Academic literature on the topic 'Hierarchical Bayesian Priors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hierarchical Bayesian Priors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hierarchical Bayesian Priors"
Song, Chengyuan, Dongchu Sun, Kun Fan, and Rongji Mu. "Posterior Propriety of an Objective Prior in a 4-Level Normal Hierarchical Model." Mathematical Problems in Engineering 2020 (February 14, 2020): 1–10. http://dx.doi.org/10.1155/2020/8236934.
Full textJiao, Yan, Christopher Hayes, and Enric Cortés. "Hierarchical Bayesian approach for population dynamics modelling of fish complexes without species-specific data." ICES Journal of Marine Science 66, no. 2 (September 26, 2008): 367–77. http://dx.doi.org/10.1093/icesjms/fsn162.
Full textZhang, Hai, Puyu Wang, Qing Dong, and Pu Wang. "Sparse Bayesian linear regression using generalized normal priors." International Journal of Wavelets, Multiresolution and Information Processing 15, no. 03 (February 16, 2017): 1750021. http://dx.doi.org/10.1142/s0219691317500217.
Full textChan, Joshua C. C. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs." International Journal of Forecasting 37, no. 3 (July 2021): 1212–26. http://dx.doi.org/10.1016/j.ijforecast.2021.01.002.
Full textScarpa, Bruno, and David B. Dunson. "Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative Priors." Biometrics 65, no. 3 (January 23, 2009): 772–80. http://dx.doi.org/10.1111/j.1541-0420.2008.01163.x.
Full textGu, Xiaojing, Henry Leung, and Xingsheng Gu. "Bayesian Sparse Estimation Using Double Lomax Priors." Mathematical Problems in Engineering 2013 (2013): 1–17. http://dx.doi.org/10.1155/2013/176249.
Full textLiang, Xinya, Akihito Kamata, and Ji Li. "Hierarchical Bayes Approach to Estimate the Treatment Effect for Randomized Controlled Trials." Educational and Psychological Measurement 80, no. 6 (March 16, 2020): 1090–114. http://dx.doi.org/10.1177/0013164420909885.
Full textNam, Hyun Woo. "Modeling hyper-priors for Bayesian IRT equating: Fixed hyper-parameters or Hierarchical hyper-priors." Korean Society for Educational Evaluation 32, no. 4 (December 30, 2019): 777–95. http://dx.doi.org/10.31158/jeev.2019.32.4.777.
Full textWang, Mengxi, Qingwang Liu, Liyong Fu, Guangxing Wang, and Xiongqing Zhang. "Airborne LIDAR-Derived Aboveground Biomass Estimates Using a Hierarchical Bayesian Approach." Remote Sensing 11, no. 9 (May 3, 2019): 1050. http://dx.doi.org/10.3390/rs11091050.
Full textKrishnan, Ranganath, Mahesh Subedar, and Omesh Tickoo. "Specifying Weight Priors in Bayesian Deep Neural Networks with Empirical Bayes." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 4477–84. http://dx.doi.org/10.1609/aaai.v34i04.5875.
Full textDissertations / Theses on the topic "Hierarchical Bayesian Priors"
Israeli, Yeshayahu D. "Whitney Element Based Priors for Hierarchical Bayesian Models." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1621866603265673.
Full textGeorge, Robert Emerson. "The role of hierarchical priors in robust Bayesian inference /." The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487847761308082.
Full textSonksen, Michael David. "Bayesian Model Diagnostics and Reference Priors for Constrained Rate Models of Count Data." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1312909127.
Full textPfarrhofer, Michael, and Philipp Piribauer. "Flexible shrinkage in high-dimensional Bayesian spatial autoregressive models." Elsevier, 2019. http://epub.wu.ac.at/6839/1/1805.10822.pdf.
Full textBitto, Angela, and Sylvia Frühwirth-Schnatter. "Achieving shrinkage in a time-varying parameter model framework." Elsevier, 2019. http://dx.doi.org/10.1016/j.jeconom.2018.11.006.
Full textFeldkircher, Martin, Florian Huber, and Gregor Kastner. "Sophisticated and small versus simple and sizeable: When does it pay off to introduce drifting coefficients in Bayesian VARs?" WU Vienna University of Economics and Business, 2018. http://epub.wu.ac.at/6021/1/wp260.pdf.
Full textSeries: Department of Economics Working Paper Series
Pirathiban, Ramethaa. "Improving species distribution modelling: Selecting absences and eliciting variable usefulness for input into standard algorithms or a Bayesian hierarchical meta-factor model." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134401/1/Ramethaa_Pirathiban_Thesis.pdf.
Full textManandhar, Binod. "Bayesian Models for the Analyzes of Noisy Responses From Small Areas: An Application to Poverty Estimation." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/188.
Full textEgidi, Leonardo. "Developments in Bayesian Hierarchical Models and Prior Specification with Application to Analysis of Soccer Data." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3427270.
Full textNegli ultimi anni la sfida per la specificazione di nuove distribuzioni a priori e per l’uso di complessi modelli gerarchici è diventata ancora più rilevante all’interno dell’inferenza Bayesiana. L’avvento delle tecniche Markov Chain Monte Carlo, insieme a nuovi linguaggi di programmazione probabilistici, ha esteso i confini del campo, sia in direzione teorica che applicata. Nella presente tesi ci dedichiamo a obiettivi teorici e applicati. Nella prima parte proponiamo una nuova classe di distribuzioni a priori che dipendono dai dati e che sono specificate tramite una mistura tra una a priori non informativa e una a priori informativa. La generica distribuzione appartenente a questa nuova classe fornisce meno informazione di una priori informativa e si candida a non dominare le conclusioni inferenziali quando la dimensione campionaria è piccola o moderata. Tale distribuzione `e idonea per scopi di robustezza, specialmente in caso di scorretta specificazione della distribuzione a priori informativa. Alcuni studi di simulazione all’interno di modelli coniugati mostrano che questa proposta può essere conveniente per ridurre gli errori quadratici medi e per migliorare la copertura frequentista. Inoltre, sotto condizioni non restrittive, questa classe di distribuzioni d`a luogo ad alcune altre interessanti proprietà teoriche. Nella seconda parte della tesi usiamo la classe dei modelli gerarchici Bayesiani per prevedere alcune grandezze relative al gioco del calcio ed estendiamo l’usuale modellazione per i goal includendo nel modello un’ulteriore informazione proveniente dalle case di scommesse. Strumenti per sondare a posteriori la bontà di adattamento del modello ai dati mettono in luce un’ottima aderenza del modello ai dati in possesso, una buona calibrazione dello stesso e suggeriscono, infine, la costruzione di efficienti strategie di scommesse per dati futuri.
Frühwirth-Schnatter, Sylvia, and Regina Tüchler. "Bayesian parsimonious covariance estimation for hierarchical linear mixed models." Institut für Statistik und Mathematik, WU Vienna University of Economics and Business, 2004. http://epub.wu.ac.at/774/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Books on the topic "Hierarchical Bayesian Priors"
Bera, Anil K. Estimation of systematic risk using Bayesian analysis with hierarchical and non-normal priors. [Urbana, Ill.]: College of Commerce and Business Administration, University of Illinois Urbana-Champaign, 1989.
Find full textKruschke, John K., and Wolf Vanpaemel. Bayesian Estimation in Hierarchical Models. Edited by Jerome R. Busemeyer, Zheng Wang, James T. Townsend, and Ami Eidels. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199957996.013.13.
Full textButz, Martin V., and Esther F. Kutter. Top-Down Predictions Determine Perceptions. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198739692.003.0009.
Full textBook chapters on the topic "Hierarchical Bayesian Priors"
Wang, Jian, and Miaomiao Zhang. "Bayesian Atlas Building with Hierarchical Priors for Subject-Specific Regularization." In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, 76–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87202-1_8.
Full textAoki, Kohta, and Hiroshi Nagahashi. "Bayesian Image Segmentation Using MRF’s Combined with Hierarchical Prior Models." In Image Analysis, 65–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11499145_8.
Full textMohammad-Djafari, Ali. "Variational Bayesian Approximation for Linear Inverse Problems with a Hierarchical Prior Models." In Lecture Notes in Computer Science, 669–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40020-9_74.
Full textCongdon, Peter D. "Time Structured Priors." In Bayesian Hierarchical Models, 165–211. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429113352-5.
Full textCongdon, Peter D. "Regression Techniques Using Hierarchical Priors." In Bayesian Hierarchical Models, 253–315. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429113352-7.
Full text"Regression Techniques Using Hierarchical Priors." In Applied Bayesian Hierarchical Methods, 207–55. Chapman and Hall/CRC, 2010. http://dx.doi.org/10.1201/9781584887218-c5.
Full textCongdon, Peter D. "Factor Analysis, Structural Equation Models, and Multivariate Priors." In Bayesian Hierarchical Models, 339–403. Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429113352-9.
Full text"Structured Priors Recognizing Similarity over Time and Space." In Applied Bayesian Hierarchical Methods, 141–205. Chapman and Hall/CRC, 2010. http://dx.doi.org/10.1201/9781584887218-c4.
Full text"Multivariate Priors, with a Focus on Factor and Structural Equation Models." In Applied Bayesian Hierarchical Methods, 281–336. Chapman and Hall/CRC, 2010. http://dx.doi.org/10.1201/9781584887218-c7.
Full textBloetscher, Frederick. "Applications of Hierarchical Bayesian Methods to Answer Multilayer Questions with Limited Data." In Bayesian Inference [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104784.
Full textConference papers on the topic "Hierarchical Bayesian Priors"
Wang, Zhen, and Chao Lan. "Towards a Hierarchical Bayesian Model of Multi-View Anomaly Detection." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/335.
Full textStahlhut, Carsten, Hagai T. Attias, Kensuke Sekihara, David Wipf, Lars K. Hansen, and Srikantan S. Nagarajan. "A hierarchical Bayesian M/EEG imagingmethod correcting for incomplete spatio-temporal priors." In 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI 2013). IEEE, 2013. http://dx.doi.org/10.1109/isbi.2013.6556536.
Full textGiri, Ritwik, and Bhaskar D. Rao. "Hierarchical Bayesian formulation of Sparse Signal Recovery algorithms using scale mixture priors." In 2015 49th Asilomar Conference on Signals, Systems and Computers. IEEE, 2015. http://dx.doi.org/10.1109/acssc.2015.7421083.
Full textLesouple, J., J. Y. Tourneret, M. Sahmoudi, F. Barbiero, and F. Faurie. "Multipath Mitigation in Global Navigation Satellite Systems Using a Bayesian Hierarchical Model With Bernoulli Laplacian Priors." In 2018 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2018. http://dx.doi.org/10.1109/ssp.2018.8450818.
Full textAbaei, Mohammad Mahdi, Nu Rhahida Arini, Philipp R. Thies, and Johanning Lars. "Failure Estimation of Offshore Renewable Energy Devices Based on Hierarchical Bayesian Approach." In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-95099.
Full textLopez-Martinez, Daniel, Ke Peng, Arielle Lee, David Borsook, and Rosalind Picard. "Pain Detection with fNIRS-Measured Brain Signals: A Personalized Machine Learning Approach Using the Wavelet Transform and Bayesian Hierarchical Modeling with Dirichlet Process Priors." In 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). IEEE, 2019. http://dx.doi.org/10.1109/aciiw.2019.8925076.
Full textLiu, Yuhang, Wenyong Dong, Lei Zhang, Dong Gong, and Qinfeng Shi. "Variational Bayesian Dropout With a Hierarchical Prior." In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019. http://dx.doi.org/10.1109/cvpr.2019.00729.
Full textFeng, Wei, Qiaofeng Li, and Qiuhai Lu. "A Hierarchical Bayesian Method for Time Domain Structure Damage Detection." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97026.
Full textWang, Li, Ali Mohammad-Djafari, and Nicolas Gac. "Bayesian X-ray computed tomography using a three-level hierarchical prior model." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 36th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4985361.
Full textPedersen, Niels Lovmand, Carles Navarro Manchon, Dmitriy Shutin, and Bernard Henri Fleury. "Application of Bayesian hierarchical prior modeling to sparse channel estimation." In ICC 2012 - 2012 IEEE International Conference on Communications. IEEE, 2012. http://dx.doi.org/10.1109/icc.2012.6363847.
Full text