Academic literature on the topic 'High entropy oxide'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'High entropy oxide.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "High entropy oxide"
Bridges, Craig A., Bishnu Prasad Thapaliya, Albina Borisevich, Juntian Fan, and Sheng Dai. "(Invited) High Entropy Multication Oxide Battery Materials." ECS Meeting Abstracts MA2022-02, no. 1 (October 9, 2022): 29. http://dx.doi.org/10.1149/ma2022-02129mtgabs.
Full textMeisenheimer, P. B., and J. T. Heron. "Oxides and the high entropy regime: A new mix for engineering physical properties." MRS Advances 5, no. 64 (2020): 3419–36. http://dx.doi.org/10.1557/adv.2020.295.
Full textOh, Seeun, Dongyeon Kim, and Kang Taek Lee. "High Entropy Perovskite Electrolytes for Reversible Protonic Ceramic Electrochemical Cells." ECS Transactions 111, no. 6 (May 19, 2023): 1743–49. http://dx.doi.org/10.1149/11106.1743ecst.
Full textLi, Haoyang, Yue Zhou, Zhihao Liang, Honglong Ning, Xiao Fu, Zhuohui Xu, Tian Qiu, Wei Xu, Rihui Yao, and Junbiao Peng. "High-Entropy Oxides: Advanced Research on Electrical Properties." Coatings 11, no. 6 (May 24, 2021): 628. http://dx.doi.org/10.3390/coatings11060628.
Full textSharma, Yogesh, Min-Cheol Lee, Krishna Chaitanya Pitike, Karuna K. Mishra, Qiang Zheng, Xiang Gao, Brianna L. Musico, et al. "High Entropy Oxide Relaxor Ferroelectrics." ACS Applied Materials & Interfaces 14, no. 9 (February 28, 2022): 11962–70. http://dx.doi.org/10.1021/acsami.2c00340.
Full textKajitani, Tsuyoshi, Yuzuru Miyazaki, Kei Hayashi, Kunio Yubuta, X. Y. Huang, and W. Koshibae. "Thermoelectric Energy Conversion and Ceramic Thermoelectrics." Materials Science Forum 671 (January 2011): 1–20. http://dx.doi.org/10.4028/www.scientific.net/msf.671.1.
Full textTanveer, Rubayet, and Veerle M. Keppens. "Resonant ultrasound spectroscopy studies of high-entropy fluorites." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A131. http://dx.doi.org/10.1121/10.0015786.
Full textWang, Junfeng, Qiaobai He, Guanqi Liu, Qi Zhang, Guotan Liu, Zhihao Huang, Xiaoshuo Zhu, and Yudong Fu. "High-Temperature Oxidation Behavior of AlTiNiCuCox High-Entropy Alloys." Materials 14, no. 18 (September 15, 2021): 5319. http://dx.doi.org/10.3390/ma14185319.
Full textHashishin, Takeshi, Haruka Taniguchi, Fei Li, and Hiroya Abe. "Useful High-Entropy Source on Spinel Oxides for Gas Detection." Sensors 22, no. 11 (June 1, 2022): 4233. http://dx.doi.org/10.3390/s22114233.
Full textKe, Lingsheng, Long Meng, Sheng Fang, Chun Lin, Mingtian Tan, and Tao Qi. "High-Temperature Oxidation Behaviors of AlCrTiSi0.2 High-Entropy Alloy Doped with Rare Earth La and Y." Crystals 13, no. 8 (July 27, 2023): 1169. http://dx.doi.org/10.3390/cryst13081169.
Full textDissertations / Theses on the topic "High entropy oxide"
Sarkar, Abhishek Verfasser], Horst [Akademischer Betreuer] [Hahn, and Jürgen [Akademischer Betreuer] Janek. "High Entropy Oxides: Structure and Properties / Abhishek Sarkar ; Horst Hahn, Jürgen Janek." Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1222674432/34.
Full textSarkar, Abhishek [Verfasser], Horst [Akademischer Betreuer] Hahn, and Jürgen [Akademischer Betreuer] Janek. "High Entropy Oxides: Structure and Properties / Abhishek Sarkar ; Horst Hahn, Jürgen Janek." Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1222674432/34.
Full textCHIANG, CHIA-LIANG, and 江家樑. "Optical Properties of RF-Sputtered High-Entropy Alloy CrNiTiSiZr Oxide Thin Films." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/43m7sb.
Full text輔仁大學
物理學系碩士班
106
In this study, the high-entropy alloy CrNiTiSiZr filmsare coated by using an RF sputtering system. The optical properties and compositions of high-entropy alloy CrNiTiSiZr films are observed under different deposition pressures. It is expected that high-entropy alloy CrNiTiSiZr films could be used on the optical system in the future. The samples were illustrated by ellipsometry, spectrometer, X-ray diffractometry (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The optical properties of the films were analyzed for their refractive index, absorption, and binding energy. The results show that the high-entropy alloy CrNiTiSiZr film deposited at the argon flow rate of 30 sccm has the maximum variation in refractive index and extinction coefficient as increasing the visible wavelength. The oxygen composition in the high-entropy alloy CrNiTiSiZr becomes less as decreasing the argon flow rate. The optical energy gap is directly proportional to the oxygen content. However, the XRD peaks didn’t change apparently as increasing the argon flow rate. When the film deposited at the argon flow rate 20 sccm, it contains the minimum oxygen composition of (26.36 at.%) and the minimum energy gap of (3.97 eV).The transmittance is also affected by the oxygen content, refractive index and extinction coefficient of the films. Such as, the film deposited at argon flow of 30 sccm has the lowest transmittance.The absorption is the largest at argon flow of 30 sccm.
Aliyu, Ahmed. "Microstructure and Electrochemical Properties of Electrodeposited High Entropy Alloys Coatings." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5540.
Full textPatel, Ranjan Kumar. "Electronic behavior of epitaxial thin films of doped rare-earth nickelates." Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6129.
Full textSarkar, Abhishek. "High Entropy Oxides: Structure and Properties." Phd thesis, 2020. https://tuprints.ulb.tu-darmstadt.de/14345/1/Doctoral_thesis_Abhishek_Sarkar.pdf.
Full text張毓倫. "Study on High-Entropy Oxides Synthesized by Nitrate-Solution Method." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/95510250685674090556.
Full textYeh, Kuan-Cheng, and 葉冠成. "On the conductivity of high-entropy oxides prepared by nitrate solution method." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/54976830998525260702.
Full text任德育. "Study on conductivity of high-entropy oxides prepared by solid-state reaction method." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/62206179086891984028.
Full textBook chapters on the topic "High entropy oxide"
Musicó, Brianna L., Cordell J. Delzer, John R. Salasin, Michael R. Koehler, and Claudia J. Rawn. "Experimental Characterization of High-Entropy Oxides with In Situ High-Temperature X-Ray Diffraction Techniques." In High-Entropy Materials: Theory, Experiments, and Applications, 413–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77641-1_9.
Full textYang, Yu, Tongxiang Ma, Mengjun Hu, Pengjie Liu, Liangying Wen, Liwen Hu, and Meilong Hu. "Preparation of CoCrFeNi High-Entropy Alloy via Electro-Deoxidation of Metal Oxides." In TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, 1593–601. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36296-6_147.
Full textKumari, Priyanka, Amit K. Gupta, Shashi Kant Mohapatra, and Rohit R. Shahi. "Nanocrystalline High Entropy Alloys and Oxides as Emerging Materials for Functional Applications." In Nanomaterials, 145–76. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7963-7_6.
Full textMebratie Bogale, Gedefaw, and Dagne Atnafu Shiferaw. "Iron-Based Superconductors." In High Entropy Materials - Microstructures and Properties [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.109045.
Full textSarkar, Abhishek, Horst Hahn, and Robert Kruk. "High Entropy Oxides." In Reference Module in Materials Science and Materials Engineering. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-12-819728-8.00096-6.
Full textPu, Yuguang, Saifang Huang, and Peng Cao. "High-entropy oxides for energy storage and catalysis." In Advanced Ceramics for Energy Storage, Thermoelectrics and Photonics, 209–36. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-90761-3.00015-2.
Full textSaadat Arif, Huseynova, Panakhova Nushaba Farkhad, Orujova Pusta Ali, Hajiyeva Nurangiz Nizami, Hajiyeva Adila Sabir, Mukhtarova Sevinj Nabi, and Agayeva Gulnaz Telman. "Endothelial Dysfunction and Intestinal Barrier Injury in Preterm Infants with Perinatal Asphyxia." In Maternal and Child Health [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.110352.
Full textConference papers on the topic "High entropy oxide"
GUMEN, O. "High-Temperature Oxidation of High-Entropy FeNiCoCrAl Alloys." In Quality Production Improvement and System Safety. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902691-4.
Full textKenyi, A., R. Bhaskaran Nair, and A. McDonald. "Towards Highly Durable High Entropy Alloy (HEA) Coatings Using Flame Spraying." In ITSC2022. DVS Media GmbH, 2022. http://dx.doi.org/10.31399/asm.cp.itsc2022p0827.
Full textBhattacharya, R., O. N. Senkov, A. K. Rai, X. Ma, and P. Ruggiero. "High Entropy Alloy Coatings for Application as Bond Coating for Thermal Barrier Coating Systems." In ITSC 2016, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. DVS Media GmbH, 2016. http://dx.doi.org/10.31399/asm.cp.itsc2016p0279.
Full textShahbazi, H., H. Vakilifard, R. B. Nair, A. C. Liberati, C. Moreau, and R. S. Lima. "High Entropy Alloy (HEA) Bond Coats for Thermal Barrier Coatings (TBCs)—A Review." In ITSC 2023. ASM International, 2023. http://dx.doi.org/10.31399/asm.cp.itsc2023p0659.
Full textRužičić, Branka, Dragana Grujić, Blanka Škipina, Mladen Stančić, Đorđe Vujčić, and Miroslav Dragić. "Enhancement of macro-uniformity of copper(I) oxide printed linen fabrics by addition of Pinus sylvestris L. plant extract." In 11th International Symposium on Graphic Engineering and Design. University of Novi Sad, Faculty of technical sciences, Department of graphic engineering and design, 2022. http://dx.doi.org/10.24867/grid-2022-p83.
Full textPal, S., R. Bhaskaran Nair, and A. McDonald. "Influence of Microstructure on Hardness and Electric Resistivity of Flame-Sprayed High Entropy Alloy Coatings." In ITSC2022. DVS Media GmbH, 2022. http://dx.doi.org/10.31399/asm.cp.itsc2022p0534.
Full textNishida, Kousuke, Toshimi Takagi, and Shinichi Kinoshita. "Analysis of Electrochemical Performance and Exergy Loss in Solid Oxide Fuel Cell." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38094.
Full textHaynes, Comas L., and William J. Wepfer. "Using Component Effectiveness for a More Comprehensive Analysis of High Temperature Fuel Cells." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0842.
Full textHaseli, Yousef, Ibrahim Dincer, and Greg F. Naterer. "Thermodynamic Performance of a Gas Turbine Plant Combined With a Solid Oxide Fuel Cell." In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/es2008-54336.
Full textRajab, Husam, Da Yin, and Hongbin Ma. "Effects of Al2O3-Water Nanofluid and Angular Orientation on Entropy Generation and Convective Heat Transfer of an Elliptical Micro-Pin-Fin Heat Sink." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40335.
Full text