Academic literature on the topic 'Hiden Markov model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hiden Markov model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hiden Markov model"
Kim, Sae-Joong, Young-Han Jung, and Chong-Kwan Heo. "Analysis sports using the Hidden Markov Model." Korean Journal of Sports Science 26, no. 3 (June 30, 2017): 1301–9. http://dx.doi.org/10.35159/kjss.2017.06.26.3.1301.
Full textLay, Khin Khin, and Aung Cho. "Myanmar Named Entity Recognition with Hidden Markov Model." International Journal of Trend in Scientific Research and Development Volume-3, Issue-4 (June 30, 2019): 1144–47. http://dx.doi.org/10.31142/ijtsrd24012.
Full textBuckby, Jodie, Ting Wang, Jiancang Zhuang, and Kazushige Obara. "Model Checking for Hidden Markov Models." Journal of Computational and Graphical Statistics 29, no. 4 (May 14, 2020): 859–74. http://dx.doi.org/10.1080/10618600.2020.1743295.
Full textGhods, Vahid, and Mohammad Karim Sohrabi. "Online Farsi Handwritten Character Recognition Using Hidden Markov Model." Journal of Computers 11, no. 2 (March 2016): 169–75. http://dx.doi.org/10.17706/jcp.11.2.169-175.
Full textBhatia, Varsha. "Applications of Hidden Markov Model in Wireless Sensor Network." International Journal of Psychosocial Rehabilitation 24, no. 4 (April 30, 2020): 6549–57. http://dx.doi.org/10.37200/ijpr/v24i4/pr2020465.
Full textYe, Fei, and Yifei Wang. "A Novel Method for Decoding Any High-Order Hidden Markov Model." Discrete Dynamics in Nature and Society 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/231704.
Full textGrewal, Jasleen K., Martin Krzywinski, and Naomi Altman. "Markov models — hidden Markov models." Nature Methods 16, no. 9 (August 30, 2019): 795–96. http://dx.doi.org/10.1038/s41592-019-0532-6.
Full textTumilaar, Kezia, Yohanes Langi, and Altien Rindengan. "Hidden Markov Model." d'CARTESIAN 4, no. 1 (February 10, 2015): 86. http://dx.doi.org/10.35799/dc.4.1.2015.8104.
Full textLee, Kyung-Ah, Dae-Jong Lee, Jang-Hwan Park, and Myung-Geun Chun. "Face Recognition Using Wavelet Coefficients and Hidden Markov Model." Journal of Korean Institute of Intelligent Systems 13, no. 6 (December 1, 2003): 673–78. http://dx.doi.org/10.5391/jkiis.2003.13.6.673.
Full textJohansson, Mathias, and Tomas Olofsson. "Bayesian Model Selection for Markov, Hidden Markov, and Multinomial Models." IEEE Signal Processing Letters 14, no. 2 (February 2007): 129–32. http://dx.doi.org/10.1109/lsp.2006.882094.
Full textDissertations / Theses on the topic "Hiden Markov model"
Devilliers, Esther. "Modélisation micro-économétrique des choix de pratiques de production et des utilisations d'intrants chimiques des agriculteurs : une approche par les fonctions de production latentes." Thesis, Rennes, Agrocampus Ouest, 2021. http://www.theses.fr/2021NSARE058.
Full textCropping management practices is an agronomic notion grasping the interdependence between targeted yield and input use levels. Subsequently, one can legitimately assume that different cropping management practices are associated to different production functions. To better understand pesticide dependence – a key point to encourage more sustainable practices – one have to consider modelling cropping management practices specific production functions.Because of the inherent interdependence between those practices and their associeted yield and input use levels, we need to consider endogenous regime switching models.When unobserved, the sequence of cropping management practices choices is considered as a Markovian process. From this modelling framework we can derive the cropping management choices, their dynamics, their associated yield and input use levels. When observed, we consider primal production functions to see how yield responds differently to input uses based on the different cropping management practices. Thus, we can assess jointly the effect of a public policy on input use and yield levels.In a nutshell, in this PhD we are aiming at giving some tools to evaluate the differentiated effect of agri-environmental public policies on production choies and on the associated yield and input use levels
Kotsalis, Georgios. "Model reduction for Hidden Markov models." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38255.
Full textIncludes bibliographical references (leaves 57-60).
The contribution of this thesis is the development of tractable computational methods for reducing the complexity of two classes of dynamical systems, finite alphabet Hidden Markov Models and Jump Linear Systems with finite parameter space. The reduction algorithms employ convex optimization and numerical linear algebra tools and do not pose any structural requirements on the systems at hand. In the Jump Linear Systems case, a distance metric based on randomization of the parametric input is introduced. The main point of the reduction algorithm lies in the formulation of two dissipation inequalities, which in conjunction with a suitably defined storage function enable the derivation of low complexity models, whose fidelity is controlled by a guaranteed upper bound on the stochastic L2 gain of the approximation error. The developed reduction procedure can be interpreted as an extension of the balanced truncation method to the broader class of Jump Linear Systems. In the Hidden Markov Model case, Hidden Markov Models are identified with appropriate Jump Linear Systems that satisfy certain constraints on the coefficients of the linear transformation. This correspondence enables the development of a two step reduction procedure.
(cont.) In the first step, the image of the high dimensional Hidden Markov Model in the space of Jump Linear Systems is simplified by means of the aforementioned balanced truncation method. Subsequently, in the second step, the constraints that reflect the Hidden Markov Model structure are imposed by solving a low dimensional non convex optimization problem. Numerical simulation results provide evidence that the proposed algorithm computes accurate reduced order Hidden Markov Models, while achieving a compression of the state space by orders of magnitude.
by Georgios Kotsalis.
Ph.D.
Kadhem, Safaa K. "Model fit diagnostics for hidden Markov models." Thesis, University of Plymouth, 2017. http://hdl.handle.net/10026.1/9966.
Full textBulla, Jan. "Application of Hidden Markov and Hidden Semi-Markov Models to Financial Time Series." Doctoral thesis, [S.l. : s.n.], 2006. http://swbplus.bsz-bw.de/bsz260867136inh.pdf.
Full textWynne-Jones, Michael. "Model building in neural networks with hidden Markov models." Thesis, University of Edinburgh, 1994. http://hdl.handle.net/1842/284.
Full textTillman, Måns. "On-Line Market Microstructure Prediction Using Hidden Markov Models." Thesis, KTH, Matematisk statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-208312.
Full textUnder de senaste decennierna har det gjorts stora framsteg inom finansiell teori för kapitalmarknader. Formuleringen av arbitrageteori medförde möjligheten att konsekvent kunna prissätta finansiella instrument. Men i en tid då högfrekvenshandel numera är standard, har omsättningen av information i pris börjat ske i allt snabbare takt. För att studera dessa fenomen; prispåverkan och informationsomsättning, har mikrostrukturteorin vuxit fram. I den här uppsatsen studerar vi mikrostruktur med hjälp av en dynamisk modell. Historiskt sett har mikrostrukturteorin fokuserat på statiska modeller men med hjälp av icke-linjära dolda Markovmodeller (HMM:er) utökar vi detta till den dynamiska domänen. HMM:er kommer med en naturlig uppdelning mellan observation och dynamik, och är utformade på ett sådant sätt att vi kan dra nytta av domänspecifik kunskap. Genom att formulera lämpliga nyckelantaganden baserade på traditionell mikrostrukturteori specificerar vi en modell—med endast ett fåtal parametrar—som klarar av att beskriva de välkända säsongsbeteenden som statiska modeller inte klarar av. Tack vare nya genombrott inom Monte Carlo-metoder finns det nu kraftfulla verktyg att tillgå för att utföra optimal filtrering med HMM:er i realtid. Vi applicerar ett så kallat bootstrap filter för att sekventiellt filtrera fram tillståndet för modellen och prediktera framtida tillstånd. Tillsammans med tekniken backward smoothing estimerar vi den posteriora simultana fördelningen för varje handelsdag. Denna används sedan för statistisk inlärning av våra hyperparametrar via en sekventiell Monte Carlo Expectation Maximization-algoritm. För att formulera en modell som beskriver omsättningen av information, väljer vi att utgå ifrån volume imbalance, som ofta används för att studera prispåverkan. Vi definierar den relaterade observerbara storheten scaled volume imbalance som syftar till att bibehålla kopplingen till prispåverkan men även går att modellera med en dynamisk process som passar in i ramverket för HMM:er. Vi visar även hur man inom detta ramverk kan utvärdera HMM:er i allmänhet, samt genomför denna analys för vår modell i synnerhet. Modellen testas mot finansiell handelsdata för både terminskontrakt och aktier och visar i bägge fall god predikteringsförmåga.
Hofer, Gregor Otto. "Speech-driven animation using multi-modal hidden Markov models." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/3786.
Full textMcKee, Bill Frederick. "Optimal hidden Markov models." Thesis, University of Plymouth, 1999. http://hdl.handle.net/10026.1/1698.
Full textChong, Fong Ho. "Frequency-stream-tying hidden Markov model /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202003%20CHONG.
Full textIncludes bibliographical references (leaves 119-123). Also available in electronic version. Access restricted to campus users.
Schimert, James. "A high order hidden Markov model /." Thesis, Connect to this title online; UW restricted, 1992. http://hdl.handle.net/1773/8939.
Full textBooks on the topic "Hiden Markov model"
Westhead, David R., and M. S. Vijayabaskar, eds. Hidden Markov Models. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6753-7.
Full textEric, Moulines, and Rydén Tobias 1966-, eds. Inference in hidden Markov models. New York: Springer, 2005.
Find full textCappe, Olivier. Inference in hidden Markov models. New York, NY: Springer, 2005.
Find full textHidden Markov models for bioinformatics. Dordrecht: Kluwer Academic Publishers, 2001.
Find full textElliott, Robert J., and Rogemar S. Mamon. Hidden Markov models in finance. New York: Springer, 2011.
Find full textKoski, Timo. Hidden Markov Models for Bioinformatics. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0612-5.
Full textMamon, Rogemar S., and Robert J. Elliott, eds. Hidden Markov Models in Finance. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/0-387-71163-5.
Full textCappé, Olivier, Eric Moulines, and Tobias Rydén. Inference in Hidden Markov Models. New York, NY: Springer New York, 2005. http://dx.doi.org/10.1007/0-387-28982-8.
Full textMamon, Rogemar S., and Robert J. Elliott, eds. Hidden Markov Models in Finance. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4899-7442-6.
Full textBouguila, Nizar, Wentao Fan, and Manar Amayri, eds. Hidden Markov Models and Applications. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99142-5.
Full textBook chapters on the topic "Hiden Markov model"
Awad, Mariette, and Rahul Khanna. "Hidden Markov Model." In Efficient Learning Machines, 81–104. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4302-5990-9_5.
Full textWu, Jun. "Hidden Markov model." In The Beauty of Mathematics in Computer Science, 43–51. Boca Raton, FL : Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781315169491-5.
Full textSucar, Luis Enrique. "Hidden Markov Models." In Probabilistic Graphical Models, 63–82. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6699-3_5.
Full textSucar, Luis Enrique. "Hidden Markov Models." In Probabilistic Graphical Models, 71–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61943-5_5.
Full textCoelho, João Paulo, Tatiana M. Pinho, and José Boaventura-Cunha. "Autoregressive Markov Models." In Hidden Markov Models, 207–43. Boca Raton, FL : CRC Press, 2019. | “A science publishers book.”: CRC Press, 2019. http://dx.doi.org/10.1201/9780429261046-5.
Full textCoelho, João Paulo, Tatiana M. Pinho, and José Boaventura-Cunha. "Discrete Hidden Markov Models." In Hidden Markov Models, 29–155. Boca Raton, FL : CRC Press, 2019. | “A science publishers book.”: CRC Press, 2019. http://dx.doi.org/10.1201/9780429261046-3.
Full textCoelho, João Paulo, Tatiana M. Pinho, and José Boaventura-Cunha. "Continuous Hidden Markov Models." In Hidden Markov Models, 157–205. Boca Raton, FL : CRC Press, 2019. | “A science publishers book.”: CRC Press, 2019. http://dx.doi.org/10.1201/9780429261046-4.
Full textFink, Gernot A. "Hidden Markov Models." In Markov Models for Pattern Recognition, 71–106. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6308-4_5.
Full textEphraim, Yariv. "Hidden Markov Models." In Encyclopedia of Operations Research and Management Science, 704–8. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4419-1153-7_417.
Full textHernando, Javier. "Hidden Markov Models." In Encyclopedia of Biometrics, 702–7. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-73003-5_195.
Full textConference papers on the topic "Hiden Markov model"
Farshchian, Maryam, and Majid Vafaei Jahan. "Stock market prediction with Hidden Markov Model." In 2015 International Congress on Technology, Communication and Knowledge (ICTCK). IEEE, 2015. http://dx.doi.org/10.1109/ictck.2015.7582714.
Full textSomani, Poonam, Shreyas Talele, and Suraj Sawant. "Stock market prediction using Hidden Markov Model." In 2014 IEEE 7th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, 2014. http://dx.doi.org/10.1109/itaic.2014.7065011.
Full textGupta, Aditya, and Bhuwan Dhingra. "Stock market prediction using Hidden Markov Models." In 2012 Students Conference on Engineering and Systems (SCES). IEEE, 2012. http://dx.doi.org/10.1109/sces.2012.6199099.
Full textGupta, Kriti. "Hidden Markov Model." In the International Conference & Workshop. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1980022.1980326.
Full textBen Ayed, Alaidine, and S. Selouani. "Market customers classification using Hidden Markov Models toolkit." In 2013 International Conference on Computer Applications Technology (ICCAT 2013). IEEE, 2013. http://dx.doi.org/10.1109/iccat.2013.6521974.
Full textDimoulkas, Ilias, Mikael Amelin, and Mohammad Reza Hesamzadeh. "Forecasting balancing market prices using Hidden Markov Models." In 2016 13th International Conference on the European Energy Market (EEM). IEEE, 2016. http://dx.doi.org/10.1109/eem.2016.7521229.
Full textKotsalis, Georgios, Alexandre Megretski, and Munther A. Dahleh. "A Model Reduction Algorithm for Hidden Markov Models." In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.377011.
Full textHassan, M. R., and B. Nath. "Stock market forecasting using hidden Markov model: a new approach." In 5th International Conference on Intelligent Systems Design and Applications (ISDA'05). IEEE, 2005. http://dx.doi.org/10.1109/isda.2005.85.
Full textRadenen, Mathieu, and Thierry Artieres. "Contextual Hidden Markov Models." In ICASSP 2012 - 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2012. http://dx.doi.org/10.1109/icassp.2012.6288328.
Full text"15 - Hidden Markov Models." In 2005 Microwave Electronics: Measurements, Identification, Applications. IEEE, 2005. http://dx.doi.org/10.1109/ssp.2005.1628684.
Full textReports on the topic "Hiden Markov model"
Ghahramani, Zoubin, and Michael I. Jordan. Factorial Hidden Markov Models. Fort Belvoir, VA: Defense Technical Information Center, January 1996. http://dx.doi.org/10.21236/ada307097.
Full textAinsleigh, Phillip L. Theory of Continuous-State Hidden Markov Models and Hidden Gauss-Markov Models. Fort Belvoir, VA: Defense Technical Information Center, March 2001. http://dx.doi.org/10.21236/ada415930.
Full textYang, Jie, and Yangsheng Xu. Hidden Markov Model for Gesture Recognition. Fort Belvoir, VA: Defense Technical Information Center, May 1994. http://dx.doi.org/10.21236/ada282845.
Full textThrun, Sebastian, and John Langford. Monte Carlo Hidden Markov Models. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada363714.
Full textHollis, Andrew, George Tompkins, Alyson Wilson, and Ralph Smith. Proliferation Monitoring with Hidden Markov Models. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1766975.
Full textDel Rose, Michael S., Philip Frederick, and Christian Wagner. Using Evidence Feed-Forward Hidden Markov Models. Fort Belvoir, VA: Defense Technical Information Center, May 2010. http://dx.doi.org/10.21236/ada543331.
Full textBalasubramanian, Vijay. Equivalence and Reduction of Hidden Markov Models. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada270762.
Full textChan, A. D., K. Englehart, B. Hudgins, and D. F. Lovely. Hidden Markov Model Classification of Myoelectric Signals in Speech. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada410037.
Full textBaggenstoss, Paul M. A Multi-Resolution Hidden Markov Model Using Class-Specific Features. Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada494596.
Full textDey, Subhrakanti, and Steven I. Marcus. A Framework for Mixed Estimation of Hidden Markov Models. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada438575.
Full text