/10.1016/0378-4363(85)90581-9.
Full textSchneider, Thomas. "From Low to High Voltage Technology." MTZ worldwide 82, no. 4 (March 12, 2021): 14–15. http://dx.doi.org/10.1007/s38313-021-0646-y.
Full textLeißner, T., D. Hamann, L. Wuschke, H. G. Jäckel, and U. A. Peuker. "High voltage fragmentation of composites from secondary raw materials – Potential and limitations." Waste Management 74 (April 2018): 123–34. http://dx.doi.org/10.1016/j.wasman.2017.12.031.
Full textDissertations / Theses on the topic "High voltage fragmentation technology"
Benmamas, Arezki Lotfi. "Valorisation des systèmes d’éclairage à LED en fin de cycle de vie." Thesis, Troyes, 2021. http://www.theses.fr/2021TROY0044.
Full textWhile solid-state lighting allows for a significant reduction in electricity consumption, the problem of the end-of-life of the LED-based devices remains. This thesis associated with the RECYLED project consisted in identifying and then developing methods and processes according to the typologies of the devices (lamps, tubes and luminaires) with a view to recovery and reuse of certain elementary components. The objective, through a comprehensive approach, including both technical, economic and environmental aspects, was to achieve a recycling rate of 80%. Three scenarios have been identified for the recycling of LED lamps and tubes, reuse, shredding and disassembly. Studies of waste and marketed products have been carried out in order to characterize the deposit and size the proposed treatment solutions and estimate the overall recovery potential. Regarding the disassembly identified as the blocking point, the technology of pulsed powers based on fragmentation is proposed. With regard to the tubes, purely mechanical solutions have been validated. The proposed methods make it possible to obtain a material recovery rate of 74% for the lamps and 94% for the tubes. These rates are to be linked with the forecasts estimated for 2030 as part of this work, which lead to a maximum annual deposit estimated for LED lamps at 2600 tons and for LED tubes and panels at 1600 tons
Farag, Bassem. "High Voltage DC Arc Detection Model." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-358478.
Full textBahnam, Nadeen. "Container closure integritytesting with High Voltage LeakDetection." Thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439566.
Full textJędrzejewski, Piotr. "Modelling the European High-voltage electricity transmission." Thesis, KTH, Energiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284152.
Full textDetta examensarbetebeskriver modellering av Europas gränsöverskridande elektriska transmissionsnät. Under detta arbete utvecklades en utvidgning av Open Source Energy Model Base för Europeiska unionen (OSeMBE) för implementering av sammankopplingar med den redan existerande modellen. Modellen är byggd med hjälp av Open Source Energy Modeling System (OSeMOSYS). Syftet med modellen är att hitta en kostnadseffektiv form av Europas elsystem under modelleringsperioden 2015 till 2050. Modellen användes för att validera planer för utveckling av sammankoppling för elnätet, definierade av Europeiska unionen i listan över projekt av gemensamt intresse. Under denna avhandling modellerades fyra scenarier för det europeiska elsystemets framtida utveckling. Målet för scenarierna var att analysera för vilka gränser en ny sammankopplingskapacitet skulle vara till nytta, samt att testa påverkan av samtrafikutvecklingen på hela elsystemet, särskilt produktionskapacitet och koldioxidutsläpp. Därefter analyserades flödena av elektricitet vid varje gräns, och för att förenkla analysen delades området upp i fyra regioner. Regionerna är uppdelade i enlighet med de fyra prioriterade korridorerna för elektricitet, definierade i Transeuropeiska Nät för Energi (TEN-E). Det huvudsakligaresultatet i scenariot som optimerade kapaciteten för sammankopplingarna i Europa var att endast 16% av den kapacitet som planerades som PCI behöver byggas. De flesta av dessa kapaciteter bör utvecklas i norra Europa, särskilt vid havsgränserna Tyskland-Norge, Storbritannien-Norge, Polen-Litauen, men också Finland-Sverige och Danmark-Tyskland. Även användningsfaktorer för samtrafikledningarna analyserades i arbetet.
Aliahmad, Mehran. "High voltage circuits for short loop SLICs in a low voltage submicron BiCMOS technology." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0006/NQ41393.pdf.
Full textRashid, Suhail Jeremy. "High voltage packaging technology for wide bandgap power semiconductor devices." Thesis, University of Cambridge, 2008. https://www.repository.cam.ac.uk/handle/1810/252098.
Full textWallström, Stina. "Biofilms on silicone rubber for outdoor high voltage insulation." Doctoral thesis, KTH, Fiber- och polymerteknik, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171.
Full textSalemi, Arash. "Silicon Carbide Technology for High- and Ultra-High-Voltage Bipolar Junction Transistors and PiN Diodes." Doctoral thesis, KTH, Integrerade komponenter och kretsar, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-197913.
Full textQC 20161209
Livermore, Luke. "Integration of offshore wind farms through High Voltage Direct Current networks." Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/42892/.
Full textPanji, Arikson Heraldus. "Optimization of High Voltage Cable Dimension in Scania Electric Vehicle’s Systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278073.
Full textEfterfrågan på elfordon ökar, och därmed ökar också efterfrågan på den elektriska komponenten. Därför är det viktigt att utveckla en metod för att optimera kabelstorleken så att kabeln är tekniskt robust och ekonomiskt effektiv. Syftet med detta projekt är att studera och utvärdera olika kablarnas konstruktioner för att hitta den optimala dimensionen för högspänningsklass (spänningsklass B) i elfordonssystemet. Tre viktiga tekniska aspekter vid utvärderingen av den optimala kabelstorleken är kabelns kapacitet, kortslutningsförmåga och spänningsfall.I detta projekt placeras kabeln i luften. Ampaciteten beräknas med hjälp av en analytisk metod baserad på IEC 60287 och en simulering med finita element metoden. Dessa resultat verifieras mot direkta mätningar med hjälp av en likströmskälla och elektrisk belastning. För DC-beräkning är likheten för alla tre metoderna mycket hög. Bildningen av kabeln påverkar också kabelns ampacitet. För DC-strömmar har den vertikala formationen en högre ampacitet än den horisontella formationen för nästan 2%. För växelströmmar har trefoilformationen en högre ampacitet än den horisontella och vertikala formationen med 6-9 %.Kortslutningsförmågan och spänningsfallberäkningen utfördes för att säkerställa kabelprestanda. En större CSA innebär högre kortslutningsförmåga och lägre spänningsfall. Spänningsfallberäkning utförs för att begränsa kabellängden för att säkerställa ett maximalt 3% spänningsfall vid kretsens laständsida. Spänningsfallet är en viktig faktor att beakta. Med hjälp av dessa tre faktorer beskrivs optimeringsprocessen med ett flödesschema.
Books on the topic "High voltage fragmentation technology"
Kind, Dieter, and Hermann Kärner. High-Voltage Insulation Technology. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0.
Full textHigh voltage protection for telecommunications. Hoboken, N.J: Wiley-IEEE Press, 2011.
Find full textKind, Dieter. High-voltage insulation technology: Textbook for electrical engineers. Braunschweig: Vieweg, 1985.
Find full text1959-, Harjani Ramesh, ed. Design of high performance CMOS voltage-controlled oscillators. Boston: Kluwer Academic Publishers, 2003.
Find full textChaudhuri, Nilanjan Ray. Integrating Wind Energy to Weak Power Grids using High Voltage Direct Current Technology. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03409-2.
Full textI, Halonen K. A., ed. Circuit techniques for low-voltage and high-speed A/D converters. Boston: Kluwer Academic Publishers, 2002.
Find full textLangen, Klaas-Jan de. Compact low-voltage and high-speed CMOS, BiCMOS, and bipolar operational amplifiers. Boston, MA: Kluwer Academic Publishers, 1999.
Find full textLangen, Klaas-Jan de. Compact low-voltage and high-speed CMOS, BiCMOS, and bipolar operational amplifiers. Boston: Kluwer Academic Publishers, 1999.
Find full text1938-, Huijsing Johan H., ed. Compact low-voltage and high-speed CMOS, BiCMOS, and bipolar operational amplifiers. Boston: Kluwer Academic Publishers, 1999.
Find full textvon, Olshausen Rainer, ed. Cable systems for high and extra-high voltage: Development, manufacture, testing, installation and operation of cables and their accessories. Erlangen: Publicis MCD Vlg., 1999.
Find full textBook chapters on the topic "High voltage fragmentation technology"
Kind, Dieter, and Hermann Kärner. "Electric Strength." In High-Voltage Insulation Technology, 1–61. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0_1.
Full textKind, Dieter, and Hermann Kärner. "Insulating Materials in High-Voltage Technology." In High-Voltage Insulation Technology, 62–96. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0_2.
Full textKind, Dieter, and Hermann Kärner. "Design and Manufacture of High-Voltage Equipment." In High-Voltage Insulation Technology, 97–158. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0_3.
Full textNagai, K. "High Voltage Technology in Space." In Environmental and Space Electromagnetics, 56–59. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68162-5_5.
Full textMinkner, Ruthard, and Joachim Schmid. "Insulation for High Voltage Equipment." In The Technology of Instrument Transformers, 1–41. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-34863-2_1.
Full textOwen, Michael J. "Surface Properties of Silicone High Voltage Insulators." In Science and Technology of Polymers and Advanced Materials, 99–106. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0112-5_9.
Full textBabouche, Randa, Nourelddine Henini, Kamel Saoudi, and Taki Eddine Ameur. "Sliding Mode Control of Voltage Source Converter Based High Voltage Direct Current System." In Advances in Green Energies and Materials Technology, 209–14. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0378-5_28.
Full textRicotti, Giulio, Dario Bianchi, Fabio Quaglia, and Sandro Rossi. "Design and Technology for Very High-Voltage Opamps." In Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems, 175–86. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21185-5_10.
Full textSchurig, E., M. Demierre, C. Schott, and R. S. Popovic. "A Vertical Hall Device in CMOS High-Voltage Technology." In Transducers ’01 Eurosensors XV, 140–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_32.
Full textQian, Feng, Wenqian Qiu, Jian Ding, Chunxiu An, Hongbo Liu, Jianhua Chen, and Yang Shen. "Design of Ultra-High-Voltage Alternating Current (UHVAC) Substation." In Advanced Topics in Science and Technology in China, 1201–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54575-1_25.
Full textConference papers on the topic "High voltage fragmentation technology"
Arroyos, Marina Roche, Javier Arturo Corea Araujo, Didac Sabria, Vinayak Padmaji, Pablo Cano, and Patrice Garmier. "Model based component co-optimization and scalability of virtual testing for electric drivetrain vehicle." In FISITA World Congress 2021. FISITA, 2021. http://dx.doi.org/10.46720/f2021-dgt-045.
Full textCurran, D. R. "Computer models of dynamic fracture and fragmentation." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46047.
Full textPapageorgiou, C. D., T. E. Raptis, Angelos Angelopoulos, and Takis Fildisis. "Fragmentation of Thin Wires under High Voltage Pulses and Bipolar Fusion." In ORGANIZED BY THE HELLENIC PHYSICAL SOCIETY WITH THE COOPERATION OF THE PHYSICS DEPARTMENTS OF GREEK UNIVERSITIES: 7th International Conference of the Balkan Physical Union. AIP, 2010. http://dx.doi.org/10.1063/1.3322590.
Full textØstergaard, Inge, Arne Nysveen, and Thomas Romanisko. "MECON: A High Voltage Subsea Connector." In Offshore Technology Conference. Offshore Technology Conference, 1999. http://dx.doi.org/10.4043/10948-ms.
Full textIversen, Øyvind, and Johansen Audun. "High Voltage Cables – A Technology Step." In Offshore Technology Conference. OTC, 2022. http://dx.doi.org/10.4043/32084-ms.
Full textIversen, Øyvind, and Johansen Audun. "High Voltage Cables – A Technology Step." In Offshore Technology Conference. OTC, 2022. http://dx.doi.org/10.4043/32084-ms.
Full textChavez, Patrick P., Nicolas A. Jaeger, Farnoosh Rahmatian, and Christopher P. Yakymyshyn. "Integrated-optic voltage transducer for high-voltage applications." In 2000 International Conference on Application of Photonic Technology (ICAPT 2000), edited by Roger A. Lessard and George A. Lampropoulos. SPIE, 2000. http://dx.doi.org/10.1117/12.406373.
Full textFink, David A., Richard Torti, Nicholas Reinhardt, Marcel P. J. Gaudreau, and Frank Mansfield. "High Voltage IGBT Switching Arrays." In 2008 14th Symposium on Electromagnetic Launch Technology. IEEE, 2008. http://dx.doi.org/10.1109/elt.2008.46.
Full textBertolotto, P., M. Faifer, and R. Ottoboni. "High Voltage Multi-Purpose Current and Voltage Electronic Transformer." In 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007. IEEE, 2007. http://dx.doi.org/10.1109/imtc.2007.379148.
Full textZhu, Jinsong, and Sen Dou. "Intermediate Bus Voltage Optimization for High Voltage Input VRM." In 2006 7th International Conference on Electronic Packaging Technology. IEEE, 2006. http://dx.doi.org/10.1109/icept.2006.359751.
Full textReports on the topic "High voltage fragmentation technology"
Falzone, Alec, Joe Sunstrom, Emily Grumbles, and Ron Hendershot. Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1766981.
Full textSunstrom, Joseph, and Ron E. Hendershot. Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte - REVISED. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1345663.
Full textNORTHROP GRUMMAN CORP ROLLING MEADOWS IL. Manufacturing Technology for High Voltage Power Supplies (HVPS). Volume II - Program Details. Fort Belvoir, VA: Defense Technical Information Center, August 1996. http://dx.doi.org/10.21236/ada324475.
Full textNORTHROP GRUMMAN CORP ROLLING MEADOWS IL. Manufacturing Technology for High Voltage Power Supplies (HVPS). Volume IV. Reference Information. Fort Belvoir, VA: Defense Technical Information Center, August 1996. http://dx.doi.org/10.21236/ada324508.
Full textNORTHROP GRUMMAN CORP ROLLING MEADOWS IL. Manufacturing Technology for High Voltage Power Supplies (HVPS). Volume I - Program Summary. Fort Belvoir, VA: Defense Technical Information Center, August 1996. http://dx.doi.org/10.21236/ada324364.
Full textLi, Li. High-speed, Low Voltage, Miniature Electro-optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol-Gel Technology. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada566226.
Full text