To see the other types of publications on this topic, follow the link: High mass.

Journal articles on the topic 'High mass'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'High mass.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Derrick, Peter J. "Mass spectroscopy at high mass." Fresenius' Zeitschrift für analytische Chemie 324, no. 5 (January 1986): 486–91. http://dx.doi.org/10.1007/bf00474121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beuther, H., Th Henning, H. Linz, O. Krause, M. Nielbock, and J. Steinacker. "From high-mass starless cores to high-mass protostellar objects." Astronomy and Astrophysics 518 (July 2010): L78. http://dx.doi.org/10.1051/0004-6361/201014532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Setou, M., and N. Kurabe. "Mass microscopy: high-resolution imaging mass spectrometry." Journal of Electron Microscopy 60, no. 1 (November 24, 2010): 47–56. http://dx.doi.org/10.1093/jmicro/dfq079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pyrek, Jan St. "Mass spectrometry at low and high mass." Current Opinion in Chemical Biology 1, no. 3 (October 1997): 399–409. http://dx.doi.org/10.1016/s1367-5931(97)80080-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hartquist, T. W., and J. E. Dyson. "Low-Mass Versus High-Mass Star Formation." Symposium - International Astronomical Union 182 (1997): 537–49. http://dx.doi.org/10.1017/s0074180900061933.

Full text
Abstract:
Structures like the clumps identified in the CO maps of the Rosette Molecular Cloud and the dense cores such as those in B5, a cluster of cores and young low-mass stars, are key to considerations of star formation. Whether star formation is a self-inducing process or one that causes itself to turn off depends greatly on whether the responses of the interclump and intercore media to young stars cause the collapse of clumps or cores to be faster than their ablation. We present a naive introduction to the lengthscales over which such responses are significant, mention ways in which the responses might induce collapse, review some of the little that is known of how flows of media around clumps and cores ablate them, and then return to the issue of the lengthscales over which such responses are significant by considering the global properties of mass-loaded flows in clumpy star forming regions.
APA, Harvard, Vancouver, ISO, and other styles
6

Weidmann, Simon, Gediminas Mikutis, Konstantin Barylyuk, and Renato Zenobi. "Mass Discrimination in High-Mass MALDI-MS." Journal of The American Society for Mass Spectrometry 24, no. 9 (July 9, 2013): 1396–404. http://dx.doi.org/10.1007/s13361-013-0686-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matsuda, H. "High-resolution high-transmission mass spectrometer." International Journal of Mass Spectrometry and Ion Processes 66, no. 2 (July 1985): 209–15. http://dx.doi.org/10.1016/0168-1176(85)83010-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mikhailov, I. F. "High-stable standard samples of mass in the nano-gram range." Functional materials 20, no. 2 (June 25, 2013): 266–71. http://dx.doi.org/10.15407/fm20.02.266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abanoz, Hüseyin, and Özgür Erbaş. "Mass-IVR — A High Performance Outbound Interactive Voice Response Management System." International Journal of Computer Theory and Engineering 8, no. 4 (August 2016): 295–98. http://dx.doi.org/10.7763/ijcte.2016.v8.1061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kumar, Vijay, and Sunil Kumar. "Acute Dehydrative Effect of Steam Bath on High Muscle Mass Athletes." Global Journal For Research Analysis 3, no. 3 (June 15, 2012): 116–17. http://dx.doi.org/10.15373/22778160/mar2014/79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Barr Domínguez, A., R. Chini, F. Pozo Nuñez, M. Haas, M. Hackstein, H. Drass, R. Lemke, and M. Murphy. "Eclipsing high-mass binaries." Astronomy & Astrophysics 557 (August 13, 2013): A13. http://dx.doi.org/10.1051/0004-6361/201321642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Marshall, Alan G., and Christopher L. Hendrickson. "High-Resolution Mass Spectrometers." Annual Review of Analytical Chemistry 1, no. 1 (July 2008): 579–99. http://dx.doi.org/10.1146/annurev.anchem.1.031207.112945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Sridharan, T. K., H. Beuther, M. Saito, F. Wyrowski, and P. Schilke. "High-Mass Starless Cores." Astrophysical Journal 634, no. 1 (November 4, 2005): L57—L60. http://dx.doi.org/10.1086/498644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Klaassen, P. D., J. C. Mottram, S. N. Longmore, G. A. Fuller, F. F. S. van der Tak, and L. Kaper. "High-mass star formation." Astronomy & Geophysics 54, no. 3 (May 22, 2013): 3.33. http://dx.doi.org/10.1093/astrogeo/att083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Cartwright, Jon. "High-spec mass spec." Physics World 32, no. 4 (April 2019): 34–37. http://dx.doi.org/10.1088/2058-7058/32/4/30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

ARNAUD, CELIA HENRY. "HIGH-RES MASS SPEC." Chemical & Engineering News 88, no. 25 (June 21, 2010): 10–15. http://dx.doi.org/10.1021/cen-v088n025.p010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Xian, Feng, Christopher L. Hendrickson, and Alan G. Marshall. "High Resolution Mass Spectrometry." Analytical Chemistry 84, no. 2 (January 17, 2012): 708–19. http://dx.doi.org/10.1021/ac203191t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wollnik, H. "High-Resolving Mass Analyzers." Microscopy and Microanalysis 21, S4 (June 2015): 154–59. http://dx.doi.org/10.1017/s1431927615013306.

Full text
Abstract:
AbstractFirst high-resolving mass analyzers were built ≈80 years ago as sector field systems, well reproducible ones, however, only much later. Besides these sector-field systems there are three other types of mass analyzers: (1) Penning trap mass analyzers, have achieved the highest resolving powers, but require big technological efforts. (2) Time-of-flight mass analyzers have become the most versatile systems, while high performing multi-reflection time-of-flight systems have only started to be used. (3) Fourier Transform and Orbitrap mass analyzers have achieved spectacularly high mass resolving powers, but are also technically demanding and difficult to build systems.
APA, Harvard, Vancouver, ISO, and other styles
19

Loughlin, K. F., L. Hadley-Coates, and K. Halhouli. "High mass flux evaporation." Chemical Engineering Science 40, no. 7 (1985): 1263–72. http://dx.doi.org/10.1016/0009-2509(85)85085-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Schilke, P. "High-Mass Star Formation." EAS Publications Series 75-76 (2015): 227–35. http://dx.doi.org/10.1051/eas/1575046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kondrat, Richard. "High resolution mass spectrometry." Journal of the American Society for Mass Spectrometry 10, no. 7 (July 1999): 661. http://dx.doi.org/10.1016/s1044-0305(99)00033-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Maharrey, S., R. Bastasz, R. Behrens, A. Highley, S. Hoffer, G. Kruppa, and J. Whaley. "High mass resolution SIMS." Applied Surface Science 231-232 (June 2004): 972–75. http://dx.doi.org/10.1016/j.apsusc.2004.03.197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Maurer, Hans H., and David C. Muddiman. "High-resolution mass spectrometry." Analytical and Bioanalytical Chemistry 403, no. 5 (April 10, 2012): 1201–2. http://dx.doi.org/10.1007/s00216-012-5959-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pasa-Tolic, L., D. F. Smith, F. E. Leach, E. W. Robinson, and R. M. Heeren. "C60 Secondary Ion FT-ICR Mass Spectrometry: High Mass Resolving Power and High Mass Accuracy SIMS." Microscopy and Microanalysis 19, S2 (August 2013): 660–61. http://dx.doi.org/10.1017/s1431927613005291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Betancort-Rijo, Juan E., and Antonio D. Montero-Dorta. "Understanding the Cosmic Mass Function High-Mass Behavior." Astrophysical Journal 650, no. 2 (October 5, 2006): L95—L98. http://dx.doi.org/10.1086/507702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Buchanan, Michelle V., and Robert L. Hettich. "Fourier Transform Mass Spectrometry of High-Mass Biomolecules." Analytical Chemistry 65, no. 5 (March 1993): 245A—259A. http://dx.doi.org/10.1021/ac00053a719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Evans-Nguyen, Theresa, Luann Becker, Vladimir Doroshenko, and Robert J. Cotter. "Development of a low power, high mass range mass spectrometer for Mars surface analysis." International Journal of Mass Spectrometry 278, no. 2-3 (December 2008): 170–77. http://dx.doi.org/10.1016/j.ijms.2008.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Schönteich, Bernward, Elisabeth Stammen, and Klaus Dilger. "High-speed Mass Flow Measurement in Highly ViscousAdhesives by Constant Temperature Anemometry." Journal of The Adhesion Society of Japan 51, s1 (2015): 269–73. http://dx.doi.org/10.11618/adhesion.51.269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Smith, Donald F., Andras Kiss, Franklin E. Leach, Errol W. Robinson, Ljiljana Paša-Tolić, and Ron M. A. Heeren. "High mass accuracy and high mass resolving power FT-ICR secondary ion mass spectrometry for biological tissue imaging." Analytical and Bioanalytical Chemistry 405, no. 18 (May 19, 2013): 6069–76. http://dx.doi.org/10.1007/s00216-013-7048-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Xu, Weiwei, Huanyuan Shan, Ran Li, Chunxiang Wang, Linhua Jiang, Eric Jullo, Ginevra Favole, Jean-Paul Kneib, and Chaoli Zhang. "Halo Mass-concentration Relation at the High-mass End." Astrophysical Journal 922, no. 2 (November 29, 2021): 162. http://dx.doi.org/10.3847/1538-4357/ac1b9e.

Full text
Abstract:
Abstract The concentration–mass (c–M) relation encodes key information about the assembly history of dark matter halos. However, its behavior at the high mass end has not been measured precisely in observations yet. In this paper, we report the measurement of the halo c–M relation with the galaxy–galaxy lensing method, using the shear catalog of the Dark Energy Camera Legacy Survey (DECaLS) Data Release 8, which covers a sky area of 9500 deg2. The foreground lenses are selected from the redMaPPer, LOWZ, and CMASS catalogs, with halo masses ranging from 1013 to 1015 M ⊙ and redshifts ranging from z = 0.08 to z = 0.65. We find that the concentration decreases with the halo mass from 1013 to 1014 M ⊙, but shows a trend of upturn after the pivot point of ∼1014 M ⊙. We fit the measured c–M relation with the concentration model c ( M ) = C 0 M 10 12 M ⊙ / h − γ 1 + M M 0 0.4 , and we get the values (C 0, γ, log10(M 0)) = (5.119−0.185 0.183, 0.205 − 0.010 0.010 , 14.083 − 0.133 0.130 ) and ( 4.875 − 0.208 0.209 , 0.221 − 0.010 0.010 , 13.750 − 0.141 0.142 ) for halos with 0.08 ≤ z < 0.35 and 0.35 ≤ z < 0.65, respectively. We also show that the model including an upturn is favored over a simple power-law model. Our measurement provides important information for the recent argument over the massive cluster formation process.
APA, Harvard, Vancouver, ISO, and other styles
31

Sadygov, Rovshan G. "High Mass Accuracy Phosphopeptide Identification Using Tandem Mass Spectra." International Journal of Proteomics 2012 (July 15, 2012): 1–5. http://dx.doi.org/10.1155/2012/104681.

Full text
Abstract:
Phosphoproteomics is a powerful analytical platform for identification and quantification of phosphorylated peptides and assignment of phosphorylation sites. Bioinformatics tools to identify phosphorylated peptides from their tandem mass spectra and protein sequence databases are important part of phosphoproteomics. In this work, we discuss general informatics aspects of mass-spectrometry-based phosphoproteomics. Some of the specifics of phosphopeptide identifications stem from the labile nature of phosphor groups and expanded peptide search space. Allowing for modifications of Ser, Thr, and Tyr residues exponentially increases effective database size. High mass resolution and accuracy measurements of precursor mass-to-charge ratios help to restrict the search space of candidate peptide sequences. The higher-order fragmentations of neutral loss ions enhance the fragment ion mass spectra of phosphorylated peptides. We show an example of a phosphopeptide identification where accounting for fragmentation from neutral loss species improves the identification scores in a database search algorithm by 50%.
APA, Harvard, Vancouver, ISO, and other styles
32

Chatterjee, K., S. N. Mahato, S. Chattopadhyay, and D. De. "High accuracy mass measuring system using capacitive mass sensor." Instruments and Experimental Techniques 57, no. 5 (September 2014): 627–30. http://dx.doi.org/10.1134/s0020441214050066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tan, Jonathan C. "Comparison of Low-Mass and High-Mass Star Formation." Proceedings of the International Astronomical Union 11, S315 (August 2015): 154–62. http://dx.doi.org/10.1017/s1743921316007432.

Full text
Abstract:
AbstractI review theoretical models of star formation and how they apply across the stellar mass spectrum. Several distinct theories are under active study for massive star formation, especiallyTurbulent Core Accretion,Competitive AccretionandProtostellar Mergers, leading to distinct observational predictions. These include the types of initial conditions, the structure of infall envelopes, disks and outflows, and the relation of massive star formation to star cluster formation. Even for Core Accretion models, there are several major uncertainties related to the timescale of collapse, the relative importance of different processes for preventing fragmentation in massive cores, and the nature of disks and outflows. I end by discussing some recent observational results that are helping to improve our understanding of these processes.
APA, Harvard, Vancouver, ISO, and other styles
34

Hornshaw, Martin. "High resolution accurate mass orbitrap mass spectrometry—Continuing innovation." EuPA Open Proteomics 2 (March 2014): 63–64. http://dx.doi.org/10.1016/j.euprot.2013.11.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hoehenwarter, Wolfgang, and Stefanie Wienkoop. "Spectral counting robust on high mass accuracy mass spectrometers." Rapid Communications in Mass Spectrometry 24, no. 24 (November 16, 2010): 3609–14. http://dx.doi.org/10.1002/rcm.4818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

ONO, TOSHIRO. "Dynamic high-speed mass-measurement." Journal of the Japan Society for Precision Engineering 52, no. 4 (1986): 627–30. http://dx.doi.org/10.2493/jjspe.52.627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Simon, Philipp W., Xenia Y. Wolff, C. E. Peterson, Dale S. Kammerlohr, Vince E. Rubatzky, James O. Strandberg, Mark J. Bassett, and J. M. White. "High Carotene Mass Carrot Population." HortScience 24, no. 1 (February 1989): 174–75. http://dx.doi.org/10.21273/hortsci.24.1.174.

Full text
Abstract:
Abstract Carotenes from vegetables and fruits are vitamin A precursors that contribute about half of the vitamin A in the U.S. diet (3) and two-thirds of the world diet (5). Carrots typically contain 65 to 90 ppm carotenes (1) and are estimated to be the major source of carotene for U.S. consumers (3). Few pro-vitamin A sources surpass the carotene content of typical carrots, although red palm oil can contain >825 ppm carotenes (2). Genetic selection for higher carotene levels in carrots could increase the dietary consumption of carotene and consequently vitamin A. A high carotene mass carrot population was developed for use in breeding, genetic, and biochemical studies of carrot (Fig. 1).
APA, Harvard, Vancouver, ISO, and other styles
38

Fedorko, Wojciech. "High Mass Resonances at ATLAS." EPJ Web of Conferences 28 (2012): 09009. http://dx.doi.org/10.1051/epjconf/20122809009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kurtz, Stan. "TRIGGERED HIGH MASS STAR FORMATION." Journal of The Korean Astronomical Society 40, no. 4 (December 31, 2007): 137–40. http://dx.doi.org/10.5303/jkas.2007.40.4.137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Jeffery, Peter. "Solesmes High Mass—or Low?" Early Music XXVII, no. 3 (August 1999): 483–85. http://dx.doi.org/10.1093/earlyj/xxvii.3.483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Rivett, A. J. "High molecular mass intracellular proteases." Biochemical Journal 263, no. 3 (November 1, 1989): 625–33. http://dx.doi.org/10.1042/bj2630625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Maeder, André. "Evolution of High Mass Stars." Highlights of Astronomy 7 (1986): 475–79. http://dx.doi.org/10.1017/s1539299600006808.

Full text
Abstract:
Several properties of massive star evolution are of great interest for the understanding of young populations in galaxies: -the genetic connections predicted by the models for the various types of massive stars allow us to understand their filiation; -in order to study the differences of the relative star frequencies in galaxies, we have to know which properties affect the lifetimes in the various evolutionary stages; -the composition of stellar winds is interesting to discuss the wind injections into the interstellar material, particularly the injections by Wolf-Rayet stars, and to discuss the influence of mass loss on nucleosynthesis and chemical yields. Here we shall briefly summarize some recent results on these various problems. For more details the reader may refer to general reviews (cf. Humphreys, 1984; Maeder, 1984a,b; Chiosi and Maeder, 1986).
APA, Harvard, Vancouver, ISO, and other styles
43

Russell, John. "Redefining High-Resolution Mass Spec." Genetic Engineering & Biotechnology News 31, no. 19 (November 2011): 42–46. http://dx.doi.org/10.1089/gen.31.19.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Paccou, Julien, Laetitia Michou, Sami Kolta, Françoise Debiais, Bernard Cortet, and Pascal Guggenbuhl. "High bone mass in adults." Joint Bone Spine 85, no. 6 (December 2018): 693–99. http://dx.doi.org/10.1016/j.jbspin.2018.01.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Blau, Judith R. "High culture as mass culture." Society 23, no. 4 (May 1986): 65–69. http://dx.doi.org/10.1007/bf02701958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lüst, D., E. Papantonopoulos, and G. Zoupanos. "High-colour and mass hierarchies." Physics Letters B 158, no. 1 (August 1985): 55–60. http://dx.doi.org/10.1016/0370-2693(85)90738-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Keszthelyi, Zsolt. "Magnetism in High-Mass Stars." Galaxies 11, no. 2 (March 5, 2023): 40. http://dx.doi.org/10.3390/galaxies11020040.

Full text
Abstract:
Magnetism is a ubiquitous property of astrophysical plasmas, yet stellar magnetism still remains far from being completely understood. In this review, we describe recent observational and modelling efforts and progress to expand our knowledge of the magnetic properties of high-mass stars. Several mechanisms (magneto-convection, mass-loss quenching, internal angular momentum transport, and magnetic braking) have significant implications for stellar evolution, populations, and end-products. Consequently, it remains an urgent issue to address and resolve open questions related to magnetism in high-mass stars.
APA, Harvard, Vancouver, ISO, and other styles
48

Ijames, Carl F., and Charles L. Wilkins. "First demonstration of high resolution laser desorption mass spectrometry of high mass organic ions." Journal of the American Chemical Society 110, no. 8 (April 1988): 2687–88. http://dx.doi.org/10.1021/ja00216a072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kauth, Christian, Marc Pastre, and Maher Kayal. "Simultaneous High-Speed High-Resolution Nanomechanical Mass Sensing." IEEE Sensors Journal 14, no. 8 (August 2014): 2488–89. http://dx.doi.org/10.1109/jsen.2014.2322084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Marsh, Christopher L., and Robert D. Braun. "Fully-Propulsive Mars Atmospheric Transit Strategies for High-Mass Missions." Journal of Spacecraft and Rockets 48, no. 2 (March 2011): 271–82. http://dx.doi.org/10.2514/1.49394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography