Academic literature on the topic 'High frequency electronic devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High frequency electronic devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "High frequency electronic devices"
Trew, R. J. "High-Frequency Solid-State Electronic Devices." IEEE Transactions on Electron Devices 52, no. 5 (May 2005): 638–49. http://dx.doi.org/10.1109/ted.2005.845862.
Full textZhao, Lan, and Wen Lei Zhao. "Frequency Characteristics and Conversion of Microwave Photons." Applied Mechanics and Materials 568-570 (June 2014): 1303–6. http://dx.doi.org/10.4028/www.scientific.net/amm.568-570.1303.
Full textHasan, Md Nazmul, Edward Swinnich, and Jung-Hun Seo. "Recent Progress in Gallium Oxide and Diamond Based High Power and High-Frequency Electronics." International Journal of High Speed Electronics and Systems 28, no. 01n02 (March 2019): 1940004. http://dx.doi.org/10.1142/s0129156419400044.
Full textSATO, TOSHIRO. "Micromagnetic Devices for High Frequency Power." Journal of the Institute of Electrical Engineers of Japan 123, no. 11 (2003): 723–26. http://dx.doi.org/10.1541/ieejjournal.123.723.
Full textRahman, Md Wahidur, Chandan Joishi, Nidhin Kurian Kalarickal, Hyunsoo Lee, and Siddharth Rajan. "High-Permittivity Dielectric for High-Performance Wide Bandgap Electronic Devices." ECS Meeting Abstracts MA2022-02, no. 32 (October 9, 2022): 1210. http://dx.doi.org/10.1149/ma2022-02321210mtgabs.
Full textLiu, An-Chen, Po-Tsung Tu, Catherine Langpoklakpam, Yu-Wen Huang, Ya-Ting Chang, An-Jye Tzou, Lung-Hsing Hsu, Chun-Hsiung Lin, Hao-Chung Kuo, and Edward Yi Chang. "The Evolution of Manufacturing Technology for GaN Electronic Devices." Micromachines 12, no. 7 (June 23, 2021): 737. http://dx.doi.org/10.3390/mi12070737.
Full textWang, Li, and Chun Feng. "The International Research Progress of GaN-Based Microwave Electronic Devices." Advanced Materials Research 1053 (October 2014): 69–73. http://dx.doi.org/10.4028/www.scientific.net/amr.1053.69.
Full textFeng, Jinjun, Yubin Gong, Chaohai Du, and Adrian Cross. "High-Frequency Vacuum Electron Devices." Electronics 11, no. 5 (March 5, 2022): 817. http://dx.doi.org/10.3390/electronics11050817.
Full textAyubi-Moak, J. S., S. M. Goodnick, and M. Saraniti. "Global Modeling of high frequency devices." Journal of Computational Electronics 5, no. 4 (December 9, 2006): 415–18. http://dx.doi.org/10.1007/s10825-006-0028-3.
Full textOHSHIMA, S. "Special Section on Superconducting High-frequency Devices." IEICE Transactions on Electronics E89-C, no. 2 (February 1, 2006): 97. http://dx.doi.org/10.1093/ietele/e89-c.2.97.
Full textDissertations / Theses on the topic "High frequency electronic devices"
Stevens, M. J. "Digital control of high frequency pulse-width modulated inverters." Thesis, University of Bristol, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373297.
Full textWard, Gillian Anne. "Design of a multi-kilowatt, high frequency, DC-DC converter." Thesis, University of Birmingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274596.
Full textWilliams, Richard. "High frequency multi-element transformers for switched-mode power supplies." Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283625.
Full textSkulason, Helgi. "High-frequency characterization and applications of graphene devices." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119524.
Full textDans cette thèse, nous avons expérimentalement sondé les micro-ondes électrodynamiques de graphène de grande surface, plus particulièrement les mesures de graphène sans contact pour en extraire les propriétés de la matière et la mise en œuvre de dispositifs non-réciproques générateurs de micro-ondes. Notre objectif consiste à exploiter l'interaction entre le graphène et les ondes électromagnétiques dans le domaine des micro-ondes. En fabriquant un guide d'ondes de graphène coplanaire à large bande, nous établissons que le graphène possède une résistance de large bande constante comprise entre 17 Hz et 110 GHz. Ceci est attribuable à l'inductivité cinétique et à l'effet pelliculaire négligeables jusqu'à 110 GHz. Nous décrivons l'impédance des contacts entre le graphène et les électrodes métalliques. Nos dispositifs démontrent que la capacitance de contact court-circuite la résistance de contact au-dessus de 2 GHz, permettant les mesures du graphène sans contact jusqu'à 110 GHz. Nous avons mesuré la conductivité magnétique du graphène à grande surface sous excitation de micro-ondes utilisant une géométrie de disque Corbino en transférant les films de graphène sur des embouts de câble coaxial polis. Notre installation permet l'utilisation de dispositifs de graphène actifs et passifs où les dispositifs actifs sont dopés par effet de champ avec une grille de silicium intrinsèque transparente aux micro-ondes. Nous avons extrait des mobilités à base de la conductivité magnétique autour de 1000 cm… en utilisant le model de Drude à une composante à haute densité. Une magnéto résistance atypique a également été observée. Nous avons créé, fabriqué et caractérisé un guide d'onde isolateur creux avec du graphène biaisé magnétiquement agissant comme élément non-réciproque par rotation de Faraday. Notre montage expérimentale permet la caractérisation sans contact de la conductivité, la mobilité et la densité de porteurs de charges du film de graphène. La rotation de Faraday a été mesuré jusqu'à 1.5 ce qui résulte en une isolation de 25dB. Nous démontrons que la performance de l'isolateur peut être améliorée en augmentant la mobilité dans le graphène. Étant donné que la direction de la rotation de Faraday dépend du signe du porteur de charge dominant dans le graphène, nous soumettons des données démontrant que la direction de l'isolation peut être modulée et changée en utilisant l'effet de champ implémenté dans le guide d'ondes creux avec une seule source de voltage à basse puissance. Notre travail suggère que d'autres dispositifs non-réciproques comme des circulateurs peuvent être implémentés de façon compacte avec du graphène.
Lotfi, Ashraf W. "The electrodynamics of high frequency magnetics in power electronics /." This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06062008-171908/.
Full textFrake, James Christopher. "Investigations of mesoscopic device physics using high frequency electronic techniques." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707903.
Full textKudrya, V. G., and D. A. Voronenko. "Designing Nanotechnology Matching Devices." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35357.
Full textLotfi, Ashraf Wagih. "The electrodynamics of high frequency magnetics in power electronics." Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/38504.
Full textPh. D.
Le, Minh-Nhat Ba. "ADVANCED THERMOSONIC WIRE BONDING USING HIGH FREQUENCY ULTRASONIC POWER: OPTIMIZATION, BONDABILITY, AND RELIABILITY." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/177.
Full textGradzki, Pawel Miroslaw. "Core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applications." Diss., This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-06062008-165934/.
Full textBooks on the topic "High frequency electronic devices"
Fay, Patrick, Debdeep Jena, and Paul Maki, eds. High-Frequency GaN Electronic Devices. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-20208-8.
Full textP, Muralt, Materials Research Society, Materials Research Society Meeting, and Symposium on Materials, Integration and Packaging Issues for High-Frequency Devices (2003 : Boston, Mass.), eds. Materials, integration and packaging issues for high-frequency devices: Symposium held December 1-3, 2003, Boston, Massachusetts, U.S.A. Warrendale, Pa: Materials Research Society, 2004.
Find full textS, Cho Yong, Materials Research Society, Materials Research Society Meeting, and Symposium on Materials, Integration and Packaging Issues for High-Frequency Devices (2004 : Boston, Mass.), eds. Materials, integration and packaging issues for high-frequency devices II: Symposium held November 29-December 1, 2004, Boston, Massachusetts, U.S.A. Warrendale, Pa: Materials Research Society, 2005.
Find full text1954-, Peyghambarian Nasser, and Society of Photo-optical Instrumentation Engineers., eds. Nonlinear optics for high-speed electronics and optical frequency conversion: 24-26 January 1994, Los Angeles, California. Bellingham, Wash., USA: SPIE, 1994.
Find full text1959-, Harjani Ramesh, ed. Design of high performance CMOS voltage-controlled oscillators. Boston: Kluwer Academic Publishers, 2003.
Find full textKazimierczuk, Marian. High-frequency magnetic components. Chichester, West Sussex, U.K: J. Wiley, 2009.
Find full textLimited, Hitachi. Hitachi ultra high frequency devices data book. Tokyo: Hitachi Ltd, 1991.
Find full textMartens, Luc. High-Frequency Characterization of Electronic Packaging. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5623-7.
Full textMartens, Luc. High-frequency characterization of electronic packaging. Boston: Kluwer Academic Publishers, 1998.
Find full textF, Nibler, and Institution of Electrical Engineers, eds. High-frequency circuit engineering. London: Institution of Electrical Engineers, 1996.
Find full textBook chapters on the topic "High frequency electronic devices"
Coffie, Robert L. "High Power High Frequency Transistors: A Material’s Perspective." In High-Frequency GaN Electronic Devices, 5–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_2.
Full textFay, Patrick, Debdeep Jena, and Paul Maki. "Introduction and Overview." In High-Frequency GaN Electronic Devices, 1–3. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_1.
Full textSertel, Kubilay, and Georgios C. Trichopoulos. "Non-contact Metrology for mm-Wave and THz Electronics." In High-Frequency GaN Electronic Devices, 283–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_10.
Full textKhurgin, J., and D. Jena. "Isotope Engineering of GaN for Boosting Transistor Speeds." In High-Frequency GaN Electronic Devices, 43–82. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_3.
Full textBader, Samuel James, Keisuke Shinohara, and Alyosha Molnar. "Linearity Aspects of High Power Amplification in GaN Transistors." In High-Frequency GaN Electronic Devices, 83–107. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_4.
Full textYang, Zhichao, Digbijoy N. Nath, Yuewei Zhang, Sriram Krishnamoorthy, Jacob Khurgin, and Siddharth Rajan. "III-Nitride Tunneling Hot Electron Transfer Amplifier (THETA)." In High-Frequency GaN Electronic Devices, 109–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_5.
Full textCondori Quispe, Hugo O., Berardi Sensale-Rodriguez, and Patrick Fay. "Plasma-Wave Propagation in GaN and Its Applications." In High-Frequency GaN Electronic Devices, 159–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_6.
Full textBhardwaj, Shubhendu, and John Volakis. "Numerical Simulation of Distributed Electromagnetic and Plasma Wave Effect Devices." In High-Frequency GaN Electronic Devices, 181–214. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_7.
Full textEncomendero, Jimy, Debdeep Jena, and Huili Grace Xing. "Resonant Tunneling Transport in Polar III-Nitride Heterostructures." In High-Frequency GaN Electronic Devices, 215–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_8.
Full textZhang, W. D., T. A. Growden, E. R. Brown, P. R. Berger, D. F. Storm, and D. J. Meyer. "Fabrication and Characterization of GaN/AlN Resonant Tunneling Diodes." In High-Frequency GaN Electronic Devices, 249–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_9.
Full textConference papers on the topic "High frequency electronic devices"
Wei, Yazhou, Mo Li, Yong Luo, and Jian Zhang. "Ultra-High Frequency GaN Nanoscale Vacuum Electronic Devices." In 2021 22nd International Vacuum Electronics Conference (IVEC). IEEE, 2021. http://dx.doi.org/10.1109/ivec51707.2021.9722483.
Full textYamaguchi, M., Y. Endo, and Y. Shimada. "High-frequency Magnetic Shielding Technology for Electronic Devices (Invited)." In 2008 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2008. http://dx.doi.org/10.7567/ssdm.2008.c-7-3.
Full textGonzalez, Tomas. "Carrier dynamics probed by noise in high-frequency electronic devices." In 2015 International Conference on Noise and Fluctuations (ICNF). IEEE, 2015. http://dx.doi.org/10.1109/icnf.2015.7288541.
Full textKanagawa, Naoki, Daisuke Sasaki, and Shigeru Yamatsu. "Low Dielectric Properties Encapsulation for High Frequency Devices." In 2018 IEEE 68th Electronic Components and Technology Conference (ECTC). IEEE, 2018. http://dx.doi.org/10.1109/ectc.2018.00285.
Full textTanigawa, Takao, Etsuo Mizushima, Mami Shimada, Kohji Morita, Minoru Kakitani, and Shin Takanezawa. "Low Transmission Loss Film Material for High-Speed High-Frequency Devices." In 2018 IEEE 68th Electronic Components and Technology Conference (ECTC). IEEE, 2018. http://dx.doi.org/10.1109/ectc.2018.00264.
Full textChatterjee, Subrangshu, Anumita Sengupta, Sudip Kundu, and Aminul Islam. "Analysis of AlGaN/GaN high electron mobility transistor for high frequency application." In 2017 Devices for Integrated Circuit (DevIC). IEEE, 2017. http://dx.doi.org/10.1109/devic.2017.8073935.
Full textYazawa, Kazuaki, Dustin Kendig, and Ali Shakouri. "Thermal imaging characterization for high frequency and high power devices." In 2015 International Conference on Electronic Packaging and iMAPS All Asia Conference (ICEP-IAAC). IEEE, 2015. http://dx.doi.org/10.1109/icep-iaac.2015.7111043.
Full textDudarev, N. V., and S. N. Darovskih. "Volumetric-modular technology for building high-frequency diagramming devices." In 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT). IEEE, 2018. http://dx.doi.org/10.1109/mwent.2018.8337281.
Full textSaijun Mao, Tao Wu, Xi Lu, Jelena Popovic, and Jan Abraham Ferreira. "High frequency high voltage power conversion with silicon carbide power semiconductor devices." In 2016 6th Electronic System-Integration Technology Conference (ESTC). IEEE, 2016. http://dx.doi.org/10.1109/estc.2016.7764721.
Full textKreischer, K. E., B. G. Danly, H. Saito, J. B. Schutkeker, R. J. Temkin, and T. M. Tran. "Development of high frequency gyrotrons." In 1985 International Electron Devices Meeting. IRE, 1985. http://dx.doi.org/10.1109/iedm.1985.191020.
Full textReports on the topic "High frequency electronic devices"
van der Heijden, Joost. Optimizing electron temperature in quantum dot devices. QDevil ApS, March 2021. http://dx.doi.org/10.53109/ypdh3824.
Full textBuhrman, Robert A. Ultra-High Frequency Superconductive Devices. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236795.
Full textWu, X. D., A. Finokoglu, M. Hawley, Q. Jia, T. Mitchell, F. Mueller, D. Reagor, and J. Tesmer. High-temperature superconducting thin-film-based electronic devices. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/378956.
Full textHietala, V. M., T. A. Plut, S. H. Kravitz, G. A. Vawter, J. R. Wendt, and M. G. Armendariz. Ultra-high-speed optical and electronic distributed devices. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/109671.
Full textBuhrman, Robert A., Daniel C. Ralph, Bill Rippard, Tom Silva, Stephen Russek, Stuart A. Wolf, Arthur W. Lichtenberger, II Weikle, Deaver Robert M., and Bascom S. High-Frequency Spin-Based Devices for Nanoscale Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada520629.
Full textZolper, J. C., A. G. Baca, M. E. Sherwin, and J. F. Klem. Ion implantation in compound semiconductors for high-performance electronic devices. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/231550.
Full textSturm, James C. Reduced Strain Silicon-Based Heterostructures for High Speed Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada378013.
Full textDeFord, John F., Ben Held, Liya Chernyakova, and John Petillo. Computer-Aided Design and Optimization of High-Performance Vacuum Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, February 2006. http://dx.doi.org/10.21236/ada444752.
Full textDeFord, J. F., B. Held, L. Chemykova, and J. Petillo. Computer-Aided Design and Optimization of High-Performance Vacuum Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada454540.
Full textDeford, John F., Ben Held, Liya Chernyakova, and John Petillo. Computer-Aided Design and Optimization of High-Performance Vacuum Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, November 2004. http://dx.doi.org/10.21236/ada428963.
Full text