Contents
Academic literature on the topic 'High Quality Semiconductor Nanocrystals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High Quality Semiconductor Nanocrystals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "High Quality Semiconductor Nanocrystals"
Alivisatos, A. Paul. "Semiconductor Nanocrystals." MRS Bulletin 20, no. 8 (1995): 23–32. http://dx.doi.org/10.1557/s0883769400045073.
Full textPeng, Xiaogang. "Green Chemical Approaches toward High-Quality Semiconductor Nanocrystals." Chemistry - A European Journal 8, no. 2 (2002): 334–39. http://dx.doi.org/10.1002/1521-3765(20020118)8:2<334::aid-chem334>3.0.co;2-t.
Full textDing, Yong Ling, Hua Dong Sun, Kang Ning Sun, and Fu Tian Liu. "Water-Based Route to Synthesis of High-Quality UV-Blue Photoluminescing ZnSe/ZnS Core/Shell Quantum Dots and their Physicochemical Characterization." Key Engineering Materials 680 (February 2016): 553–57. http://dx.doi.org/10.4028/www.scientific.net/kem.680.553.
Full textAmirav, Lilac, and Efrat Lifshitz. "Thermospray: A Method for Producing High Quality Semiconductor Nanocrystals." Journal of Physical Chemistry C 112, no. 34 (2008): 13105–13. http://dx.doi.org/10.1021/jp801651g.
Full textPeng, Xiaogang. "ChemInform Abstract: Green Chemical Approaches Toward High-Quality Semiconductor Nanocrystals." ChemInform 33, no. 17 (2010): no. http://dx.doi.org/10.1002/chin.200217243.
Full textCheng, Oscar Hsu-Cheng, Tian Qiao, Matthew Sheldon, and Dong Hee Son. "Size- and temperature-dependent photoluminescence spectra of strongly confined CsPbBr3 quantum dots." Nanoscale 12, no. 24 (2020): 13113–18. http://dx.doi.org/10.1039/d0nr02711a.
Full textErdem, Talha, and Hilmi Volkan Demir. "Colloidal nanocrystals for quality lighting and displays: milestones and recent developments." Nanophotonics 5, no. 1 (2016): 74–95. http://dx.doi.org/10.1515/nanoph-2016-0009.
Full textJi, Muwei, Meng Xu, Jun Zhang, Jiajia Liu, and Jiatao Zhang. "Aqueous oxidation reaction enabled layer-by-layer corrosion of semiconductor nanoplates into single-crystalline 2D nanocrystals with single layer accuracy and ionic surface capping." Chemical Communications 52, no. 16 (2016): 3426–29. http://dx.doi.org/10.1039/c5cc09732k.
Full textAli, Haydar, Santu Ghosh, and Nikhil R. Jana. "Biomolecule-derived Fluorescent Carbon Nanoparticle as Bioimaging Probe." MRS Advances 3, no. 15-16 (2018): 779–88. http://dx.doi.org/10.1557/adv.2018.80.
Full textXu, Rong Hui, Jiu Ba Wen, and Feng Zhang Ren. "Synthesis of CdS/CdCO3 Core/Shell Structural Nanocrystals Potentially Used for Solar Cell via Hydrothermal Route." Applied Mechanics and Materials 79 (July 2011): 7–12. http://dx.doi.org/10.4028/www.scientific.net/amm.79.7.
Full text