Journal articles on the topic 'High resolution displacement sensor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'High resolution displacement sensor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Forsyth, Perry W. F., Kathryn S. Hayward, Lyle E. Roberts, Stephen F. Cox, Daniel A. Shaddock, and Bram J. J. Slagmolen. "Large dynamic range, high resolution optical heterodyne readout for high velocity slip events." Review of Scientific Instruments 93, no. 6 (June 1, 2022): 064503. http://dx.doi.org/10.1063/5.0082970.
Full textChui, Talso, Konstantin Penanen, and M. Barmatz. "High-resolution displacement sensor using SQUID array amplifier." Nuclear Physics B - Proceedings Supplements 134 (September 2004): 214–16. http://dx.doi.org/10.1016/j.nuclphysbps.2004.08.035.
Full textHe, Qiang, Shixun Fan, Ning Chen, Ruoyu Tan, Fan Chen, and Dapeng Fan. "Analysis of Inductive Displacement Sensors with Large Range and Nanoscale Resolution." Applied Sciences 11, no. 21 (October 28, 2021): 10134. http://dx.doi.org/10.3390/app112110134.
Full textPeng, Donglin. "STUDY ON DIFFERENTIAL GRATING DISPLACEMENT SENSOR WITH HIGH RESOLUTION." Chinese Journal of Mechanical Engineering 40, no. 12 (2004): 105. http://dx.doi.org/10.3901/jme.2004.12.105.
Full textKhiat, A., F. Lamarque, C. Prelle, N. Bencheikh, and E. Dupont. "High-resolution fibre-optic sensor for angular displacement measurements." Measurement Science and Technology 21, no. 2 (January 19, 2010): 025306. http://dx.doi.org/10.1088/0957-0233/21/2/025306.
Full textLiu, Weiping, Zhaofeng Wang, Ximing Zhang, Yulin Wang, Bochun Hu, and Ye Zhuang. "Fault Tolerant and Nano Displacement Drive Control Method of Photoelectric Motor for Battery Electric Vehicle." Journal of Nanoelectronics and Optoelectronics 16, no. 2 (February 1, 2021): 293–302. http://dx.doi.org/10.1166/jno.2021.2957.
Full textXu, Yi, Baowei Gao, Axin He, Tongzhou Zhang, and Jiasen Zhang. "An ultra-compact angstrom-scale displacement sensor with large measurement range based on wavelength modulation." Nanophotonics 11, no. 6 (February 2, 2022): 1167–76. http://dx.doi.org/10.1515/nanoph-2021-0754.
Full textHsu, Cheng Chih, Ju Yi Lee, C. C. Wu, and H. C. Shih. "3D Displacement Measurement with Pico-Meter Resolution Using Single Heterodyne Grating Interferometry." Key Engineering Materials 381-382 (June 2008): 283–86. http://dx.doi.org/10.4028/www.scientific.net/kem.381-382.283.
Full textRemo, John L. "High-resolution optic displacement measurement using a dual-photodiode sensor." Optical Engineering 36, no. 8 (August 1, 1997): 2279. http://dx.doi.org/10.1117/1.601454.
Full textKwa, T. A., and R. F. Wolffenbuttel. "Optical angular displacement sensor with high resolution integrated in silicon." Sensors and Actuators A: Physical 32, no. 1-3 (April 1992): 591–97. http://dx.doi.org/10.1016/0924-4247(92)80049-9.
Full textYu, Guang Ping, Shan Hui Wang, and Ying Gang Zhou. "Research of Displacement Measuring System Based on Capacitive Grating Sensor." Applied Mechanics and Materials 20-23 (January 2010): 1260–64. http://dx.doi.org/10.4028/www.scientific.net/amm.20-23.1260.
Full textBravo, Mikel, and Manuel López-Amo. "Remote-Time Division Multiplexing of Bending Sensors Using a Broadband Light Source." Journal of Sensors 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/154586.
Full textLi, Xin, Yu Rong Chen, and Sheng Huai Wang. "One Kind of High Precision Non-Contact Displacement Sensor and its Application." Advanced Materials Research 328-330 (September 2011): 2102–7. http://dx.doi.org/10.4028/www.scientific.net/amr.328-330.2102.
Full textWang, Shinn Fwu, Chi Tun Chen, Fu Hsi Kao, Yi Chu, Shyh Rong Lay, Yu Pin Liao, Liuh Chii Lin, and An Li Liu. "Experimental Evaluation of a Small-Displacement Sensing System Based on the Surface Plasmon Resonance Technology in Heterodyne Interferometry." Applied Mechanics and Materials 479-480 (December 2013): 682–86. http://dx.doi.org/10.4028/www.scientific.net/amm.479-480.682.
Full textWang, Shinn Fwu, Ting Huan Chen, Pei Cheng Ke, Yi Chu, Yu Pin Liao, Yuan Fong Chau, Fu Hsi Kao, and An Li Liu. "Z-Axis Displacement Sensor Based on Total-Internal Reflection and Surface Plasmon Resonance in Heterodyne Interferometry." Advanced Materials Research 746 (August 2013): 564–69. http://dx.doi.org/10.4028/www.scientific.net/amr.746.564.
Full textBüyükşahin, Utku, and Ahmet Kırlı. "A low-cost, human-like, high-resolution, tactile sensor based on optical fibers and an image sensor." International Journal of Advanced Robotic Systems 15, no. 4 (July 1, 2018): 172988141878363. http://dx.doi.org/10.1177/1729881418783631.
Full textLU Jin, 鲁. 进., 陈锡侯 CHEN Xi-hou, 武. 亮. WU Liang, and 汤其富 TANG Qi-fu. "High resolution time grating angular displacement sensor based on planar coils." Optics and Precision Engineering 25, no. 1 (2017): 172–81. http://dx.doi.org/10.3788/ope.20172501.0172.
Full textKim, J.-D., and S.-R. Nam. "Development of a Micro-Positioning Grinding Table Using Piezoelectric Voltage Feedback." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 209, no. 6 (December 1995): 469–74. http://dx.doi.org/10.1243/pime_proc_1995_209_110_02.
Full textZhou, L., H. B. Zhang, and Qiang Liu. "Development of Differential Capacitive Displacement Sensor Based on RC Multi-Oscillating Circuit." Applied Mechanics and Materials 10-12 (December 2007): 643–46. http://dx.doi.org/10.4028/www.scientific.net/amm.10-12.643.
Full textLee, S. J., Y. Melikhov, D. C. Jiles, C. M. Park, and H. Hauser. "Magneto-optic linear-displacement sensor with high spatial resolution and low noise." Journal of Applied Physics 99, no. 8 (April 15, 2006): 08B301. http://dx.doi.org/10.1063/1.2159390.
Full textXia, Sha, and Stoyan Nihtianov. "Power-Efficient High-Speed and High-Resolution Capacitive-Sensor Interface for Subnanometer Displacement Measurements." IEEE Transactions on Instrumentation and Measurement 61, no. 5 (May 2012): 1315–22. http://dx.doi.org/10.1109/tim.2011.2178678.
Full textDong, Hao, Shicheng Liu, Liming Yang, Jiangbo Peng, and Keming Cheng. "Optical Fiber Displacement Sensor Based on Microwave Photonics Interferometry." Sensors 18, no. 11 (October 31, 2018): 3702. http://dx.doi.org/10.3390/s18113702.
Full textHe, Jin, Hao Zhang, and Meng Zhu. "Calibration of Eddy Current Sensor Using Speckle Photography." Applied Mechanics and Materials 734 (February 2015): 79–83. http://dx.doi.org/10.4028/www.scientific.net/amm.734.79.
Full textHou, Max Ti-Kuang. "High-resolution microfabricated Vernier-type displacement sensor using suspended gate field-effect transistors." Journal of Micro/Nanolithography, MEMS, and MOEMS 10, no. 1 (January 1, 2011): 011502. http://dx.doi.org/10.1117/1.3533325.
Full textGhaffar, Abdul, Qi Li, Shah Ali Haider, An Sun, Arnaldo G. Leal-Junior, Lifeng Xu, Muhammad Chhattal, and Mujahid Mehdi. "A simple and high-resolution POF displacement sensor based on face-coupling method." Measurement 187 (January 2022): 110285. http://dx.doi.org/10.1016/j.measurement.2021.110285.
Full textYang, Liang En, Xuan Ze Wang, and Lin Zheng. "Displacement Sensor with Controlled Measuring Force and its Characteristics Analysis." Applied Mechanics and Materials 103 (September 2011): 309–13. http://dx.doi.org/10.4028/www.scientific.net/amm.103.309.
Full textZhang, Ke, Cankun Yang, Xiaojuan Li, Chunping Zhou, and Ruofei Zhong. "High-Efficiency Microsatellite-Using Super-Resolution Algorithm Based on the Multi-Modality Super-CMOS Sensor." Sensors 20, no. 14 (July 20, 2020): 4019. http://dx.doi.org/10.3390/s20144019.
Full textPeng, Dong Lin, Ji Sen Yang, Xi Hou Chen, and Zi Ran Chen. "The Principle and Structure of Novel High-Precision Linear Time Grating Displacement Sensors." Applied Mechanics and Materials 236-237 (November 2012): 1216–21. http://dx.doi.org/10.4028/www.scientific.net/amm.236-237.1216.
Full textLebang, Annamaintin Kobong, A. Arifin, and Bualkar Abdullah. "DETECTION OF DISPLACEMENT USING GLASS OPTICAL FIBER SENSOR WITH VARIOUS CONFIGURATION." Indonesian Physical Review 4, no. 3 (September 30, 2021): 166–80. http://dx.doi.org/10.29303/ipr.v4i3.124.
Full textYu, Pei Jun. "Study on Artificial Polycrystalline Piezoelectric Material with the Calibration Mechanism of the Micro-Displacement Sensor Based on Piezoelectric Ceramic." Advanced Materials Research 703 (June 2013): 312–15. http://dx.doi.org/10.4028/www.scientific.net/amr.703.312.
Full textHu, Lin, Jin Zhao, and Jinlong Yang. "Nano-scale displacement sensing based on van der Waals interactions." Nanoscale 7, no. 19 (2015): 8962–67. http://dx.doi.org/10.1039/c5nr00023h.
Full textLu, Zhong, Yuan Cao, Guangying Wang, Yang Ran, Xinhuan Feng, and Bai-Ou Guan. "High-Resolution Displacement Sensor Based on a Chirped Fabry–Pérot Interferometer Inscribed on a Tapered Microfiber." Applied Sciences 9, no. 3 (January 25, 2019): 403. http://dx.doi.org/10.3390/app9030403.
Full textChen, Yu Rong, Xu Dong Yang, and Tie Bang Xie. "A Non-Contact Displacement Sensor with Diffraction Grating Metrology System for Profile Measurement." Key Engineering Materials 364-366 (December 2007): 74–79. http://dx.doi.org/10.4028/www.scientific.net/kem.364-366.74.
Full textShimonomura, Kazuhiro. "Tactile Image Sensors Employing Camera: A Review." Sensors 19, no. 18 (September 12, 2019): 3933. http://dx.doi.org/10.3390/s19183933.
Full textOrłowska, Karolina, Michał Świątkowski, Piotr Kunicki, Daniel Kopiec, and Teodor Gotszalk. "High-resolution and wide-bandwidth light intensity fiber optic displacement sensor for MEMS metrology." Applied Optics 55, no. 22 (July 26, 2016): 5960. http://dx.doi.org/10.1364/ao.55.005960.
Full textKranz, Michael, Tracy Hudson, Brian Grantham, and Michael Whitley. "Optical Cavity Interrogation for MEMS Accelerometers." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, DPC (January 1, 2015): 001649–70. http://dx.doi.org/10.4071/2015dpc-wp34.
Full textCui, Jian Jun, Xing Hua Qu, and Yan Hui Kang. "Performance Test for Nanometer Accuracy Capacitance Displacement Sensor." Key Engineering Materials 609-610 (April 2014): 898–902. http://dx.doi.org/10.4028/www.scientific.net/kem.609-610.898.
Full textGuo, Dong Mei, and Hai Qing Jiang. "Wavelength Modulating Self-Mixing Interferometer." Applied Mechanics and Materials 870 (September 2017): 15–20. http://dx.doi.org/10.4028/www.scientific.net/amm.870.15.
Full textAmin, Saqib, Usman Zabit, Olivier D. Bernal, and Tassadaq Hussain. "High Resolution Laser Self-Mixing Displacement Sensor Under Large Variation in Optical Feedback and Speckle." IEEE Sensors Journal 20, no. 16 (August 15, 2020): 9140–47. http://dx.doi.org/10.1109/jsen.2020.2988851.
Full textZhao, Shuangshuang, Changlun Hou, Juan Zhang, Jian Bai, and Guoguang Yang. "A high-resolution displacement sensor based on a grating interferometer with the phase modulation technique." Measurement Science and Technology 23, no. 10 (August 1, 2012): 105102. http://dx.doi.org/10.1088/0957-0233/23/10/105102.
Full textMohammadfam, B., M. H. Mahdieh, and H. Veladi. "Optofluidic conical microresonator for precise displacement sensing." Journal of Instrumentation 17, no. 03 (March 1, 2022): P03025. http://dx.doi.org/10.1088/1748-0221/17/03/p03025.
Full textWang, Wen, X. X. Li, and Zi Chen Chen. "A Planar Capacitive Sensor for Large Scale Measurement." Key Engineering Materials 381-382 (June 2008): 509–12. http://dx.doi.org/10.4028/www.scientific.net/kem.381-382.509.
Full textXu, Lan-Lan, Ya-Xian Fan, Huan Liu, Tao Zhang, and Zhi-Yong Tao. "Terahertz Displacement Sensing Based on Interface States of Hetero-Structures." Electronics 9, no. 8 (July 28, 2020): 1213. http://dx.doi.org/10.3390/electronics9081213.
Full textPrelle, Christine, Frédéric Lamarque, and Philippe Revel. "Reflective optical sensor for long-range and high-resolution displacements." Sensors and Actuators A: Physical 127, no. 1 (February 2006): 139–46. http://dx.doi.org/10.1016/j.sna.2005.11.005.
Full textVykhristyuk, Ignat, Rodion Kulikov, and Evgeny Sysoev. "IMPROVEMENT OF LATERAL RESOLUTION UNDER DIMENSIONAL MEASUREMENTS OF NANORELIEF STEP STUCTURES." Interexpo GEO-Siberia 8 (2019): 183–90. http://dx.doi.org/10.33764/2618-981x-2019-8-183-190.
Full textLi, Chengyu, Ziming Wang, Sheng Shu, and Wei Tang. "A Self-Powered Vector Angle/Displacement Sensor Based on Triboelectric Nanogenerator." Micromachines 12, no. 3 (February 25, 2021): 231. http://dx.doi.org/10.3390/mi12030231.
Full textRosas Salaroli, Camila Haydée, Yan Li, and David Huang. "High-resolution optical coherence tomography visualization of LASIK flap displacement." Journal of Cataract & Refractive Surgery 35, no. 9 (September 2009): 1640–42. http://dx.doi.org/10.1016/j.jcrs.2009.04.025.
Full textShimizu, Matsukuma, and Gao. "Optical Sensors for Multi-Axis Angle and Displacement Measurement Using Grating Reflectors." Sensors 19, no. 23 (December 1, 2019): 5289. http://dx.doi.org/10.3390/s19235289.
Full textD'Alessandro, A., and G. D'Anna. "Retrieval of Ocean Bottom and Downhole Seismic sensors orientation using integrated MEMS gyroscope and direct rotation measurements." Advances in Geosciences 40 (December 15, 2014): 11–17. http://dx.doi.org/10.5194/adgeo-40-11-2014.
Full textTalbot, Bruce, and Rasmus Astrup. "A review of Sensors, Sensor-Platforms and Methods Used in 3D Modelling of Soil Displacement after Timber Harvesting." Croatian journal of forest engineering 42, no. 1 (October 20, 2020): 149–64. http://dx.doi.org/10.5552/crojfe.2021.837.
Full text