Journal articles on the topic 'High permittivity ceramics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'High permittivity ceramics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hennings, D. F. K., B. Schreinemacher, and H. Schreinemacher. "High-permittivity dielectric ceramics with high endurance." Journal of the European Ceramic Society 13, no. 1 (January 1994): 81–88. http://dx.doi.org/10.1016/0955-2219(94)90062-0.
Full textXiong, Zhao Xian, M. Y. Zhou, Hao Xue, Hong Qiu, and F. Xiao. "Characterization of Microwave Ceramics with Low Permittivity and High Quality Factors." Key Engineering Materials 434-435 (March 2010): 244–46. http://dx.doi.org/10.4028/www.scientific.net/kem.434-435.244.
Full textKOLAR, D., and D. SUVOROV. "ChemInform Abstract: High Permittivity Microwave Ceramics." ChemInform 27, no. 10 (August 12, 2010): no. http://dx.doi.org/10.1002/chin.199610337.
Full textSzwagierczak, Dorota, Beata Synkiewicz-Musialska, Jan Kulawik, and Norbert Pałka. "Sintering, Microstructure, and Dielectric Properties of Copper Borates for High Frequency LTCC Applications." Materials 14, no. 14 (July 18, 2021): 4017. http://dx.doi.org/10.3390/ma14144017.
Full textXiong, Zhao Xian, X. Xue, Hong Qiu, C. Zhang, C. Fang, J. Luo, D. Y. Bao, et al. "Microwave Dielectric Ceramics and Devices for Wireless Technologies." Key Engineering Materials 368-372 (February 2008): 154–58. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.154.
Full textLu, Huafei, Yuanhua Lin, Jiancong Yuan, Cewen Nan, and Kexin Chen. "Dielectric and varistor properties of rare-earth-doped ZnO and CaCu3Ti4O12 composite ceramics." Journal of Advanced Dielectrics 03, no. 01 (January 2013): 1350001. http://dx.doi.org/10.1142/s2010135x1350001x.
Full textChen, K., S. K. Yuan, P. L. Li, F. Gao, J. Liu, G. L. Li, A. G. Zhao, X. M. Lu, J. M. Liu, and J. S. Zhu. "High permittivity in Zr doped NiO ceramics." Journal of Applied Physics 102, no. 3 (August 2007): 034103. http://dx.doi.org/10.1063/1.2764217.
Full textShi, Yongjie, Wentao Hao, Hui Wu, Li Sun, Ensi Cao, Yongjia Zhang, and Hua Peng. "High dielectric-permittivity properties of NaCu3Ti3Sb0.5Nb0.5O12 ceramics." Ceramics International 42, no. 1 (January 2016): 116–21. http://dx.doi.org/10.1016/j.ceramint.2015.08.009.
Full textPeng, Zhen, Hong Wang, and Xi Yao. "Dielectric resonator antennas using high permittivity ceramics." Ceramics International 30, no. 7 (January 2004): 1211–14. http://dx.doi.org/10.1016/j.ceramint.2003.12.079.
Full textQin, Qun, Tian Guo Wang, and Wen Jun Zhang. "Effect of Er2O3 on the Microstructure and Electrical Properties of WO3 Capacitor-Varistor Ceramics." Advanced Materials Research 233-235 (May 2011): 2503–6. http://dx.doi.org/10.4028/www.scientific.net/amr.233-235.2503.
Full textPuli, Venkata Sreenivas, Shiva Adireddy, Manish Kothakonda, Ravinder Elupula, and Douglas B. Chrisey. "Low temperature sintered giant dielectric permittivity CaCu3Ti4O12 sol-gel synthesized nanoparticle capacitors." Journal of Advanced Dielectrics 07, no. 03 (June 2017): 1750017. http://dx.doi.org/10.1142/s2010135x17500175.
Full textTsurumi, T., Y. Yamamoto, H. Kakemoto, S. Wada, H. Chazono, and H. Kishi. "Dielectric properties of BaTiO3–BaZrO3 ceramics under a high electric field." Journal of Materials Research 17, no. 4 (April 2002): 755–59. http://dx.doi.org/10.1557/jmr.2002.0110.
Full textWang, Xu Ai, Run Hua Fan, Zhi Cheng Shi, Min Chen, Ke Lan Yan, Kai Sun, Qing Hou, Zi Dong Zhang, and Lei Qian. "Tunable Electromagnetic Properties of Yttrium Iron Garnet Ceramics." Materials Science Forum 816 (April 2015): 113–17. http://dx.doi.org/10.4028/www.scientific.net/msf.816.113.
Full textSzwagierczak, Dorota. "Dielectric properties of high-permittivity A2/3CuTa4O12 ceramics." Microelectronics International 31, no. 3 (August 4, 2014): 137–42. http://dx.doi.org/10.1108/mi-10-2013-0056.
Full textLin, Yuanhua, Rongjuan Zhao, Jianfei Wang, Jingnan Cai, Ce-Wen Nan, Yutian Wang, and Long Wei. "Polarization of High-Permittivity Dielectric NiO-Based Ceramics." Journal of the American Ceramic Society 88, no. 7 (July 2005): 1808–11. http://dx.doi.org/10.1111/j.1551-2916.2005.00361.x.
Full textPetzelt, Jan. "Dielectric Grain-Size Effect in High-Permittivity Ceramics." Ferroelectrics 400, no. 1 (September 21, 2010): 117–34. http://dx.doi.org/10.1080/00150193.2010.505511.
Full textLin, Yuanhua, Jianfei Wang, Lei Jiang, Yu Chen, and Ce-Wen Nan. "High permittivity Li and Al doped NiO ceramics." Applied Physics Letters 85, no. 23 (December 6, 2004): 5664–66. http://dx.doi.org/10.1063/1.1827937.
Full textHuang, Cheng-Liang, Shin-Tung Tasi, and Yuan-Bin Chen. "Band-pass filters using high-permittivity ceramics substrate." Microwave and Optical Technology Letters 52, no. 10 (July 14, 2010): 2344–47. http://dx.doi.org/10.1002/mop.25439.
Full textAhmad, Mohamad M., Adil Alshoaibi, Sajid Ali Ansari, Tarek S. Kayed, Hassan A. Khater, and Hicham Mahfoz Kotb. "Dielectric Properties of Bi2/3Cu3Ti4O12 Ceramics Prepared by Mechanical Ball Milling and Low Temperature Conventional Sintering." Materials 15, no. 9 (April 27, 2022): 3173. http://dx.doi.org/10.3390/ma15093173.
Full textLi, Xuhai, Liang Xu, Lixin Liu, Yuan Wang, Xiuxia Cao, Yuanjie Huang, Chuanmin Meng, and Zhigang Wang. "High pressure treated ZnO ceramics towards giant dielectric constants." J. Mater. Chem. A 2, no. 39 (2014): 16740–45. http://dx.doi.org/10.1039/c4ta03434a.
Full textChen, Xiuli, Xiaoxia Li, Guisheng Huang, Gaofeng Liu, Xiao Yan, and Huanfu Zhou. "Giant permittivity and good thermal stability of LiCuNb3O9-Bi(Mg0.5Zr0.5)O3 solid solutions." Journal of Advanced Dielectrics 08, no. 02 (April 2018): 1850012. http://dx.doi.org/10.1142/s2010135x18500121.
Full textZhang, Lulu, Bin Cui, Rong Ma, Leilei Li, Yan Wang, Wenqing Yan, and Zhuguo Chang. "High permittivity of Ba(Ti1-xZrx)O3-based Y5V-type nanopowders and ceramics synthesized using a one-step sol–gel method." Journal of Advanced Dielectrics 03, no. 04 (October 2013): 1350018. http://dx.doi.org/10.1142/s2010135x13500185.
Full textHoshina, Takuya, Mikio Yamazaki, Hiroaki Takeda, and Takaaki Tsurumi. "Dielectric Breakdown Mechanism of Perovskite-Structured Ceramics." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015, CICMT (September 1, 2015): 000116–20. http://dx.doi.org/10.4071/cicmt-tp43.
Full textIsmail, Mukhlis M. "Ferroelectric characteristics of Fe/Nb co-doped BaTiO3." Modern Physics Letters B 33, no. 22 (August 7, 2019): 1950261. http://dx.doi.org/10.1142/s0217984919502610.
Full textGreicius, Simonas, Juras Banys, and Izabela Szafraniak-Wiza. "Dielectric investigations of BiFeO3 ceramics." Processing and Application of Ceramics 3, no. 1-2 (2009): 85–87. http://dx.doi.org/10.2298/pac0902085g.
Full textPeng, Zhanhui, Jitong Wang, Fudong Zhang, Shudong Xu, Xiaoping Lei, Pengfei Liang, Lingling Wei, Di Wu, Xiaolian Chao, and Zupei Yang. "High energy storage and colossal permittivity CdCu3Ti4O12 oxide ceramics." Ceramics International 48, no. 3 (February 2022): 4255–60. http://dx.doi.org/10.1016/j.ceramint.2021.10.217.
Full textPetzelt, J., and I. Rychetský. "Effective Dielectric Function in High-Permittivity Ceramics and Films." Ferroelectrics 316, no. 1 (July 2005): 89–95. http://dx.doi.org/10.1080/00150190590963183.
Full textBhaskar Reddy, S., M. S. Ramachandra Rao, and K. Prasad Rao. "Observation of high permittivity in Ho substituted BaZr0.1Ti0.9O3 ceramics." Applied Physics Letters 91, no. 2 (July 9, 2007): 022917. http://dx.doi.org/10.1063/1.2755932.
Full textDong, Ying, Hiroshi Kubo, Mitsuo Hano, and Ikuo Awai. "A waveguide bandpass filter made of high-permittivity ceramics." Electronics and Communications in Japan (Part II: Electronics) 77, no. 1 (January 1994): 46–56. http://dx.doi.org/10.1002/ecjb.4420770105.
Full textHuang, Cheng-Liang, Pau-Yeou Yen, and Min-Hung Weng. "Planar SIR microwave bandpass filter using high-permittivity ceramics." Microwave and Optical Technology Letters 26, no. 6 (2000): 410–13. http://dx.doi.org/10.1002/1098-2760(20000920)26:6<410::aid-mop19>3.0.co;2-y.
Full textCheng, Xiao Fang, Xin Gui Tang, Shao Gong Ju, Yan Ping Jiang, and Qiu Xiang Liu. "Dielectric Properties and Diffuse Phase Transition of Sol-Gel Derived 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 Ceramics." Advanced Materials Research 311-313 (August 2011): 1481–84. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.1481.
Full textThomas, P., and K. B. R. Varma. "Effect of TeO2 addition on the dielectric properties of CaCu3Ti4O12 ceramics derived from the oxalate precursor route." Journal of Advanced Dielectrics 03, no. 04 (October 2013): 1350028. http://dx.doi.org/10.1142/s2010135x13500288.
Full textFeng, Yefeng, Jianxiong Zhang, Jianbing Hu, Cheng Peng, and Renqi He. "Ultra-high polarity ceramics induced extrinsic high permittivity of polymers contributing to high permittivity of 2–2 series composites." Materials Research Express 5, no. 1 (January 18, 2018): 015311. http://dx.doi.org/10.1088/2053-1591/aaa4e6.
Full textKigoshi, Yoichi, Saki Hatta, Takashi Teranishi, Takuya Hoshina, Hiroaki Takeda, Osamu Sakurai, and Takaaki Tsurumi. "Dielectric Properties of Barium Titanate Ceramics with Nano-Sized Domain." Key Engineering Materials 445 (July 2010): 27–30. http://dx.doi.org/10.4028/www.scientific.net/kem.445.27.
Full textAlbutt, Naphat, Suejit Pechprasarn, Pattaraporn Damkoengsuntorn, and Thanapong Sareein. "The Giant Dielectric Constant of Y2NiMnO6 Ceramics for DC Bias." Applied Mechanics and Materials 866 (June 2017): 277–81. http://dx.doi.org/10.4028/www.scientific.net/amm.866.277.
Full textBochenek, Dariusz, Przemysław Niemiec, Radosław Zachariasz, and Ryszard Skulski. "Ferroelectric Properties and Internal Friction in Doped PZT Ceramics." Key Engineering Materials 644 (May 2015): 171–74. http://dx.doi.org/10.4028/www.scientific.net/kem.644.171.
Full textYan, Zhongna, Dou Zhang, Xuefan Zhou, He Qi, Hang Luo, Kechao Zhou, Isaac Abrahams, and Haixue Yan. "Silver niobate based lead-free ceramics with high energy storage density." Journal of Materials Chemistry A 7, no. 17 (2019): 10702–11. http://dx.doi.org/10.1039/c9ta00995g.
Full textZHOU, DI, HONG WANG, QIU-PING WANG, XIN-GUANG WU, JING GUO, GAO-QUN ZHANG, LI SHUI, et al. "MICROWAVE DIELECTRIC PROPERTIES AND RAMAN SPECTROSCOPY OF SCHEELITE SOLID SOLUTION [(Li0.5Bi0.5)1-xCax]MoO4 CERAMICS WITH ULTRA-LOW SINTERING TEMPERATURES." Functional Materials Letters 03, no. 04 (December 2010): 253–57. http://dx.doi.org/10.1142/s1793604710001354.
Full textLi, Yue Ming, Zong Yang Shen, Zhu Mei Wang, Hua Zhang, Yan Hong, and Run Hua Liao. "Structure and Microwave Dielectric Properties of (Ca0.9375Sr0.0625)0.25 (Li0.5Sm0.5)0.75TiO3 Ceramics with B2O3-CuO Sintering Aids." Advanced Materials Research 284-286 (July 2011): 1442–46. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.1442.
Full textWarren, William L., Duane Dimos, and Rainer M. Waser. "Degradation Mechanisms in Ferroelectric and High-Permittivity Perovskites." MRS Bulletin 21, no. 7 (July 1996): 40–45. http://dx.doi.org/10.1557/s0883769400035909.
Full textYang, X., D. Li, Z. H. Ren, R. G. Zeng, S. Y. Gong, D. K. Zhou, H. Tian, et al. "Colossal dielectric performance of pure barium titanate ceramics consolidated by spark plasma sintering." RSC Advances 6, no. 79 (2016): 75422–29. http://dx.doi.org/10.1039/c6ra14741k.
Full textZeb, A., and S. J. Milne. "High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites." Journal of Materials Science: Materials in Electronics 26, no. 12 (September 24, 2015): 9243–55. http://dx.doi.org/10.1007/s10854-015-3707-7.
Full textHsiao, Yu-Jen, Yee-Shin Chang, Te-Hua Fang, Yin-Lai Chai, Chao-Yu Chung, and Yen-Hwei Chang. "High dielectric permittivity of Li and Ta codoped NiO ceramics." Journal of Physics D: Applied Physics 40, no. 3 (January 19, 2007): 863–68. http://dx.doi.org/10.1088/0022-3727/40/3/026.
Full textRangarajan, Badri, Beth Jones, Tom Shrout, and Michael Lanagan. "Barium/Lead-Rich High Permittivity Glass?Ceramics for Capacitor Applications." Journal of the American Ceramic Society 90, no. 3 (March 2007): 784–88. http://dx.doi.org/10.1111/j.1551-2916.2006.01470.x.
Full textYang, Zupei, Hongmei Ren, Xiaolian Chao, and Pengfei Liang. "High permittivity and low dielectric loss of Na0.5Bi0.5−xLaxCu3Ti4O12 ceramics." Materials Research Bulletin 47, no. 5 (May 2012): 1273–77. http://dx.doi.org/10.1016/j.materresbull.2011.08.009.
Full textMorrison, Finlay D., Derek C. Sinclair, Janet M. S. Skakle, and Anthony R. West. "Novel Doping Mechanism for Very-High-Permittivity Barium Titanate Ceramics." Journal of the American Ceramic Society 81, no. 7 (January 21, 2005): 1957–60. http://dx.doi.org/10.1111/j.1151-2916.1998.tb02575.x.
Full textMuhammad, Raz, Amir Khesro, and Yaseen Iqbal. "Temperature-stable high relative permittivity in Ca-doped Ba0.5Bi0.5Ti0.75Mg0.25O3 ceramics." Journal of Materials Science: Materials in Electronics 28, no. 9 (January 24, 2017): 6763–68. http://dx.doi.org/10.1007/s10854-017-6372-1.
Full textLi, Ming, Antonio Feteira, and Derek C. Sinclair. "Origin of the high permittivity in (La0.4Ba0.4Ca0.2)(Mn0.4Ti0.6)O3 ceramics." Journal of Applied Physics 98, no. 8 (October 15, 2005): 084101. http://dx.doi.org/10.1063/1.2089159.
Full textWang, Wenbo, Lingxia Li, Te Lu, Ning Zhang, and Weijia Luo. "Multifarious polarizations in high-performance colossal permittivity titanium dioxide ceramics." Journal of Alloys and Compounds 806 (October 2019): 89–98. http://dx.doi.org/10.1016/j.jallcom.2019.07.278.
Full textHwang, Y., Y. P. Zhang, and T. K. Lo. "Planar inverted-F antennas loaded with very high permittivity ceramics." Radio Science 39, no. 2 (March 2, 2004): n/a. http://dx.doi.org/10.1029/2003rs002939.
Full text