Journal articles on the topic 'High throughput imaging'

To see the other types of publications on this topic, follow the link: High throughput imaging.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'High throughput imaging.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Knott, G., D. Wall, and B. Lich. "High-Throughput 3D Cellular Imaging." Microscopy and Microanalysis 15, S2 (July 2009): 934–35. http://dx.doi.org/10.1017/s1431927609097037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Golding, Stephen J. "High-throughput magnetic resonance imaging." Academic Radiology 3 (April 1996): S53. http://dx.doi.org/10.1016/s1076-6332(96)80483-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Enderlein, Jörg. "Single-molecule imaging goes high throughput." Nature Nanotechnology 15, no. 6 (April 20, 2020): 419–20. http://dx.doi.org/10.1038/s41565-020-0676-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Su, Justin, Liang Xu, Derek Tseng, and Aydogan Ozcan. "High-throughput 3D imaging of sperm." Molecular Reproduction and Development 80, no. 4 (March 13, 2013): 243. http://dx.doi.org/10.1002/mrd.22159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stavrakis, Stavros, Gregor Holzner, Jaebum Choo, and Andrew deMello. "High-throughput microfluidic imaging flow cytometry." Current Opinion in Biotechnology 55 (February 2019): 36–43. http://dx.doi.org/10.1016/j.copbio.2018.08.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ogata, Koretsugu. "High Throughput MALDI MS Imaging Using Imaging Mass Microscope." Journal of the Mass Spectrometry Society of Japan 69, no. 5 (October 1, 2021): 145–46. http://dx.doi.org/10.5702/massspec.s21-28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McDonnell, Liam A., Alexandra van Remoortere, René J. M. van Zeijl, Hans Dalebout, Marco R. Bladergroen, and André M. Deelder. "Automated imaging MS: Toward high throughput imaging mass spectrometry." Journal of Proteomics 73, no. 6 (April 2010): 1279–82. http://dx.doi.org/10.1016/j.jprot.2009.10.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brown, V. M. "High-Throughput Imaging of Brain Gene Expression." Genome Research 12, no. 2 (February 1, 2002): 244–54. http://dx.doi.org/10.1101/gr.204102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ahmed, Wamiq M., Arif Ghafoor, and J. Paul Robinson. "Knowledge Extraction for High-Throughput Biological Imaging." IEEE Multimedia 14, no. 4 (October 2007): 52–62. http://dx.doi.org/10.1109/mmul.2007.77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gibbs, Phillip R., Christian S. Uehara, Peter T. Nguyen, and Richard C. Willson. "Imaging Polarimetry for High Throughput Chiral Screening." Biotechnology Progress 19, no. 4 (September 5, 2008): 1329–34. http://dx.doi.org/10.1021/bp025729l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Serebryannyy, Leonid A., and Tom Misteli. "HiPLA: High-throughput imaging proximity ligation assay." Methods 157 (March 2019): 80–87. http://dx.doi.org/10.1016/j.ymeth.2018.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rane, Anandkumar S., Justina Rutkauskaite, Andrew deMello, and Stavros Stavrakis. "High-Throughput Multi-parametric Imaging Flow Cytometry." Chem 3, no. 4 (October 2017): 588–602. http://dx.doi.org/10.1016/j.chempr.2017.08.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Goda, K., A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, et al. "High-throughput single-microparticle imaging flow analyzer." Proceedings of the National Academy of Sciences 109, no. 29 (July 2, 2012): 11630–35. http://dx.doi.org/10.1073/pnas.1204718109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zmijan, Robert, Umesh S. Jonnalagadda, Dario Carugo, Yu Kochi, Elizabeth Lemm, Graham Packham, Martyn Hill, and Peter Glynne-Jones. "High throughput imaging cytometer with acoustic focussing." RSC Advances 5, no. 101 (2015): 83206–16. http://dx.doi.org/10.1039/c5ra19497k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jiang, Xiaoqi, Steven Wink, Bob van de Water, and Annette Kopp-Schneider. "Functional analysis of high-content high-throughput imaging data." Journal of Applied Statistics 44, no. 11 (September 30, 2016): 1903–19. http://dx.doi.org/10.1080/02664763.2016.1238048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Woo, Taeseong, Hye Yun Kim, Su Yeon Kim, Byungjae Hwang, Cheolwoo Ahn, Seok-Kyu Kwon, Jae-Ick Kim, and Jung-Hoon Park. "High-throughput high-dynamic range imaging by spatiotemporally structured illumination." APL Photonics 7, no. 10 (October 1, 2022): 106106. http://dx.doi.org/10.1063/5.0099780.

Full text
Abstract:
Recent advances in biochemistry and optics have enabled observation of the faintest signals from even single molecules. However, although biological samples can have varying degrees of fluorescence expression ranging from a single to thousands of fluorescent molecules in an observation volume, the detection range is fundamentally limited by the dynamic range (DR) of current detectors. In other words, for many biological systems where faint and strong signal sources coexist, traditional imaging methods make a compromise and end up choosing a limited target signal range to be quantitatively measured while other signal levels are either lost beneath the background noise or saturated. The DR can be extended by taking multiple images with varying exposures, which, however, severely restricts data throughput. To overcome this limitation, we introduce structured illumination high dynamic range (SI-HDR) imaging, which enables real-time HDR imaging with a single measurement. We demonstrate the wide and easy applicability of the method by realizing various applications, such as high throughput gigapixel imaging of mouse brain slices, quantitative analysis of neuronal mitochondria structures, and fast 3D volumetric HDR imaging.
APA, Harvard, Vancouver, ISO, and other styles
17

Yao, Xu-Ri, Ruo-Ming Lan, Xue-Feng Liu, Ge Zhu, Fu Zheng, Wen-Kai Yu, and Guang-Jie Zhai. "High throughput dual-wavelength temperature distribution imaging via compressive imaging." Optics Communications 410 (March 2018): 287–91. http://dx.doi.org/10.1016/j.optcom.2017.10.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Indira, Deepa, Shankara Narayanan Varadarajan, Santhik Subhasingh Lupitha, Asha Lekshmi, Krupa Ann Mathew, Aneesh Chandrasekharan, Prakash Rajappan Pillai, et al. "Strategies for imaging mitophagy in high-resolution and high-throughput." European Journal of Cell Biology 97, no. 1 (January 2018): 1–14. http://dx.doi.org/10.1016/j.ejcb.2017.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

deMello, Andrew, Anand Rane, Gregor Holzner, and Stavros Stavrakis. "Ultra-High-Throughput Multi-Parametric Imaging Flow Cytometry." EPJ Web of Conferences 215 (2019): 10001. http://dx.doi.org/10.1051/epjconf/201921510001.

Full text
Abstract:
I will present a microfluidic imaging flow cytometer incorporating stroboscopic illumination, for blur-free cellular analysis at throughputs exceeding 100,000 cells per second. By combining passive (inertial or viscoelastic) focusing of cells in parallel microchannels with stroboscopic illumination, such chip-based cytometers are able to extract multi-colour fluorescence and bright-field images of single cells moving at high linear velocities. This in turn allows accurate sizing of individual cells, intracellular localization and analysis of heterogeneous cell suspensions. The method is showcased through the rapid enumeration of apoptotic cells, high-throughput discrimination cell cycle phases and localization of p-bodies.
APA, Harvard, Vancouver, ISO, and other styles
20

Ugawa, Masashi, and Sadao Ota. "High‐Throughput Parallel Optofluidic 3D‐Imaging Flow Cytometry." Small Science 2, no. 7 (July 2022): 2270014. http://dx.doi.org/10.1002/smsc.202270014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Batz, Jose, Mario Méndez-Dorado, and J. Thomasson. "Imaging for High-Throughput Phenotyping in Energy Sorghum." Journal of Imaging 2, no. 1 (January 26, 2016): 4. http://dx.doi.org/10.3390/jimaging2010004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hiramoto, Kaoru, Kosuke Ino, Keika Komatsu, Yuji Nashimoto, and Hitoshi Shiku. "Electrochemiluminescence Imaging for High Throughput Analysis of Spheroids." ECS Meeting Abstracts MA2021-01, no. 61 (May 30, 2021): 1621. http://dx.doi.org/10.1149/ma2021-01611621mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Crosby, Kyle, Anna Lena Eberle, and Dirk Zeidler. "Multi-beam SEM Technology for High Throughput Imaging." MRS Advances 1, no. 26 (2016): 1915–20. http://dx.doi.org/10.1557/adv.2016.363.

Full text
Abstract:
ABSTRACTRecent developments in a number of fields call for high-throughput, high-resolution imaging of large areas. Examples are reconstruction of macroscopic volumes of mouse brain tissue, or wafer defect inspection. To address these needs, we have developed a multi-beam, single column SEM which utilizes an array of 61 or 91 electron beams and detectors in parallel. The total possible detection speed of the multiple beam SEM is the single detection speed times the number of beams. In the same time a single beam SEM creates an image of several million pixels size, the multi-beam SEM produces between several hundred million and one billion pixels. Herein we demonstrate the capabilities of generating massive data sets using the multi-beam SEM on a variety of samples including brain tissue serial sections and semiconductor test wafers.
APA, Harvard, Vancouver, ISO, and other styles
24

Berger, B., B. Parent, and M. Tester. "High-throughput shoot imaging to study drought responses." Journal of Experimental Botany 61, no. 13 (July 26, 2010): 3519–28. http://dx.doi.org/10.1093/jxb/erq201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Reed, Jason, Matthew Frank, Joshua J. Troke, Joanna Schmit, Sen Han, Michael A. Teitell, and James K. Gimzewski. "High throughput cell nanomechanics with mechanical imaging interferometry." Nanotechnology 19, no. 23 (May 6, 2008): 235101. http://dx.doi.org/10.1088/0957-4484/19/23/235101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Müller, Ralph. "High-throughput cell imaging in bone systems biology." Journal of Orthopaedic Translation 2, no. 4 (October 2014): 196–97. http://dx.doi.org/10.1016/j.jot.2014.07.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kato, Koichi, Toshinari Ishimuro, Yusuke Arima, Isao Hirata, and Hiroo Iwata. "High-Throughput Immunophenotyping by Surface Plasmon Resonance Imaging." Analytical Chemistry 79, no. 22 (November 2007): 8616–23. http://dx.doi.org/10.1021/ac071548s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Meng, Xin, Jianxin Li, Tingting Xu, Defang Liu, and Rihong Zhu. "High throughput full Stokes Fourier transform imaging spectropolarimetry." Optics Express 21, no. 26 (December 18, 2013): 32071. http://dx.doi.org/10.1364/oe.21.032071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Strömberg, Niklas, Johan Engelbrektsson, and Sofia Delin. "A high throughput optical system for imaging optodes." Sensors and Actuators B: Chemical 140, no. 2 (July 2009): 418–25. http://dx.doi.org/10.1016/j.snb.2009.05.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Yong, Xiaobo Zhou, Alexei Degterev, Marta Lipinski, Donald Adjeroh, Junying Yuan, and Stephen T. C. Wong. "A novel tracing algorithm for high throughput imaging." Journal of Neuroscience Methods 160, no. 1 (February 2007): 149–62. http://dx.doi.org/10.1016/j.jneumeth.2006.07.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sasmaz, Erdem, Kathleen Mingle, and Jochen Lauterbach. "High-Throughput Screening Using Fourier-Transform Infrared Imaging." Engineering 1, no. 2 (June 2015): 234–42. http://dx.doi.org/10.15302/j-eng-2015040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kelly, Kimberly A., Paul A. Clemons, Amy M. Yu, and Ralph Weissleder. "High-throughput Identification of Phage-derived Imaging Agents." Molecular Imaging 5, no. 1 (January 2006): 7290.2006.00003. http://dx.doi.org/10.2310/7290.2006.00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Han, Yuanyuan, Rui Tang, Yi Gu, Alex Ce Zhang, Wei Cai, Violet Castor, Sung Hwan Cho, William Alaynick, and Yu-Hwa Lo. "Cameraless high-throughput three-dimensional imaging flow cytometry." Optica 6, no. 10 (September 27, 2019): 1297. http://dx.doi.org/10.1364/optica.6.001297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Farzam, Farzin, Sheng Liu, Cedric Cleyrat, and Keith A. Lidke. "High throughput Automated Multi Target Super-resolution Imaging." Biophysical Journal 114, no. 3 (February 2018): 187a. http://dx.doi.org/10.1016/j.bpj.2017.11.1048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Jacobsen, Chris, Junjing Deng, and Youssef Nashed. "Strategies for high-throughput focused-beam ptychography." Journal of Synchrotron Radiation 24, no. 5 (August 8, 2017): 1078–81. http://dx.doi.org/10.1107/s1600577517009869.

Full text
Abstract:
X-ray ptychography is being utilized for a wide range of imaging experiments with a resolution beyond the limit of the X-ray optics used. Introducing a parameter for the ptychographic resolution gain G p (the ratio of the beam size over the achieved pixel size in the reconstructed image), strategies for data sampling and for increasing imaging throughput when the specimen is at the focus of an X-ray beam are considered. The tradeoffs between large and small illumination spots are examined.
APA, Harvard, Vancouver, ISO, and other styles
36

Greenwood, Hannah E., Zoltan Nyitrai, Gabor Mocsai, Sandor Hobor, and Timothy H. Witney. "High-Throughput PET/CT Imaging Using a Multiple-Mouse Imaging System." Journal of Nuclear Medicine 61, no. 2 (September 13, 2019): 292–97. http://dx.doi.org/10.2967/jnumed.119.228692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mars Brisbin, Margaret, Otis Davey Brunner, Mary Matilda Grossmann, and Satoshi Mitarai. "Paired high‐throughput, in situ imaging and high‐throughput sequencing illuminate acantharian abundance and vertical distribution." Limnology and Oceanography 65, no. 12 (August 3, 2020): 2953–65. http://dx.doi.org/10.1002/lno.11567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ikenson, Ben. "Advancing high-throughput heat conduction property characterization." Scilight 2022, no. 19 (May 13, 2022): 191103. http://dx.doi.org/10.1063/10.0011390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Espes, Emil, and Anasuya Adibhatla. "High throughput Imaging and Increasing Resolution of X-ray Imaging at High Acceleration Voltages." Microscopy and Microanalysis 28, S1 (July 22, 2022): 228–30. http://dx.doi.org/10.1017/s1431927622001751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Schäfer, Max B., Sophie Weiland, Kent W. Stewart, and Peter P. Pott. "Compact Microscope Module for High- Throughput Microscopy." Current Directions in Biomedical Engineering 6, no. 3 (September 1, 2020): 530–33. http://dx.doi.org/10.1515/cdbme-2020-3136.

Full text
Abstract:
AbstractMicroscopy is an essential tool in research and science. However, it is relatively resource consuming regarding cost, time of usage, and consumable supplies. Current low-cost approaches provide good imaging quality but struggle in terms of versatility or applicability to varying setups. In this paper, a Compact Microscope Module for versatile application in custom-made setups or research projects is presented. As a first application and proof of concept, the use of the module in a High-Throughput Microscope for screening of samples in microtiter plates is shown. The Compact Microscope Module allows for simple and resource-efficient microscopy in various applications while still enabling relatively good imaging qualities.
APA, Harvard, Vancouver, ISO, and other styles
41

EBERLE, A. L., S. MIKULA, R. SCHALEK, J. LICHTMAN, M. L. KNOTHE TATE, and D. ZEIDLER. "High-resolution, high-throughput imaging with a multibeam scanning electron microscope." Journal of Microscopy 259, no. 2 (January 27, 2015): 114–20. http://dx.doi.org/10.1111/jmi.12224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Truong, Thai V., and Willy Supatto. "Toward high-content/high-throughput imaging and analysis of embryonic morphogenesis." genesis 49, no. 7 (June 24, 2011): 555–69. http://dx.doi.org/10.1002/dvg.20760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lausted, Christopher, Zhiyuan Hu, Leroy Hood, and Charles Campbell. "SPR Imaging for High Throughput, Label-Free Interaction Analysis." Combinatorial Chemistry & High Throughput Screening 12, no. 8 (September 1, 2009): 741–51. http://dx.doi.org/10.2174/138620709789104933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Thompson, Richard B., Ignacy Gryczynski, and Joanna Malicka. "Fluorescence Polarization Standards for High-Throughput Screening and Imaging." BioTechniques 32, no. 1 (January 2002): 34–42. http://dx.doi.org/10.2144/02321bm03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yue, Jiang, Jing Han, Yi Zhang, and Lian Fa Bai. "A High-Throughput Imaging Spectrometer Based on Over-Scanning." Applied Mechanics and Materials 519-520 (February 2014): 1247–51. http://dx.doi.org/10.4028/www.scientific.net/amm.519-520.1247.

Full text
Abstract:
We present a novel high-throughput imaging spectrometer based on over-scanning. The traditional slit-based spectrometer cannot gather enough radiation while the source is too weak. A much wider slit is used to replace the narrow one in traditional spectrometer. Too much wide slit will cause overlapping between different wavelength lights. In order to reconstruct super-resolution spectrum of source, over-scanning is employed which is realized by high precision electromechanical device. Experiments show that the reconstructed spectrum achieved a much higher resolution than original data meanwhile the throughput has improved significantly.
APA, Harvard, Vancouver, ISO, and other styles
46

Zhang, Gefei, Xinghu Yu, Gang Huang, Dongxu Lei, and Mingsi Tong. "An improved automated zebrafish larva high-throughput imaging system." Computers in Biology and Medicine 136 (September 2021): 104702. http://dx.doi.org/10.1016/j.compbiomed.2021.104702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Carter, Lukas M., Kelly E. Henry, Andre Platzman, and Jason S. Lewis. "3D-Printable Platform for High-Throughput Small-Animal Imaging." Journal of Nuclear Medicine 61, no. 11 (April 13, 2020): 1691–92. http://dx.doi.org/10.2967/jnumed.119.240457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Poudel, Chetan, Ioanna Mela, and Clemens F. Kaminski. "High-throughput, multi-parametric, and correlative fluorescence lifetime imaging." Methods and Applications in Fluorescence 8, no. 2 (February 20, 2020): 024005. http://dx.doi.org/10.1088/2050-6120/ab7364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chakrabarti, Supriya. "High-throughput and multislit imaging spectrograph for extended sources." Optical Engineering 51, no. 1 (February 1, 2012): 013003. http://dx.doi.org/10.1117/1.oe.51.1.013003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mahecic, Dora, Davide Gambarotto, Kyle M. Douglass, Denis Fortun, Niccoló Banterle, Khalid A. Ibrahim, Maeva Le Guennec, et al. "Homogeneous multifocal excitation for high-throughput super-resolution imaging." Nature Methods 17, no. 7 (June 22, 2020): 726–33. http://dx.doi.org/10.1038/s41592-020-0859-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography