Dissertations / Theses on the topic 'High Resolution Shock Capturing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'High Resolution Shock Capturing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Khan, Fayaz A. "Two-dimensional shock capturing numerical simulation of shallow water flow applied to dam break analysis." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/7750.
Full textCanestrelli, Alberto. "Numerical Modelling of Alluvial Rivers by Shock Capturing Methods." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3421764.
Full textLa modellazione dell’idrodinamica e delle variazioni orfologiche in canali naturali `e generalmente effettuata risolvendo numericamente le equazioni delle onde lunghe in acque basse, che regolano il moto della fase fluida, assieme all’equazione di Exner, che descrive l’evoluzione del fondo. L’argomento della presente tesi consiste nello sviluppo di un schema ai volumi finiti di tipo ”centrato” per la soluzione accoppiata di tale sistema di equazioni. Un nuovo schema, denominato PRICE-C, `e qui introdotto: esso risolve le equazioni in forma conconservativa, ma ha l’importante propriet`a di degenerare in uno schema conservativo se il sottostante sistema di equazioni ammette una forma conservativa. Lo schema `e applicato alle equazioni delle onde lunghe in acque basse sia nel caso di fondo fisso che di fondo mobile, dapprima in un ambito unidimensionale e successivamente in quello bidimensionale. L’estensione non `e immediata nel caso in cui il reticolo di calcolo sia non-strutturato, dal momento che le equazioni differenziali devono essere mediate su opportuni volumi di controllo. Lo schema `e poi esteso ad alti ordini di accuratezza nello spazio e nel tempo attraverso le procedure ADER-WENO e MUSCL rispettivamente per il caso unidimensionale e bidimensionale. Inoltre si dimostra come lo schema proposto verifichi la ”well-balanced property”, che consiste nella capacit`a di raggiungere soluzioni stazionarie, anche in presenza di discontinuit`a della superficie libera e del fondo. Condizioni di corrente lenta e rapida, come pure condizioni di tipo transcritico vengono correttamente risolte. Inoltre lo schema in grado di riprodurre le celerit`a di propagazione di discontinuit`a della superficie e fronti di sedimenti al fondo, cos`? come la celerit`a di propagazione di piccoli disturbi del fondo. Caratteristica principale dello schema `e la sua semplicit`a: `e basato su un semplice approccio di tipo centrato, cio`e non necessita la conoscenza degli autovalori della matrice del sistema. Questa `e un’importante caratteristica dal momento che non sempre autovalori e autovettori sono calcolabili analiticamente, in particolare nel caso di complesse formule di chiusura per il trasporto al fondo. Quindi questo schema pu`o rivelarsi utile per l’ingegnere che spesso necessita di un semplice strumento numerico che possa essere applicato ad un sistema di equazioni differenziali di tipo iperbolico senza dover entrare nel dettaglio delle propriet`a atematiche del sistema stesso. Data la sua generalit`a, infatti, lo schema pu`o essere applicato ad ogni tipo di sistema iperbolico contenente termini non-conservativi.
Geisenhofer, Markus [Verfasser], Martin [Akademischer Betreuer] Oberlack, and Michael [Akademischer Betreuer] Schäfer. "From Shock-Capturing to High-Order Shock-Fitting Using an Unfitted Discontinuous Galerkin Method / Markus Geisenhofer ; Martin Oberlack, Michael Schäfer." Darmstadt : Universitäts- und Landesbibliothek, 2021. http://d-nb.info/1227582277/34.
Full textChen, Chunfang. "HIGH ORDER SHOCK CAPTURING SCHEMES FOR HYPERBOLIC CONSERVATION LAWS AND THE APPLICATION IN OPEN CHANNEL FLOWS." UKnowledge, 2006. http://uknowledge.uky.edu/gradschool_diss/314.
Full textGroom, Michael Robert. "Direct Numerical Simulation of Shock-Induced Turbulent Mixing with High-Resolution Methods." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23721.
Full textSerna, Salichs Susana. "High order accurate shock capturing schemes for hyperbolic conservation laws based on a new class of limiters." Doctoral thesis, Universitat de València, 2005. http://hdl.handle.net/10803/10011.
Full textBorokhovych, Yevgen [Verfasser], and Rolf [Akademischer Betreuer] Kraemer. "High-speed data capturing components for Super Resolution Maximum Length Binary Sequence UWB Radar / Yevgen Borokhovych. Betreuer: Rolf Kraemer." Cottbus : Universitätsbibliothek der BTU Cottbus, 2012. http://d-nb.info/1023040662/34.
Full textShelton, Andrew Brian. "A multi-resolution discontinuous galerkin method for unsteady compressible flows." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24715.
Full textCommittee Chair: Smith, Marilyn; Committee Co-Chair: Zhou, Hao-Min; Committee Member: Dieci, Luca; Committee Member: Menon, Suresh; Committee Member: Ruffin, Stephen
Villedieu, Nadège A. C. "High order discretisation by residual distribution schemes." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210233.
Full textWe also consider the extension to the approximation of solutions to conservation laws containing second order dissipative terms. To build this high order schemes we use a subtriangulation of the triangular Pk elements where we apply the distribution used for a P1 element.
This manuscript is divided in two parts. The first part is dedicated to the design of the high order schemes for scalar equations and focus more on the theoretical design of the schemes. The second part deals with the extension to system of equations, in particular we will compare the performances of 2nd, 3rd and 4th order schemes.
The first part is subdivided in four chapters:
The aim of the second chapter is to present the multidimensional upwind residual distributive schemes and to explain what was the status of their development at the beginning of this work.
The third chapter is dedicated to the first contribution: the design of 3rd and 4th order quasi non-oscillatory schemes.
The fourth chapter is composed of two parts: we start by understanding the non-uniformity of the accuracy of the 2nd order schemes for advection-diffusion problem. To solve this issue we use a Finite Element hybridisation.
This deep study of the 2nd order scheme is used as a basis to design a 3rd order scheme for advection-diffusion.
Finally, in the fifth chapter we extend the high order quasi non-oscillatory schemes to unsteady problems.
In the second part, we extend the schemes of the first part to systems of equations as follows:
The sixth chapter deals with the extension to steady systems of hyperbolic equations. In particular, we discuss how to solve some issues such as boundary conditions and the discretisation of curved geometries.
Then, we look at the performance of 2nd and 3rd order schemes on viscous flow.
Finally, we test the space-time schemes on several test cases. In particular, we will test the monotonicity of the space-time non-oscillatory schemes and we apply residual distributive schemes to acoustic problems.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Gokpi, Kossivi. "Modélisation et Simulation des Ecoulements Compressibles par la Méthode des Eléments Finis Galerkin Discontinus." Thesis, Pau, 2013. http://www.theses.fr/2013PAUU3005/document.
Full textThe aim of this thesis is to deal with compressible Navier-Stokes flows discretized by Discontinuous Galerkin Finite Elements Methods. Several aspects has been considered. One is to show the optimal convergence of the DGFEM method when using high order polynomial. Second is to design shock-capturing methods such as slope limiters and artificial viscosity to suppress numerical oscillation occurring when p>0 schemes are used. Third aspect is to design an a posteriori error estimator for adaptive mesh refinement in order to optimize the mesh in the computational domain. And finally, we want to show the accuracy and the robustness of the DG method implemented when we reach very low mach numbers. Usually when simulating compressible flows at very low mach numbers at the limit of incompressible flows, there occurs many kind of problems such as accuracy and convergence of the solution. To be able to run low Mach number problems, there exists solution like preconditioning. This method usually modifies the Euler. Here the Euler equations are not modified and with a robust time scheme and good boundary conditions imposed one can have efficient and accurate results
Geisenhofer, Markus. "From Shock-Capturing to High-Order Shock-Fitting Using an Unfitted Discontinuous Galerkin Method." Phd thesis, 2021. https://tuprints.ulb.tu-darmstadt.de/17526/7/1_genehmigte_Version.pdf.
Full text"Capturing tree crown attributes from high resolution remotely sensed data." UNIVERSITY OF WASHINGTON, 2009. http://pqdtopen.proquest.com/#viewpdf?dispub=3345744.
Full textChen, Min-Chun, and 陳旻均. "Numerical Study of Unsteady Hypersonic Shock Modelling and High Resolution Schemes." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/98489830430301895372.
Full textChen, Hwa, and 陳驊. "High Resolution WENO Scheme for Numerical Simulation of Shock Wave Focusing in Water." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/22760267873901072808.
Full text國立成功大學
航空太空工程學系
86
Shock wave focusing is a phenomena of energy collection, and the phenomena was applied to the medical treatment of kidney stones in recent years. Extra-Corporeal Shock Wave Lithotripsy(ESWL) is based on the fact that the sound impedance of water and human tissue are nearly the same. In ESWL, a blast wave generated at the first focus of the ellipsoidal reflector moves toward the second focus, and the high pressure at the second focus will be used to strike calculi. In order to more accurately capturing the high pressure in focus,the high order weighted essentially non-oscillatory scheme(WENO) is employed to solve 2D/axisymmetric compressible inviscid Euler equations in conjunction with a finite volume approach, and the equation of state for water is described by the Tait equation. The computed results are compared with the result by Sommerfeld and Muller.It was found that the present results are reasonably accurate.In the aspect of shock wave focusing, we considered the focusing of plane shock wave over parabolic reflector and spherical blast waves over ellipsoidal reflectors in water. It was found that the maximum pressure at focus are higher than those obtained by TVD schemes.
Κοντζιάλης, Κωνσταντίνος. "High-order discontinuous Galerkin discretization for flows with strong moving shocks." Thesis, 2012. http://hdl.handle.net/10889/5839.
Full text-