Journal articles on the topic 'High susceptibility'

To see the other types of publications on this topic, follow the link: High susceptibility.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'High susceptibility.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Xu, Liang, Yaxing Wang, Shuang Wang, Yun Wang, and Jost B. Jonas. "High Myopia and Glaucoma Susceptibility." Ophthalmology 114, no. 2 (February 2007): 216–20. http://dx.doi.org/10.1016/j.ophtha.2006.06.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mahel, Michal. "AC susceptibility in high-temperature superconductors." International Journal of Applied Electromagnetics and Mechanics 14, no. 1-4 (December 20, 2002): 75–80. http://dx.doi.org/10.3233/jae-2002-392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Westerholt, K., and H. Bach. "Paramagnetic susceptibility ofYBa2Cu3O7−δat high temperatures." Physical Review B 39, no. 1 (January 1, 1989): 858–61. http://dx.doi.org/10.1103/physrevb.39.858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brasunas, J., B. Lakew, and C. Lee. "High‐temperature‐superconducting magnetic susceptibility bolometer." Journal of Applied Physics 71, no. 7 (April 1992): 3639–41. http://dx.doi.org/10.1063/1.350898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Waki, T., N. Tsujii, Y. Itoh, C. Michioka, K. Yoshimura, O. Suzuki, H. Kitazawa, and G. Kido. "Magnetic susceptibility at high fields of." Physica B: Condensed Matter 398, no. 1 (August 2007): 148–50. http://dx.doi.org/10.1016/j.physb.2007.05.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Löhle, J., K. Mattenberger, and O. Vogt. "High temperature susceptibility of UAsxSe1− x." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 43–44. http://dx.doi.org/10.1016/s0304-8853(97)00658-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kossacki, P. "High-field susceptibility in amorphous materials." Journal of Magnetism and Magnetic Materials 125, no. 1-2 (July 1993): 147–50. http://dx.doi.org/10.1016/0304-8853(93)90830-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Y., C. Beduz, Z. Yi, and R. G. Scurlock. "AC susceptibility of high-Tc superconductors." Physica C: Superconductivity 201, no. 3-4 (October 1992): 325–36. http://dx.doi.org/10.1016/0921-4534(92)90480-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kimishima, Yoshihide, Kenji Akutsu, and Hideyoshi Kittaka. "High-Temperature Magnetic Susceptibility of YBa2Cu3Oy." Japanese Journal of Applied Physics 28, Part 1, No. 7 (July 20, 1989): 1278–79. http://dx.doi.org/10.1143/jjap.28.1278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qin, M. J., and X. X. Yao. "ac susceptibility of high-temperature superconductors." Physical Review B 54, no. 10 (September 1, 1996): 7536–44. http://dx.doi.org/10.1103/physrevb.54.7536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Juszczyk, S. "High field susceptibility of Co0.55Cu0.45Cr2S4-ySey." Journal of Magnetism and Magnetic Materials 61, no. 3 (October 1986): 295–300. http://dx.doi.org/10.1016/0304-8853(86)90042-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fojt-Dymara, Gabriela, Marek Opiela, and Wojciech Borek. "Susceptibility of High-Manganese Steel to High-Temperature Cracking." Materials 15, no. 22 (November 18, 2022): 8198. http://dx.doi.org/10.3390/ma15228198.

Full text
Abstract:
Tests were carried out on two high-Mn steels: 27Mn-4Si-2Al-Nb with Nb microaddition and 24Mn-3Si-1.5Al-Nb-Ti with Nb and Ti microadditions. High-manganese austenitic steels, due to their good strength and plastic properties belong to the AHSS (Advanced High-Strength Steel) group and are used in the automotive industry. The main difficulties faced during the casting of the steel and hot working are hot cracks, which can appear in the surface of the ingot. Cracks on the edges of the sheet after hot rolling are the reason for cutting the edges of the sheet and increasing production costs and material losses. The main reason for the formation of hot cracks is the decrease in metal ductility in the high-temperature brittleness range (HTBR). The width of the HTBR depends on mechanical properties and microstructural factors, i.e., non-metallic inclusions or intermetallic phases at austenite grain boundaries. In this paper, a hot tensile test was performed. The research was performed on the GLEEBLE 3800 thermomechanical simulator. This test allows us to determine the width of the high-temperature brittleness range (HTBR), the Nil Strength Temperature (NST), the Nil Ductility Temperature (NDT), and the Ductility Recovery Temperature (DRT). Hot ductility was determined from the value of the reduction in area R(A). The obtained results make it possible to determine the temperature of the beginning of hot working from the tested high-Mn steels. Fractographic research enabled us to define mechanisms of hot cracking. It was found that hot cracks form as a result of disruptions in the liquid film on crystals’ boundaries.
APA, Harvard, Vancouver, ISO, and other styles
13

Skulsky, V. Yu, V. V. Zhukov, M. A. Nimko, S. I. Moravetsky, and L. D. Mishchenko. "Evaluation of susceptibility to temper brittleness of heat-resistant steels using high-temperature testing." Paton Welding Journal 2016, no. 2 (February 28, 2016): 22–27. http://dx.doi.org/10.15407/tpwj2016.02.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

ZHOU, Wen-Ting, and Yang HU. "Genetic susceptibility for acute high altitude disease." Hereditas (Beijing) 35, no. 2 (September 27, 2013): 141–50. http://dx.doi.org/10.3724/sp.j.1005.2013.00141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Abduljalil, Amir M., and Pierre-Marie L. Robitaille. "Macroscopic Susceptibility in Ultra High Field MRI." Journal of Computer Assisted Tomography 23, no. 6 (November 1999): 832–41. http://dx.doi.org/10.1097/00004728-199911000-00004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Grimes, Craig A. "High‐frequency, transient magnetic susceptibility of ferroelectrics." Journal of Applied Physics 80, no. 8 (October 15, 1996): 4548–52. http://dx.doi.org/10.1063/1.363436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gottlieb, Steven, W. Liu, D. Toussaint, R. L. Renken, and R. L. Sugar. "Quark-number susceptibility of high-temperature QCD." Physical Review Letters 59, no. 20 (November 16, 1987): 2247–50. http://dx.doi.org/10.1103/physrevlett.59.2247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schliepe, B., M. Stindtmann, I. Nikolic, and K. Baberschke. "Positive field-cooled susceptibility in high-Tcsuperconductors." Physical Review B 47, no. 13 (April 1, 1993): 8331–34. http://dx.doi.org/10.1103/physrevb.47.8331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Boust, F., N. Vukadinovic, and S. Labbé. "High-frequency susceptibility of soft ferromagnetic nanodots." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 708–10. http://dx.doi.org/10.1016/j.jmmm.2003.11.257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Djajaputra, D., and J. Ruvalds. "Spin susceptibility divergence in high-temperature superconductors." Solid State Communications 111, no. 4 (June 1999): 199–204. http://dx.doi.org/10.1016/s0038-1098(99)00192-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Enomoto, H., K. Inoue, M. Muralidhar, M. Murakami, and T. Takizawa. "AC susceptibility of high-Tc superconductor REBa2Cu3Oy." Physica C: Superconductivity 357-360 (September 2001): 545–47. http://dx.doi.org/10.1016/s0921-4534(01)00346-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Srinivasan, Anand, Grace C. Lee, Nelson S. Torres, Kevin Hernandez, Steven D. Dallas, Jose Lopez-Ribot, Christopher R. Frei, and Anand K. Ramasubramanian. "High-throughput microarray for antimicrobial susceptibility testing." Biotechnology Reports 16 (December 2017): 44–47. http://dx.doi.org/10.1016/j.btre.2017.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Nishihara, H., I. Oguro, M. Suzuki, K. Koga, and H. Yasuoka. "High-temperature susceptibility of CuCl2-intercalated graphite." Synthetic Metals 12, no. 1-2 (November 1985): 473–78. http://dx.doi.org/10.1016/0379-6779(85)90154-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Twin, A. J., J. S. Abell, and I. R. Harris. "The high temperature magnetic susceptibility of YBa2Cu3O7−∂." Journal of the Less Common Metals 164-165 (October 1990): 1136–41. http://dx.doi.org/10.1016/0022-5088(90)90528-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ruvalds, J., C. T. Rieck, J. Zhang, and A. Virosztek. "Spin Susceptibility Scaling in High-Temperature Superconductors." Science 256, no. 5064 (June 19, 1992): 1664–67. http://dx.doi.org/10.1126/science.256.5064.1664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Takahashi, Ichiro, and Masao Shimizu. "High-Field Spin Susceptibility for Ferromagnetic Metals." Journal of the Physical Society of Japan 56, no. 12 (December 15, 1987): 4540–43. http://dx.doi.org/10.1143/jpsj.56.4540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ishida, Takekazu, and Hiromasa Mazaki. "Complex Susceptibility of High-TcSuperconductor ErBa2Cu3O6+x." Japanese Journal of Applied Physics 26, Part 2, No. 8 (August 20, 1987): L1296—L1298. http://dx.doi.org/10.1143/jjap.26.l1296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Waldmann, O., G. Lichtschlag, A. Talalaevskii, R. Kleiner, P. Müller, F. Steinmeyer, and W. Gerhäuser. "c-axis ac susceptibility in high-Tcsuperconductors." Physical Review B 54, no. 21 (December 1, 1996): 15478–82. http://dx.doi.org/10.1103/physrevb.54.15478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Morozumi, H., K. Terao, and H. Yamada. "The susceptibility maximum of ZrZn2at high pressure." Journal of Physics: Condensed Matter 12, no. 27 (June 15, 2000): 5871–78. http://dx.doi.org/10.1088/0953-8984/12/27/305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Müller, Karl-Heinz. "AC susceptibility of high-temperature ceramic superconductors." Physica C: Superconductivity 185-189 (December 1991): 1609–10. http://dx.doi.org/10.1016/0921-4534(91)90931-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Juszczyk, S. "High field susceptibility of Zn1-xGa2x/3Cr2Se4." Journal of Magnetism and Magnetic Materials 59, no. 1-2 (May 1986): 69–72. http://dx.doi.org/10.1016/0304-8853(86)90011-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bietenholz, Wolfgang, Philippe de Forcrand, and Urs Gerber. "Topological susceptibility from slabs." Journal of High Energy Physics 2015, no. 12 (December 2015): 1–18. http://dx.doi.org/10.1007/jhep12(2015)070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

GROSU, I., M. CRISAN, and I. TIFREA. "MAGNETIC SUSCEPTIBILITY OF A DISORDERED HIGH TEMPERATURE SUPERCONDUCTOR." Modern Physics Letters B 10, no. 14 (June 20, 1996): 635–41. http://dx.doi.org/10.1142/s0217984996000705.

Full text
Abstract:
The temperature and the disorder dependence of the magnetic susceptibility of electrons interacting with spin fluctuations has been calculated. The system is considered to be two-dimensional and the dynamical susceptibility correspond to a strongly correlated electron system in the presence of weak disorder. We obtain deviations from Pauli paramagnetism which are in good agreement with experimental data.
APA, Harvard, Vancouver, ISO, and other styles
34

Debbio, Luigi Del, and Claudio Pica. "Topological susceptibility from the overlap." Journal of High Energy Physics 2004, no. 02 (February 2, 2004): 003. http://dx.doi.org/10.1088/1126-6708/2004/02/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Singh, RK. "Insecticides Susceptibility Status of Malaria Vectors in a High Malaria Endemic Tribal District Gadchiroli (Maharashtra) of India." Journal of Communicable Diseases 53, no. 03 (September 30, 2021): 33–50. http://dx.doi.org/10.24321/0019.5138.202137.

Full text
Abstract:
Background and Objective: The current study was undertaken to determine insecticide susceptibility of malaria vectors in various villages of high malaria endemic PHCs of Gadchiroli district of Maharashtra. Methods: Adult malaria vectors were collected from the human dwellings/ cattle sheds of 156 villages of 18 malaria endemic PHCs. Susceptibility tests were carried out for different insecticides against An. culicifacies and An. fluviatilis mosquitoes as per the World Health Organization (WHO) procedure. Cone bioassays were also done to assess the quality and efficacy of indoor residual spray. Results:An. fluviatilis could be collected from 23 villages only and all the populations were fully susceptible to synthetic pyrethroid (deltamethrin) while being tolerant to organophosphorous (malathion). Susceptibility of An. culicifacies from 156 villages indicated that only 3 populations of An. culicifacies were resistant to deltamethrin while 57 populations were fully susceptible and other 96 populations were tolerant to deltamethrin. Resistance was recorded in 25 populations of An. culicifacies against malathion and 30 populations were tolerant to malathion insecticide. Remaining populations of An. fluviatilis and An. culicifacies were highly resistant to organochlorine. Results of cone bioassay revealed the mortality ranged from 32.5-51.1% on cemented and 27.5-43.3% on the mud wall sprayed with lambda cyhalothrin. Conclusion: The current study indicates that resistance has developed to synthetic pyrethroids in the major malaria vector An. culicifacies. Therefore, there is an urgent need for the evaluation of new insecticide molecules for better control of malaria vectors.
APA, Harvard, Vancouver, ISO, and other styles
36

Ghigo, Gianluca, Michela Fracasso, Roberto Gerbaldo, Laura Gozzelino, Francesco Laviano, Andrea Napolitano, Guang-Han Cao, et al. "High-Frequency ac Susceptibility of Iron-Based Superconductors." Materials 15, no. 3 (January 29, 2022): 1079. http://dx.doi.org/10.3390/ma15031079.

Full text
Abstract:
A microwave technique suitable for investigating the AC magnetic susceptibility of small samples in the GHz frequency range is presented. The method—which is based on the use of a coplanar waveguide resonator, within the resonator perturbation approach—allows one to obtain the absolute value of the complex susceptibility, from which the penetration depth and the superfluid density can be determined. We report on the characterization of several iron-based superconducting systems, belonging to the 11, 122, 1144, and 12442 families. In particular, we show the effect of different kinds of doping for the 122 family, and the effect of proton irradiation in a 122 compound. Finally, the paradigmatic case of the magnetic superconductor EuP-122 is discussed, since it shows the emergence of both superconducting and ferromagnetic transitions, marked by clear features in both the real and imaginary parts of the AC susceptibility.
APA, Harvard, Vancouver, ISO, and other styles
37

Kaji, T., H. Endo, Y. Uesaka, and Y. Nakatani. "Development of High-speed Differential-Susceptibility Measuring Equipment." Journal of the Magnetics Society of Japan 32, no. 3 (2008): 244–49. http://dx.doi.org/10.3379/msjmag.32.244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Fargnoli, Maria Concetta, Giuseppe Argenziano, Iris Zalaudek, and Ketty Peris. "High- and low-penetrance cutaneous melanoma susceptibility genes." Expert Review of Anticancer Therapy 6, no. 5 (May 2006): 657–70. http://dx.doi.org/10.1586/14737140.6.5.657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kliem, H., and B. Schumacher. "Time-Dependent Dielectric Susceptibility in High Electric Fields." IEEE Transactions on Electrical Insulation EI-22, no. 2 (April 1987): 219–24. http://dx.doi.org/10.1109/tei.1987.298886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mrowka, F., M. Wurlitzer, P. Esquinazi, E. H. Brandt, M. Lorenz, and K. Zimmer. "Nonlinear ac susceptibility of high temperature superconducting rings." Applied Physics Letters 70, no. 7 (February 17, 1997): 898–900. http://dx.doi.org/10.1063/1.118308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Lelièvre, Peter G., and Douglas W. Oldenburg. "Magnetic forward modelling and inversion for high susceptibility." Geophysical Journal International 166, no. 1 (July 2006): 76–90. http://dx.doi.org/10.1111/j.1365-246x.2006.02964.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Cooper, J. R. "Normal state magnetic susceptibility of some high Tcoxides." Superconductor Science and Technology 4, no. 1S (January 1, 1991): S181—S183. http://dx.doi.org/10.1088/0953-2048/4/1s/046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ferreira, Marina, Adelaide Almeida, Ivonne Delgadillo, Jorge Saraiva, and Ângela Cunha. "Susceptibility ofListeria monocytogenesto high pressure processing: A review." Food Reviews International 32, no. 4 (September 16, 2015): 377–99. http://dx.doi.org/10.1080/87559129.2015.1094816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Israel, Casey, Weida Wu, and Alex de Lozanne. "High-field magnetic force microscopy as susceptibility imaging." Applied Physics Letters 89, no. 3 (July 17, 2006): 032502. http://dx.doi.org/10.1063/1.2221916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

BabićStojić, B., Z. Šoškić, M. Stojić, A. Szytula, and Z. Tomkowicz. "High temperature magnetic susceptibility of Hg1−Fe Se." Solid State Communications 102, no. 8 (May 1997): 583–88. http://dx.doi.org/10.1016/s0038-1098(97)00037-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kahol, P. K., A. Raghunathan, B. J. McCormick, and A. J. Epstein. "High temperature magnetic susceptibility studies of sulfonated polyanilines." Synthetic Metals 101, no. 1-3 (May 1999): 815–16. http://dx.doi.org/10.1016/s0379-6779(98)01116-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ohashi, Yoji. "Temperature Dependence of Uniform Susceptibility in High-TcSuperconductors." Journal of the Physical Society of Japan 62, no. 10 (October 15, 1993): 3702–9. http://dx.doi.org/10.1143/jpsj.62.3702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Müller, T., W. Joss, and L. Taillefer. "Magnetic susceptibility of UPt3 in high magnetic fields." Physica B: Condensed Matter 165-166 (August 1990): 439–40. http://dx.doi.org/10.1016/s0921-4526(90)81069-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Weis, Robert, and Christian Enss. "High-frequency dielectric susceptibility of Li+ doped KCl." Czechoslovak Journal of Physics 46, S5 (May 1996): 2557–58. http://dx.doi.org/10.1007/bf02570265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yang, Shuangjun, Yang Yang, Zhiyu Yang, Chi Lu, and Wenhui Liu. "Adiabatic Shear Susceptibility of Fe50Mn30Co10Cr10 High-Entropy Alloy." Metallurgical and Materials Transactions A 51, no. 4 (January 23, 2020): 1771–80. http://dx.doi.org/10.1007/s11661-020-05641-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography