Academic literature on the topic 'High-Resolution X-Ray imaging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High-Resolution X-Ray imaging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "High-Resolution X-Ray imaging"
Huang, Wenjun, Junyu Chen, Yi Li, Yueyue Wu, Lianjie Li, Liping Chen, and Hai Guo. "Tb3+-doped borosilicate glass scintillators for high-resolution X-ray imaging." Chinese Optics Letters 21, no. 7 (2023): 071601. http://dx.doi.org/10.3788/col202321.071601.
Full textStrüder, L. "High-resolution imaging X-ray spectrometers." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 454, no. 1 (November 2000): 73–113. http://dx.doi.org/10.1016/s0168-9002(00)00811-1.
Full textSi, Haoxuan, Lianqiang Shan, Huiyao Du, Li Jiang, Shengzhen Yi, Weimin Zhou, and Zhanshan Wang. "High-resolution Mo Kα X-ray monochromatic backlight imaging using a toroidal crystal." Chinese Optics Letters 21, no. 10 (2023): 103401. http://dx.doi.org/10.3788/col202321.103401.
Full textCarpenter, D. A., and M. A. Taylor. "Fast, High-Resolution X-ray Microfluorescence Imaging." Advances in X-ray Analysis 34 (1990): 217–21. http://dx.doi.org/10.1154/s0376030800014506.
Full textOu, Xiangyu, Xian Qin, Bolong Huang, Jie Zan, Qinxia Wu, Zhongzhu Hong, Lili Xie, et al. "High-resolution X-ray luminescence extension imaging." Nature 590, no. 7846 (February 17, 2021): 410–15. http://dx.doi.org/10.1038/s41586-021-03251-6.
Full textFewster, Paul F., Marina V. Baidakova, and Reginald Kyutt. "High-resolution X-ray diffraction and imaging." Journal of Applied Crystallography 46, no. 4 (July 18, 2013): 841. http://dx.doi.org/10.1107/s0021889813016415.
Full textSchulman, Eric, and Joel N. Bregman. "High-resolution X-ray imaging of M33." Astrophysical Journal 441 (March 1995): 568. http://dx.doi.org/10.1086/175383.
Full textSchopper, Florian, J. Ninkovic, R. Richter, G. Schaller, T. Selle, and J. Treis. "High resolution X-ray imaging with pnCCDs." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 912 (December 2018): 11–15. http://dx.doi.org/10.1016/j.nima.2017.10.004.
Full textStrueder, L. "High resolution imaging silicon-x-ray spectrometers." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 522, no. 1-2 (April 2004): 146. http://dx.doi.org/10.1016/j.nima.2004.01.034.
Full textPLOURABOUE, F., P. CLOETENS, C. FONTA, A. STEYER, F. LAUWERS, and J. P. MARC-VERGNES. "X-ray high-resolution vascular network imaging." Journal of Microscopy 215, no. 2 (August 2004): 139–48. http://dx.doi.org/10.1111/j.0022-2720.2004.01362.x.
Full textDissertations / Theses on the topic "High-Resolution X-Ray imaging"
Bykova, Iuliia [Verfasser], and Gisela [Akademischer Betreuer] Schütz. "High-resolution X-ray ptychography for magnetic imaging / Iuliia Bykova ; Betreuer: Gisela Schütz." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2018. http://d-nb.info/1172717419/34.
Full textMcRae, Reagan. "Investigating metal homeostasis in mammalian cells using high resolution imaging techniques." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/41197.
Full textStephan, Sandra. "High-Resolution 3D Ptychography." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113219.
Full textKohärente Bildgebung ist eine vielversprechende Methode der Röntgenmikroskopie. Sie ermöglicht die zerstörungsfreie Bestimmung der inneren Struktur von strahlenharten Untersuchungsobjekten mit einer räumlichen Auflösung, die im Prinzip nur von der integralen Anzahl der Photonen auf der Probe sowie deren Streukraft abhängt. Letztendlich stellt die Wellenlänge der verwendeten Röntgenstrahlung eine Grenze für die erreichbare räumliche Auflösung dar. Die Kombination der kohärenten Bildgebung mit der Rastermikroskopie zur sogenannten Ptychographie eröffnet die Möglichkeit, auch ausgedehnte Objekte mit hoher Auflösung zu untersuchen. Dabei wird die Probe mit einem räumlich begrenzten, kohärenten Röntgenstrahl abgerastert und an jedem Rasterpunkt ein Beugungsbild von einer im Fernfeld platzierten Beugungskamera registriert. Die Beleuchtungen benachbarter Rasterpunkte müssen dabei zu einem bestimmten Prozentsatz überlappen, um genügend Informationen für eine anschließende computergestützte und eindeutige Rekonstruktion des Objektes sicherzustellen. Moderne Rekonstruktionsalgorithmen ermöglichen sogar die gleichzeitige Rekonstruktion der Transmissionsfunktion des Objektes und der Beleuchtungsfunktion des eintreffenden Röntgenstrahls. Die Verknüpfung der Ptychographie mit der Tomographie zur 3D-Ptychographie ist der nahe liegende Schritt, um nun auch die dreidimensionale innere Struktur von Objekten mit hoher räumlicher Auflösung zu bestimmen. Die Projektionen an den verschiedenen Winkelpositionen der Probe werden dabei mittels ptychographischer Abrasterung der Probe erzeugt und anschließend der tomographischen Rekonstruktion zugrunde gelegt. In dieser Arbeit wird die Entwicklung der 3D-Ptychographie beschrieben. Das beinhaltet die Beschreibung der experimentellen Umgebung, der numerischen Implementierung des ptychographischen und des tomographischen Rekonstruktionsalgorithmus als auch eine detaillierte Darstellung der Durchführung der 3D-Ptychographie am Beispiel eines Experiments, welches unter Verwendung des modernen Nanoprobe-Aufbaus des Strahlrohres P06 am PETRA III Synchrotronring des DESY in Hamburg durchgeführt wurde. Als Untersuchungsobjekt diente dabei ein dünner Mo/UO2-Film, der ein vereinfachtes Modell für die in Reaktoren von Atomkraftwerken verbrauchten Brennstäbe darstellt und deshalb im Bereich des Umweltschutzes Anwendung findet. Die dreidimensionale Struktur der Probe wurde mit einer - für diese Methode bisher einmaligen - räumlichen Auflösung von 18 nm bestimmt. Die Messung des von der Probe kommenden Fluoreszenz-Signals an jedem Rasterpunkt der Ptychogramme ermöglichte zusätzlich die Bestimmung der zwei- und dreidimensionalen Elementverteilung innerhalb der Probe mit einer räumlichen Auflösung von 80 nm. Anhand der Fluoreszenzdaten konnte sowohl den Bereichen verschiedener Phasenschübe in den ptychographischen Rekonstruktionen der Objektphase als auch den verschiedenen Werten des Dekrementes des Brechungsindex in der tomographischen Rekonstruktion, das entsprechende chemische Element zugeordnet werden. Die erfolgreiche Demonstration der Durchführbarkeit der 3D-Ptychographie motiviert weitere zukünftige Anwendungen, z. B. auf dem Gebiet der Medizin, der Materialforschung und der physikalischen Grundlagenforschung
Ullherr, Maximilian [Verfasser], and Randolf [Gutachter] Hanke. "Optimization of Image Quality in High-Resolution X-Ray Imaging / Maximilian Ullherr ; Gutachter: Randolf Hanke." Würzburg : Universität Würzburg, 2021. http://d-nb.info/1230758577/34.
Full textFella, Christian [Verfasser], and Randolf [Gutachter] Hanke. "High-Resolution X-ray Imaging based on a Liquid-Metal-Jet-Source with and without X-ray Optics / Christian Fella ; Gutachter: Randolf Hanke." Würzburg : Universität Würzburg, 2017. http://d-nb.info/1132995809/34.
Full textSetlur, Nagesh Swetadri Vasan. "Improved imaging for x-ray guided interventions| A high resolution detector system and patient dose reduction technique." Thesis, State University of New York at Buffalo, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3613101.
Full textOver the past couple of decades there has been tremendous advancements in the field of medicine and engineering technology. Increases in the level of integration between these two branches of science has led to better understanding of physiology and anatomy of a living organism, thus allowing for better understanding of diseases along with their cures and treatments. The work presented in this dissertation aims at improving the imaging aspects of x-ray image guided interventions with endovascular image guided intervention as the primary area of application.
Minimally invasive treatments for neurovascular conditions such as aneurysms, stenosis, etc involve guidance of catheters to the treatment area, and deployment of treatment devices such as stents, coils, balloons, etc, all under x-ray image guidance. The features in these device are in the order of a few 10 µm's to a few 100 µm's and hence demand higher resolution imaging than the current state of the art flat panel detector. To address this issue three high resolution x-ray cameras were developed. The Micro Angiography Fluoroscope (MAF) based on a Charge Coupled Device (MAF-CCD), the MAF based on Complementary Metal Oxide Semiconductors (MAF-CMOS) and the Solid State X-ray Image Intensifier based on Electron Multiplying CCDs. The construction details along with performance evaluations are presented. The MAF-CCD was successfully used in a few interventions on human patient to treat neurovascular conditions, primarily aneurysm. Images acquired by the MAF-CCD during these procedures are presented.
A software platform CAPIDS was previously developed to facilitate the use of the high resolution MAF-CCD in a clinical environment. In this work the platform was modified to be used with any camera. The upgrades to CAPIDS, along with parallel programming including both the Graphics Processing Unit (GPU) and Central Processing Unit (CPU) are presented.
With increasing use of x-ray guidance for minimally invasive interventions, a major cause of concern is that of prolonged exposure to x-ray radiation that can cause biological damage to the patient. Hence during x-ray guided procedures necessary steps must be taken to minimize the dose to the patient. In this work a novel dose reduction technique, using a combination of Region of Interest (ROI) fluoroscopy to reduce dose along with spatially different temporal filtering to restore image quality is presented.
Finally a novel ROI imaging technique for biplane imaging in interventional suites, combining the use of high resolution detector along with dose reduction technique using ROI fluoroscopy with spatially different temporal filtering is presented.
Pedersen, Thomas Sunn 1970. "Edge plasma phenomena in the Alcator C-Mod tokamak measured by high resolution X-ray imaging diagnostics." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9025.
Full textIncludes bibliographical references (p. 203-206).
In this thesis high resolution soft x-ray measurements from the Alcator C-Mod plasma edge are presented for a variety of different plasma conditions. These measurements provide radial profiles of the soft x-ray emissivity with 1.5 mm resolution or better, and temporal resolution down to 12 [mu]s. These profiles show a distinct and very narrow pedestal shape in H-mode, indicative of the H-mode transport barrier. The soft x-ray emissivity pedestal at the outboard edge is typically 10 mm inside the last closed flux surface, near the top of the electron density and temperature pedestals. Modelling shows that the inward shift of the x-ray pedestal implies an inward shift of the impurity density pedestal. This inward shift is explained by an inward impurity pinch located in the region of strong electron density gradient, as predicted by neoclassical impurity transport theory. Calculations using the impurity transport code MIST support the existence of a neoclassical-like inward pinch. Changes in the soft x-ray pedestal width can be interpreted as changes in the edge impurity diffusion coefficient. We find several scaling laws of the edge diffusion coefficient with various plasma parameters in EDA H-mode. A second array views the top of the plasma. The x-ray emissivity measured with this array also shows a distinct and narrow pedestal in H-mode. However, it is located significantly closer to the separatrix and is often narrower. Both of these differences increase with the safety factor at the edge, q95 . Thus, there is a significant poloidal asymmetry in the impurity density in the H-mode edge region, which increases with q95 . Therefore, the impurity transport in the H-mode edge is highly two-dimensional. The strong poloidal asymmetries measured show some quantitative agreement with theories developed to explain poloidal impurity asymmetries. However, none of the theories are strictly applicable to the Alcator C-Mod edge, and they all significantly underestimate the actual asymmetries that we observe.
by Thomas Sunn Pedersen.
Ph.D.
Alaribe, Leonard [Verfasser], and Harald [Akademischer Betreuer] Hillebrecht. "Development of SrI2:Eu2+ - Scintillators for Gamma Ray spectroscopy and high resolution X-Ray imaging = Entwicklung von SrI2:Eu2+ - Szintillatoren für Gammastrahl-Spektroskopie und hochauflösende Röntgen-Bildgebung." Freiburg : Universität, 2013. http://d-nb.info/1115495089/34.
Full textBaier, Sina, Christian D. Damsgaard, Maria Scholz, Federico Benzi, Amélie Rochet, Robert Hoppe, Torsten Scherer, et al. "In Situ Ptychography of Heterogeneous Catalysts using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated Temperature." Cambridge University Press, 2016. https://tud.qucosa.de/id/qucosa%3A70694.
Full textDe, cesare Cinzia. "Traitements numériques pour l’amélioration de la stabilité des détecteurs spectrométriques à fort flux pour l'imagerie X." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT084/document.
Full textThe emergence of CdTe Photon Counting Detectors (PCD) with energy discrimination capabilities, opens up new perspectives in X-ray imaging. Medical and security applications are characterized by very high X-ray fluxes and consequently require a very fast shaper in order to limit dead time losses due to pile-up. However, if the shaper is faster than the collection of the charges in the semiconductor, there is a loss of charge called ballistic deficit. Moreover, variations of the electric field profile in the detector over time cause a change in the collection time of the charges. As a result, the conversion gain of the detector will be affected by these variations. The instability of the response is visible over time as a channel shift of the spectra, resulting in a false information of the photon energy. The aim of this work is to characterize this instability in order to understand the mechanisms behind them and to develop a method to correct its effect. We proposed a correction algorithm based on the use of two Single Delay Line (SDL) shaping amplifiers. A fast SDL is used to measure the X-ray spectra at high count rates with limited count rate losses. A slow SDL is used to measure the full collected charge in order estimate a correction factor for the compensation of the ballistic deficit fluctuations of the fast SDL. An important step is to sort the processed pulses in order to reject pile-up and other undesirable effects that may degrade the measurement of the correction factor. The proposed method was implemented in an FPGA in order to correct the ballistic deficit in real-time and to give a stable response of the detector at very high fluxes. The method was tested with a 4x4 pixels detector (CdTe) of 3 mm thickness and 800 micron pitch, which is able to measure transmitted X-ray spectra in the energy range of 20-160 kV on 256 energy bins. The developed method was initially tested at low count rate with a Co-57 and an Am-241 gamma-ray sources, then at high count rates up to ~2 Mc/s with an X-ray source. With the characterization and the validation of this innovative algorithm we prove its ability in providing a stable response of the detector over time without affecting the energy resolution (~7% at 122 keV) and the dead time (~70 ns)
Books on the topic "High-Resolution X-Ray imaging"
Conference on High Resolution X-ray Diffraction and Imaging (7th 2004 Prague, Czech Republic). Selected papers from XTOP 2004: 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging, Prague, 2-5 September 2004. Edited by Holý Václav 1953-. Bristol, UK: Institute of Physics Pub., 2005.
Find full textW, Deutsch Eric, and United States. National Aeronautics and Space Administration., eds. Hubble Space Telescope imaging of bright galactic x-ray binaries in crowded fields. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textKarthikeyan, D. High-resolution computed tomography of the lungs: A pattern approach. London: Hodder Arnold, 2005.
Find full textUnited States. National Aeronautics and Space Administration., ed. [Development of high resolution imaging detectors for X ray astronomy]: [final report, 1 May 1982 - 30 Jun. 1991]. [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textJ, Swenson Stephen, ed. High resolution CT of the chest. Philadelphia: Lippincott, 1995.
Find full textStern, Eric J. High-resolution CT of the chest: Comprehensive atlas. Philadelphia: Lippincott-Raven, 1996.
Find full textJ, Swensen Stephen, ed. High-resolution CT of the chest: Comprehensive atlas. 2nd ed. Philadelphia: Lippincott Williams & Wilkins, 2001.
Find full textStern, Eric J. High-resolution CT of the chest: Comprehensive atlas. 3rd ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health, 2009.
Find full text1948-, Müller Nestor Luiz, and Naidich David P, eds. High-resolution CT of the lung. 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2001.
Find full text1948-, Müller Nestor Luiz, and Naidich David P, eds. High-resolution CT of the lung. 2nd ed. Philadelphia: Lippincott-Raven, 1996.
Find full textBook chapters on the topic "High-Resolution X-Ray imaging"
Goldstein, Joseph I., Dale E. Newbury, Joseph R. Michael, Nicholas W. M. Ritchie, John Henry J. Scott, and David C. Joy. "High Resolution Imaging." In Scanning Electron Microscopy and X-Ray Microanalysis, 147–64. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6676-9_10.
Full textLyman, Charles E., Joseph I. Goldstein, Alton D. Romig, Patrick Echlin, David C. Joy, Dale E. Newbury, David B. Williams, et al. "High-Resolution SEM Imaging." In Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy, 61–66. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0635-1_11.
Full textLyman, Charles E., Joseph I. Goldstein, Alton D. Romig, Patrick Echlin, David C. Joy, Dale E. Newbury, David B. Williams, et al. "High-Resolution SEM Imaging." In Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy, 242–50. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0635-1_40.
Full textCarpenter, D. A., and M. A. Taylor. "Fast, High-Resolution X-Ray Microfluorescence Imaging." In Advances in X-Ray Analysis, 217–21. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3744-1_23.
Full textJacobsen, C., S. Lindaas, and M. R. Howells. "X-Ray Holography Using Photoresists: High Resolution Lensless Imaging." In X-Ray Microscopy III, 244–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-46887-5_57.
Full textGolub, Leon. "Very High Resolution Solar X-ray Imaging." In Mechanisms of Chromospheric and Coronal Heating, 115–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87455-0_25.
Full textLehr, J. "High-Resolution Three-Dimensional Imaging with an X-Ray Microscope." In X-Ray Microscopy and Spectromicroscopy, 71–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72106-9_8.
Full textBayat, Sam, Christian Dullin, Marcus J. Kitchen, and Goran Lovric. "Synchrotron X-Ray-Based Functional and Anatomical Lung Imaging Techniques." In Advanced High-Resolution Tomography in Regenerative Medicine, 151–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00368-5_10.
Full textSaint-Hilaire, Pascal, Albert Y. Shih, Gordon J. Hurford, and Brian Dennis. "Grid-Based Imaging of X-rays and Gamma Rays with High Angular Resolution." In Handbook of X-ray and Gamma-ray Astrophysics, 1783–816. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-19-6960-7_170.
Full textSaint-Hilaire, Pascal, Albert Y. Shih, Gordon J. Hurford, and Brian Dennis. "Grid-Based Imaging of X-rays and Gamma Rays with High Angular Resolution." In Handbook of X-ray and Gamma-ray Astrophysics, 1–34. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4544-0_170-1.
Full textConference papers on the topic "High-Resolution X-Ray imaging"
Wood, O. R., J. E. Bjorkholm, J. Bokor, L. Eichner, R. R. Freeman, T. E. Jewell, W. M. Mansfield, et al. "High Resolution Soft-X-Ray Projection Imaging." In Soft X-Ray Projection Lithography. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/sxray.1991.wb1.
Full textCash, Webster. "High resolution X-ray imaging." In SMALL MISSIONS FOR ENERGETIC ASTROPHYSICS. ASCE, 1999. http://dx.doi.org/10.1063/1.1302219.
Full textWood, O. R., J. E. Bjorkholm, J. Bokor, L. Eichner, R. R. Freeman, T. E. Jewell, W. M. Mansfield, et al. "High Resolution Soft-X-Ray Projection Imaging." In Short Wavelength Coherent Radiation: Generation and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/swcr.1991.wb1.
Full textWan, A. S., L. B. Da Silva, T. W. Barbee, R. C. Cauble, P. Celliers, H. R. Lee, S. B. Libby, et al. "Application of X-ray Lasers as Imaging and Plasma Diagnostics." In High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.wb4.
Full textStreet, Robert A., Steve E. Ready, Jeffrey T. Rahn, Marcelo Mulato, Kanai S. Shah, Paul R. Bennett, Ping Mei, et al. "High-resolution direct-detection x-ray imagers." In Medical Imaging 2000, edited by James T. Dobbins III and John M. Boone. SPIE, 2000. http://dx.doi.org/10.1117/12.384516.
Full textRoehrig, H., W. J. Dallas, T. W. Ovitt, R. D. Lamoreaux, R. Vercillo, and K. M. McNeill. "A High Resolution X-Ray Imaging Devicm." In OE/LASE '89, edited by Illes P. Csorba. SPIE, 1989. http://dx.doi.org/10.1117/12.952543.
Full textLarsson, Jakob C., William Vågberg, Carmen Vogt, Ulf Lundström, Daniel H. Larsson, and Hans M. Hertz. "High-spatial-resolution nanoparticle x-ray fluorescence tomography." In SPIE Medical Imaging, edited by Despina Kontos, Thomas G. Flohr, and Joseph Y. Lo. SPIE, 2016. http://dx.doi.org/10.1117/12.2216770.
Full textKashyap, Y. S., A. Agrawal, P. S. Sarkar, Mayank Shukla, T. Roy, Amar Sinha, Dinesh K. Aswal, and Anil K. Debnath. "High Resolution X-ray Microscopy For Nano-Resolution Imaging." In INTERNATIONAL CONFERENCE ON PHYSICS OF EMERGING FUNCTIONAL MATERIALS (PEFM-2010). AIP, 2010. http://dx.doi.org/10.1063/1.3530473.
Full textEschen, Wilhelm, Chang Liu, Daniel S. Penagos M., Robert Klas, Jens Limpert, and Jan Rothhardt. "High-speed, high-resolution, and material-specific coherent EUV imaging using a high-order harmonic source." In Compact EUV & X-ray Light Sources. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/euvxray.2024.ew3a.4.
Full textBen Yehuda, A., O. Sefi, E. Cohen, and S. Shwartz. "High-resolution Imaging with Scattered X-ray Radiation." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.am4q.7.
Full textReports on the topic "High-Resolution X-Ray imaging"
Silfvast, W. T. Simplified Ultra-High Resolution Optic for Soft-X-Ray Imaging. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada278424.
Full textJing, Zhenxue. A High Resolution Scanning Slot X-Ray Imaging Detector for Digital Mammography. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ada363627.
Full textDiebold, Gerald J. High Resolution X-ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, June 2008. http://dx.doi.org/10.21236/ada488612.
Full textDiebold, Gerald J. High Resolution X-Ray Phase Contrast Imaging With Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, June 2006. http://dx.doi.org/10.21236/ada457700.
Full textDiebold, Gerald J. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada472126.
Full textBitter, M., D. Gates, D. Monticello, H. Neilson, A. Reiman, A. Roquemore, S. Morita, M. Goto, H. Yamada, and J. Rice. Objectives and Layout of a High-Resolution X-ray Imaging Crystal Spectrometer for the Large Helical Device (LHD). Office of Scientific and Technical Information (OSTI), July 2010. http://dx.doi.org/10.2172/984471.
Full textBitter, M., D. Gates, H. Neilson, A. Reiman, A. Roquemore, S. Morita, M. Goto, H. Yamada, and J. Rice. Design Parameters and Objectives of a High-�Resolution X-�ray Imaging Crystal Spectrometer for the Large Helical Device (LHD). Office of Scientific and Technical Information (OSTI), May 2010. http://dx.doi.org/10.2172/981706.
Full textPablant, N. A., L. Delgado-Apricio, M. Goto, K. W. Hill, S. Lzerson, S. Morita, A. L. Roquemore, et al. Layout And Results From The Initial Operation Of The High-resolution X-ray Imaging Crystal Spectrometer On The Large Helical Device. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1063122.
Full textHill, K. W., Ch Broennimann, E. F. Eikenberry, A. Ince-Cushman, S. G. Lee, J. E. Rice, and S. Scott. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/960230.
Full textHill, K., Ch Broennimann, E. Eikenberry, A. Ince-Cushman, S. Lee, J. Rice, S. Scott, and R. Barnsley. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas. Office of Scientific and Technical Information (OSTI), January 2008. http://dx.doi.org/10.2172/960413.
Full text