Academic literature on the topic 'Hf isotopes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hf isotopes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hf isotopes"

1

RATH, ASWINI KUMAR, P. M. WALKER, C. R. PRAHARAJ, and F. R. XU. "K = 6+ ISOMERS IN Hf, Yb AND W NUCLEI." International Journal of Modern Physics E 15, no. 07 (October 2006): 1653–63. http://dx.doi.org/10.1142/s0218301306005186.

Full text
Abstract:
Using deformed Hartree-Fock and angular momentum projection (PHF) technique we try to understand the intrinsic structure and the systematics in the life times of K = 6+ isomers in the Hf isotopes (in 172-178 Hf nuclei) and N = 104 Yb , Hf and W isotones. The band structure in 172 Hf is reasonably well reproduced. The variation in the B ( E 2;2+ → 0+) values in the Hf isotopes as well as N = 104 isotones are well reproduced. The calculated K -forbidden E2 transition probabilities from the isomer bandheads to the 4+ yrast states qualitatively explain the variation of the lifetimes with N and Z .
APA, Harvard, Vancouver, ISO, and other styles
2

Viehmann, Sebastian. "Hf-Nd Isotopes in Archean Marine Chemical Sediments: Implications for the Geodynamical History of Early Earth and Its Impact on Earliest Marine Habitats." Geosciences 8, no. 7 (July 16, 2018): 263. http://dx.doi.org/10.3390/geosciences8070263.

Full text
Abstract:
The Hf-Nd isotope systems are coupled in magmatic systems, but incongruent Hf weathering (‘zircon effect’) of the continental crust leads to a decoupling of the Hf-Nd isotope systems in low-temperature environments during weathering and erosion processes. The Hf-Nd isotope record was recently dated back from the Cenozoic oceans until the Archean, showing that both isotope systems were already decoupled in seawater 2.7 Ga ago and potentially 3.4 Ga and 3.7 Ga ago. While there might have existed a hydrothermal pathway for Hf into Archean seawater, incongruent Hf weathering of more evolved, zircon-bearing uppermost continental crust that was emerged and available for subaerial weathering accounts for a significant decoupling of Hf-Nd isotopes in the dissolved (<0.2 µm) and suspended (>0.2 µm) fractions of Early Earth’s seawater. These findings contradict the consensus that uppermost Archean continental crust was (ultra)mafic in composition and predominantly submerged. Hence, Hf-Nd isotopes in Archean marine chemical sediments provide the unique potential for future research to trace the emergence of evolved continental crust, which in turn has major implications for the geodynamical evolution of Early Earth and the nutrient flux into the earliest marine habitats on Earth.
APA, Harvard, Vancouver, ISO, and other styles
3

Vezinet, Adrien, Emilie Thomassot, Yan Luo, Chiranjeeb Sarkar, and D. Graham Pearson. "Diachronous Redistribution of Hf and Nd Isotopes at the Crystal Scale—Consequences for the Isotopic Evolution of a Poly-Metamorphic Crustal Terrane." Geosciences 12, no. 1 (January 12, 2022): 36. http://dx.doi.org/10.3390/geosciences12010036.

Full text
Abstract:
In metamorphic rocks, mineral species react over a range of pressure–temperature conditions that do not necessarily overlap. Mineral equilibration can occur at varied points along the metamorphic pressure–temperature (PT) path, and thus at different times. The sole or dominant use of zircon isotopic compositions to constrain the evolution of metamorphic rocks might then inadvertently skew geological interpretations towards one aspect or one moment of a rock’s history. Here, we present in-situ U–Pb/Sm–Nd isotope analyses of the apatite crystals extracted from two meta-igneous rocks exposed in the Saglek Block (North Atlantic craton, Canada), an Archean metamorphic terrane, with the aim of examining the various signatures and events that they record. The data are combined with published U–Pb/Hf/O isotope compositions of zircon extracted from the same hand-specimens. We found an offset of nearly ca. 1.5 Gyr between U-Pb ages derived from the oldest zircon cores and apatite U–Pb/Sm–Nd isotopic ages, and an offset of ca. 200 Ma between the youngest zircon metamorphic overgrowths and apatite. These differences in metamorphic ages recorded by zircon and apatite mean that the redistribution of Hf isotopes (largely hosted in zircon) and Nd isotopes (largely hosted in apatite within these rocks), were not synchronous at the hand-specimen scale (≤~0.001 m3). We propose that the diachronous redistribution of Hf and Nd isotopes and their parent isotopes was caused by the different PT conditions of growth equilibration between zircon and apatite during metamorphism. These findings document the latest metamorphic evolution of the Saglek Block, highlighting the role played by intra-crustal reworking during the late-Archean regional metamorphic event.
APA, Harvard, Vancouver, ISO, and other styles
4

Gudelius, Dominik, Sonja Aulbach, Hans-Michael Seitz, and Roberto Braga. "Crustal fluids cause strong Lu-Hf fractionation and Hf-Nd-Li isotopic provinciality in the mantle of continental subduction zones." Geology 50, no. 2 (November 2, 2021): 163–68. http://dx.doi.org/10.1130/g49317.1.

Full text
Abstract:
Abstract Metasomatized mantle wedge peridotites exhumed within high-pressure terranes of continental collision zones provide unique insights into crust-mantle interaction and attendant mass transfer, which are critical to our understanding of terrestrial element cycles. Such peridotites occur in high-grade gneisses of the Ulten Zone in the European Alps and record metasomatism by crustal fluids at 330 Ma and high-pressure conditions (2.0 GPa, 850 °C) that caused a transition from coarse-grained, garnet-bearing to fine-grained, amphibole-rich rocks. We explored the effects of crustal fluids on canonically robust Lu-Hf peridotite isotope signatures in comparison with fluid-sensitive trace elements and Nd-Li isotopes. Notably, we found that a Lu-Hf pseudo-isochron is created by a decrease in bulk-rock 176Lu/177Hf from coarse- to fine-grained peridotite that is demonstrably caused by heavy rare earth element (HREE) loss during fluid-assisted, garnet-consuming, amphibole-forming reactions accompanied by enrichment in fluid-mobile elements and the addition of unradiogenic Nd. Despite close spatial relationships, some peridotite lenses record more intense fluid activity that causes complete garnet breakdown and high field strength element (HFSE) addition along with the addition of crust-derived unradiogenic Hf, as well as distinct chromatographic light REE (LREE) fractionation. We suggest that the observed geochemical and isotopic provinciality between peridotite lenses reflects different positions relative to the crustal fluid source at depth. This interpretation is supported by Li isotopes: inferred proximal peridotites show light δ7Li due to strong kinetic Li isotope fractionation (−4.7–2.0‰) that accompanies Li enrichment, whereas distal peridotites show Li contents and δ7Li similar to those of the depleted mantle (1.0–7.2‰). Thus, Earth's mantle can acquire significant Hf-Nd-Li-isotopic heterogeneity during locally variable ingress of crustal fluids in continental subduction zones.
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Hui, Yaoling Niu, Fang-Zhen Teng, and Shui-Jiong Wang. "Discrepancy between bulk-rock and zircon Hf isotopes accompanying Nd-Hf isotope decoupling." Geochimica et Cosmochimica Acta 259 (August 2019): 17–36. http://dx.doi.org/10.1016/j.gca.2019.05.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Du, Bin, Zian Yang, Lifei Yang, Qi Chen, Jiaxuan Zhu, Kangxing Shi, Gao Li, Lei Wang, and Jia Lu. "Zircon Hf-Isotopic Mapping Applied to the Metal Exploration of the Sanjiang Tethyan Orogenic Belt, Southwestern China." Applied Sciences 12, no. 8 (April 18, 2022): 4081. http://dx.doi.org/10.3390/app12084081.

Full text
Abstract:
Zircon Hf-isotopic mapping can be regarded as a useful tool for evaluating the coupling relationship between lithospheric structure and metallic mineralization. Hence, this method shows important significance for mineral prediction. To explore this potential, the published granite zircon Hf isotope data from the Sanjiang Tethyan Orogen were systematically compiled. This study uses the Kriging weighted interpolation in the Mapgis software system to contour Hf isotopes, revealing a relation between the crustal structure and metallogenesis. The mapping results suggest that the Changning–Menglian suture zone is the boundary between ancient and juvenile crust, viz., the western terranes have ancient crust attributes, whereas the eastern terranes exhibit the properties of new juvenile crust. In addition, this study also found that the mineralization and element types in the Sanjiang Tethyan Orogen have a coupling relationship with the crustal structure. The distribution of porphyry Cu-Mo-Au deposits is mainly controlled by the new juvenile crust, whereas the magmatic-hydrothermal Sn-W and porphyry Mo-W(-Cu) deposits are closely related to the reworked ancient crust. The results of zircon Hf isotope mapping prove that the formation and spatial distribution of deposits are related to the composition and properties of the crust. Hf isotope mapping can reveal the regional metallogenic rules and explore metallogenic prediction and metallogenic potential evaluation.
APA, Harvard, Vancouver, ISO, and other styles
7

Caracciolo, Vincenzo, Pierluigi Belli, Rita Bernabei, Fabio Cappella, Riccardo Cerulli, Antonella Incicchitti, Matthias Laubenstein, et al. "Investigation on Rare Nuclear Processes in Hf Nuclides." Radiation 2, no. 2 (May 31, 2022): 234–47. http://dx.doi.org/10.3390/radiation2020017.

Full text
Abstract:
In this work, a review of recent studies concerning rare nuclear processes in Hf isotopes is presented. In particular, the investigations using HP-Ge spectrometry and Hf-based crystal scintillators are focused; the potentiality and the results of the “source = detector” approach are underlined. In addition, a short introduction concerning the impact of such kind of research in the context of astroparticle and nuclear physics is pointed out. In particular, the study of α decay and double beta decay of 174Hf, 176Hf, 177Hf, 178Hf, 179Hf, 180Hf isotopes either to the ground state or to the lower bounded levels have been discussed. The observation of α decay of 174Hf isotope to the ground state with a T1/2=7.0(1.2)×1016 y is reported and discussed. No decay was detected for α decay of 174Hf isotope at the first excited level of daughter and of 176Hf, 177Hf, 178Hf, 179Hf, 180Hf isotopes either to the ground state or to the lower bounded levels. The T1/2 lower limits for these decays are at the level of 1016–1020 y. Nevertheless, the T1/2 lower limits for the transitions of 176Hf→172Yb (0+→0+) and 177Hf→173Yb (7/2−→5/2−) are near to the theoretical predictions, giving hope to their observation in the near future. All the other experimental limits (∼1016–1020 y) are absolutely far from the theoretical expectations. The experiments investigating the 2ϵ and ϵβ+ processes in 174Hf are also reported; the obtained half-life limits are set at the level of 1016–1018 y. Moreover, we estimate the T1/2 of 2ν2ϵ of 174Hf decay at the level of (0.3–6) × 1021 y (at now the related measured lower limit is 7.1×1016 y).
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Xiang, Yongjun Lu, Qiang Li, and Ruyue Li. "A Downgoing Indian Lithosphere Control on Along-Strike Variability of Porphyry Mineralization in the Gangdese Belt of Southern Tibet." Economic Geology 116, no. 1 (November 23, 2020): 29–46. http://dx.doi.org/10.5382/econgeo.4768.

Full text
Abstract:
Abstract The E-trending Gangdese porphyry copper belt in southern Tibet is a classic example of porphyry mineralization in a continental collision zone. New zircon U-Pb geochronological, zircon Hf-O, and bulk-rock Sr-Nd isotope data for the Miocene mineralizing intrusions from the Qulong, Zhunuo, Jiru, Chongjiang, and Lakange porphyry copper deposits and Eocene igneous rocks from the western Gangdese belt, together with literature data, show that both Paleocene-Eocene igneous rocks and Miocene granitoids exhibit coupled along-arc isotopic variations, characterized by bulk-rock ɛNd(t) and zircon ɛHf(t) values increasing from ~84° to ~92°E and then decreasing toward ~95°E. These are interpreted to reflect increasing contributions of subducted Indian continental materials from ~92° to ~84°E and from ~92° to ~95°E, respectively. The Miocene mineralizing intrusions were derived from subduction-modified Tibetan lower crust represented isotopically by the Paleocene-Eocene intrusions, with contributions from Indian plate-released fluids and mafic melts derived from mantle metasomatized by subducted Indian continental materials. Involvement of isotopically ancient Indian continental materials increased from east (Qulong) to west (Zhunuo), which is interpreted to reflect an increasingly shallower angle of the downgoing Indian slab from east to west, consistent with geophysical imaging. Exploration of Gangdese Miocene porphyry copper deposits should focus on the Paleocene-Eocene arc where the subarc mantle was mainly enriched by fluids from the subducted Neo-Tethyan oceanic slab. Neodymium-Hf isotope data for mineralizing igneous rocks from porphyry copper deposits globally show no obvious correlations with Cu endowment. Although Nd-Hf isotopes are useful for imaging lithospheric architecture through time, caution must be taken when using Nd-Hf isotopes to evaluate the potential endowment of porphyry copper deposits, because other factors such as tectonic setting, crustal thickening, magma differentiation, fluid exsolution, and ore-forming processes all play roles in determining Cu endowments and grades.
APA, Harvard, Vancouver, ISO, and other styles
9

Huang, Chao, Hao Wang, Jin-Hui Yang, Lie-Wen Xie, Yue-Heng Yang, and Shi-Tou Wu. "Further Characterization of the BB Zircon via SIMS and MC-ICP-MS for Li, O, and Hf Isotopic Compositions." Minerals 9, no. 12 (December 11, 2019): 774. http://dx.doi.org/10.3390/min9120774.

Full text
Abstract:
In this contribution, we report the results for the characterization of the BB zircon, a newly developed zircon reference material from Sri Lanka, via secondary ion mass spectrometry (SIMS) and multiple-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The focus of this work was to further investigate the applicability of the BB zircon as a reference material for micro-beam analysis, including Li, O, and Hf isotopes. The SIMS analyses reveal that BB zircon is characterized by significant localized variations in Li concentration and isotopic ratio, which makes it unsuitable as a lithium isotope reference material. The SIMS-determined δ18O values are 13.81‰ ± 0.39‰ (2SD, BB16) and 13.61‰ ± 0.40‰ (2SD, BB40), which, combined with previous studies, indicates that there is no evidence of conspicuous O isotope heterogeneity within individual BB zircon megacrysts. The mean 176Hf/177Hf ratio of BB16 determined by solution MC-ICP-MS is 0.281669 ± 0.000012 (2SD, n = 29) indistinguishable from results achieved by laser ablation (LA)-MC-ICP-MS. Based on the SIMS and MC-ICP-MS data, BB zircon is proposed as a reference material for the O isotope and Hf isotope determination.
APA, Harvard, Vancouver, ISO, and other styles
10

Sakhno, V. G., and L. S. Tsurikova. "Isotopic and geochemical features of the genesis of igneous complexes and ore-magmatic systems in the Chukotka sector of the Russian Arctic coast." LITHOSPHERE (Russia) 20, no. 2 (April 25, 2020): 196–211. http://dx.doi.org/10.24930/1681-9004-2020-20-2-196-211.

Full text
Abstract:
Research subject. The isotopic composition (Pb-Pb, Sm-Nd, Rb-Sr, Os/Os, Hf/Hf, 3 He/4 He, etc.) of magmatic complexes and ore-magmatic systems (OMS) of two ore clusters (Kupolsky and Ilirneysky) located in the subpolar Western Chukotka was studied. These ore clusters differ from each other both in their structural position and the age of their magmatic complexes, within which the largest deposits of Au-Ag type are known. Materials and methods. The Pb-Pb, Rb-Sr, SmNd, Re-Os, Lu-Hf, 3 He/4 He, 40Ar/36Ar and sulphur isotopic systems were studied at the VSEGEI centre for isotopic studies (St. Petersburg), as well as at the Institute of Geology, Geochemistry and Ore Deposits (IGEM, Moscow) and the Laboratory of Stable Isotopes of the Far Eastern Geological Institute (FEGI, Vladivostok). Re and Os were measured using an ELEMENT-2 inductively coupled plasma single-collector mass spectrometer. Sulphur isotopic ratios were measured using a Finnigan MAT 253 isotope mass spectrometer. Results and conclusions. On the basis of the isotope-geochemical data obtained, an assumption was made that various deep sources participated in the magma generation, and the differentiated composition of late melts may reflect the melting processes of the crust upper horizons. When comparing the data on the magmatism of the Ilirneysky and Kupolsky ore clusters, a different degree of crustal rock influence on melt generation was revealed. The Kupolsky ore cluster is characterised by a large influence of mantle sources in intraplate magmatism associated with ore formation processes. This is likely to have determined a greater amount of mineralisation in the Kupolsky cluster compared to the Ilirneysky ore cluster.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hf isotopes"

1

Chen, Tianyu [Verfasser]. "The geochemical cycling and paleoceanographic application of combined oceanic Nd-Hf isotopes / Tianyu Chen." Kiel : Universitätsbibliothek Kiel, 2013. http://d-nb.info/1044891807/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chu, Nan-Chin. "An investigation into Hf and Fe isotopes in ferromanganese deposits and their applications to paleoceanography." Thesis, University of Southampton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guitreau, Martin. "Les isotopes de l'hafnium dans les TTG et leurs zircons : témoins de la croissance des premiers continents." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00713096.

Full text
Abstract:
Ce travail de thèse présente des analyses isotopiques Lu-Hf par MC-ICP-MS combinées de zircons ignés et de roches totales d'une importante collection de granitoïdes archéens appartenant à la suite des Tonalite-Trondhjémite-Granodiorite (TTG) afin d'apporter un regard nouveau sur la croissance de la croûte continentale et tout particulièrement dans le début de l'histoire de la Terre. Nos données indiquent un bon accord général entre les zircons ignés, mesurés par ablation-laser et par solution, avec leurs roche-hôtes. Nous démontrons que le rapport Lu/Hf intégré dans le temps de la source mantellique des TTG est près de la valeur chondritique et n'a pas significativement changée au cours des 4 derniers milliards d'années. Par conséquent, les continents se sont formés à partir d'un matériel primitif non fractionné extrait du manteau profond par l'intermédiaire de panaches qui après fusion partielle ont laissés un résidu appauvri dans le manteau supérieur. Les cristaux de zircon extraits des TTG ont des compositions isotopiques en Hf cohérentes au sein d'une même population alors que le système U-Pb, dans les mêmes grains, est souvent perturbé résultant ainsi en l'obtention de valeurs d'εHf initial erronées. Ce problème est endémique aux cristaux de zircon détritiques archéens et en accord avec des résultats expérimentaux sur la mobilité préférentielle de l'Hf en fonction de celle de l'U et du Pb au sein du zircon. Nous suggérons que ce problème biaise l'enregistrement détritique archéen en faveur de valeurs d'εHf initial négatives qui contrastent avec les valeurs obtenues pour les TTG mais peuvent être expliquées par l'utilisation d'âges 207Pb/206Pb non-magmatiques. Si l'on considère les cristaux de zircon de Jack Hills au vu de ces résultats, la source des continents serait restée inchangée depuis 4,3 Ga.
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Huimin. "Li, Hf and Os Isotope Systematics of Azores Basalts and A New Microwave Digestion Method for Os Isotopic Analysis." Miami University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=miami1322847998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Salters, Vincent J. M. "The use of Hf-isotopes and high field strength elements to constrain magmatic processes and magma sources." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/58018.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1989.
Includes bibliographical references.
by Vincentius Johannes Maria Salters.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
6

Dausmann, Veit [Verfasser]. "Present and past changes in continental weathering and ocean circulation from radiogenic Nd, Hf and Pb isotopes / Veit Dausmann." Kiel : Universitätsbibliothek Kiel, 2018. http://d-nb.info/1153401193/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morisset, Caroline-Emmanuelle. "Origin of rutile-bearing ilmenite Fe-Ti deposits in Proterozoic anorthosite massifs of the Grenville Province." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2842.

Full text
Abstract:
The Saint-Urbain and Big Island rutile-bearing ilmenite Fe-Ti oxide deposits are located in the composite 450 km² Saint-Urbain anorthosite (1055-1046 Ma, U-Pb zircon) and in the Lac Allard intrusion (1057-1062 Ma, U-Pb zircon) of the 11,000 km² Havre-Saint Pierre anorthosite suite, respectively, in the Grenville Province of Eastern Canada. Slow cooling rates of 3-4°C/m.y. are estimated for both anorthosites, based on combined U-Pb zircon/rutile/apatite and ⁴⁰Ar/³⁹ Ar biotite/plagioclase geochronology, and resulted from emplacement during the active Ottawan Orogeny. Slow cooling facilitated (1) diffusion of Zr from ilmenite and rutile, producing thin (10-100 microns) zircon rims on these minerals, and (2) formation of sapphirine via sub-so lidus reactions of the type: spinel + orthopyroxene + rutile ± corundum → sapphirine + ilmenite. New chemical and analytical methods were developed to determine the trace element concentrations and Hf isotopic compositions of Ti-based oxides. Rutile is a magmatic phase in the deposits with minimum crystallization temperatures of 781°C to 1016°C, calculated by Zr-in rutile thermometry. Ilmenite present in rutile-free samples has higher Xhem (hematite proportion in ilmenite), higher high field strength element concentrations (Xhem = 30-17; Nb = 16.1-30.5 ppm; Ta 1.28-1.70 ppm), and crystallized at higher temperatures than ilmenite with more fractionated compositions (Xhem = 21-11; Nb = 1.36-3.11 ppm; Ta = <0.18 ppm) from rutile-bearing rocks. The oxide deposits formed by density segregation and accumulation at the bottom of magma reservoirs, in conditions closed to oxygen, from magmas enriched in Fe and Ti. The initial ¹⁷⁶Hf/¹⁷⁷ Hf of rutile and ilmenite (Saint Urbain [SU] = 0.28219-0.28227, Big Island [BI] = 0.28218-0.28222), and the initial Pb isotopic ratios (e.g.²⁰⁶Pb/²⁰⁴ Pb: SU = 17.134-17.164, BI = 17.012-17.036) and ⁸⁷Sr/⁸⁶ Sr (SU = 0.70399-0.70532, BI = 0.70412-0.70427) of plagioclase from the deposits overlap with the initial isotopic ratios of ilmenite and plagioclase from each host anorthosite, which indicates that they have common parent magmas and sources. The parent magmas were derived from a relatively depleted mantle reservoir that appears to be the primary source of all Grenvillian anorthosite massifs and existed for --600 m.y. along the margin of Laurentia during the Proterozoic.
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Chaohui, and 刘超辉. "Paleoproterozoic basins in the Trans-North China Orogen: stratigraphic sequences, U-PB ages and HF isotopes of detritalzircons and tectonic implications." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47163902.

Full text
Abstract:
The Trans-North China Orogen (TNCO) has been recognized as a continent-continent collisional belt along which the Eastern and Western Blocks amalgamated to form the North China Craton. However, controversy has surrounded the timing and tectonic processes involved in the collision between the two blocks, ranging from the westward-directed subduction with final collision at ~2.5 Ga, through the west-dipping subduction with two collisional events at ~2.1 Ga and ~1.85 Ga, to the eastward-directed subduction with final collision at ~1.85 Ga. This project aims to present detailed lithostratigraphic, geochronological and isotopic data for the low-grade supracrustal successions in the TNCO to examine current models and to establish a reasonable scenario for the tectonic evolution of the TNCO in the Paleoproterozoic. The low-grade supracrustal successions include the Hutuo and Yejishan Groups in the middle sector of the TNCO and the Songjiashan, Lower Zhongtiao, Upper Zhongtiao, Danshanshi and Songshan Groups in the southern sector. Lithostratigraphic data indicate that the Songjiashan, Lower Zhongtiao Groups and lower parts of the Hutuo and Yejishan Groups are composed of metaclastic rocks, carbonates and metavolcanic rocks, interpreted as back-arc basin deposits, whereas the Upper Zhongtiao, Danshanshi, Songshan Groups and the upper parts of the Hutuo and Yejishan Groups consist only of metaconglomerates and metasandstones, interpreted as foreland basin deposits. To constrain the provenance and maximum depositional ages for these low-grade supracrustal successions, the LA-MC-ICP-MS technique was applied to analyze U-Pb and Hf isotopic compositions for detrital zircons from them. For the Hutuo and Yejishan Groups, we found major age peaks at ~2.5 and ~2.2 Ga and minor amounts of 2.8-2.6 Ga detrital zircons, which are consistent with ages of the lithological units in the middle sector of the TNCO. On the other hand, for the Songjiashan, Lower Zhongtiao, Upper Zhongtiao, Danshanshi and Songshan Groups, detrital zircons from them have the major age population of 2.85-1.95 Ma and the minor age population of 3.6-3.1 Ga, of which the former is comparable with ages of the lithological units in the southern sector of the TNCO and the latter was derived from the Paleoarchean and Mesoarchean crust of the Eastern Block. The maximum depositional ages of the low-grade supracrustal successions have also been well constrained in this study. For the back-arc basin deposits, their maximum depositional ages were constrained between ~2.15 and ~2.10 Ga. For the foreland basin deposits, the presence of ~1.85 Ga detrital zircons indicates that they were deposited after this time. Taken together, we present a brief scenario for the evolution of the sedimentary basins in the TNCO. At 2.15-2.10 Ga, a series of back-arc basins developed behind an “Andean-type” arc that were subsequently incorporated into the TNCO during the collision of the Eastern and Western Blocks. At ~1.85 Ga, the two blocks collided along the TNCO, resulting in the crustal thickening followed by rapid exhumation/uplift, which shifted the back-arc basins to foreland basins. Such a shift in the late Paleoproterozoic supports the model that the collision between the Eastern and Western Blocks occurred at ~1.85 Ga.
published_or_final_version
Earth Sciences
Doctoral
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
9

Green, Michael Godfrey. "Early Archaean crustal evolution: evidence from ~3.5million year old greenstone successions in the Pilgangoora Belt, Pilbara Craton, Australia." University of Sydney. Geosciences, 2001. http://hdl.handle.net/2123/505.

Full text
Abstract:
In the Pilgangoora Belt of the Pilbara Craton, Australia, the 3517 Ma Coonterunah Group and 3484-3468 Ma Carlindi granitoids underlie the 3458 Ma Warrawoona Group beneath an erosional unconformity, thus providing evidence for ancient emergent continental crust. The basalts either side of the unconformity are remarkably similar, with N-MORB-normalised enrichment factors for LILE, Th, U and LREE greater than those for Ta, Nb, P, Zr, Ti, Y and M-HREE, and initial e(Nd, Hf) compositions which systematically vary with Sm/Nd, Nb/U and Nb/La ratios. Geological and geochemical evidence shows that the Warrawoona Group was erupted onto continental basement, and that these basalts assimilated small amounts of Carlindi granitoid. As the Coonterunah basalts have similar compositions, they probably formed likewise, although they were deposited >60 myr before. Indeed, such a model may be applicable to most other early Pilbara greenstone successions, and so an older continental basement was probably critical for early Pilbara evolution. The geochemical, geological and geophysical characteristics of the Pilbara greenstone successions can be best explained as flood basalt successions deposited onto thin, submerged continental basement. This magmatism was induced by thermal upwelling in the mantle, although the basalts themselves do not have compositions which reflect derivation from an anomalously hot mantle. The Carlindi granitoids probably formed by fusion of young garnet-hornblende-rich sialic crust induced by basaltic volcanism. Early Archaean rocks have Nd-Hf isotope compositions which indicate that the young mantle had differentiated into distinct isotopic domains before 4.0 Ga. Such ancient depletion was associated with an increase of mantle Nb/U ratios to modern values, and hence this event probably reflects the extraction of an amount of continental crust equivalent to its modern mass from the primitive mantle before 3.5 Ga. Thus, a steady-state model of crustal growth is favoured whereby post ~4.0 Ga continental additions have been balanced by recycling back into the mantle, with no net global flux of continental crust at modern subduction zones. It is also proposed that the decoupling of initial e(Nd) and e(Hf) from its typical covariant behaviour was related to the formation of continental crust, perhaps by widespread formation of TTG magmas.
APA, Harvard, Vancouver, ISO, and other styles
10

Pepper, Martin Bailey. "Magmatic History and Crustal Genesis of South America: Constraints from U-Pb Ages and Hf Isotopes of Detrital Zircons in Modern Rivers." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/347220.

Full text
Abstract:
South America provides an outstanding laboratory for studies of magmatism and crustal evolution because it contains older Archean-Paleoproterozoic cratons that amalgamated during Mesoproterozoic and Neoproterozoic supercontinent assembly, as well as a long history of Andean magmatism that records crustal growth and reworking in an accretionary orogen. We have attempted to reconstruct the growth and evolution of South America through U-Pb geochronology and Hf isotope analyses of detrital zircons from 59 samples of sand from modern rivers and shorelines. Results from 5,524 new U-Pb ages and 1,199 new Hf isotope determinations are reported. We have also integrated our data into a compilation of all previously published zircon geochronologic and Hf isotopic information, yielding a record that includes>42,000 ages and>1,600 Hf isotope analyses. These data yield five main conclusions: (1) South America has an age distribution that is similar to most other continents, presumably reflecting the supercontinent cycle, with maxima at 2.2-1.8 Ga, 1.6-0.9 Ga, 700-400 Ma, and 360-200 Ma; (2)<200 Ma magmatism along the western margin of South America has age maxima at 183 Ma (191-175 Ma), 151 Ma (159-143 Ma), 126 Ma (131-121 Ma), 109 Ma (114-105 Ma), 87 Ma (95-79 Ma), 62 Ma (71-53 Ma), 39 Ma (43-35 Ma), 19 Ma (23-15 Ma), and 6 Ma (10-2 Ma); (3) for the past 200 Ma, there appears to be a positive correlation between magmatism and the velocity of convergence between central South America and Pacific oceanic plates; (4) Hf isotopes record reworking of older crustal materials during most time periods, with incorporation of juvenile crustal materials at ~1.6-1.0 Ga, 500-400 Ma and ~200-100 Ma; and (5) the Hf isotopic signature of<200 Ma magmatism is apparently controlled by the generation of juvenile magmas during extensional tectonism and reworking of juvenile versus evolved crustal materials during crustal thickening and arc migration.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hf isotopes"

1

Smith, Patrick Edmund. U-Th-Pb geochronology of Archean rocks by the eastern superior province and application of initial Pb and Hf isotope ratios to greenstone belt evolution. 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hf isotopes"

1

Sukhoruchkin, S. I., and Z. N. Soroko. "Graphs for Isotopes of 72-Hf(Hafnium)." In Nuclei with Z = 55 - 100, 16138–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70609-0_7698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Su, Ben-Xun. "Zircon U–Pb Geochronlogy and Hf–O Isotopes." In Mafic-ultramafic Intrusions in Beishan and Eastern Tianshan at Southern CAOB: Petrogenesis, Mineralization and Tectonic Implication, 69–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54262-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Meiling. "Zircon U–Pb Geochronology and Hf Isotopes of Major Lithologies from the Jiaodong Terrane." In Ages, Geochemistry and Metamorphism of Neoarchean Basement in Shandong Province, 49–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45343-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Meiling. "Zircon U–Pb Geochronology and Hf Isotopes of Major Lithologies from the Yishui Terrane." In Ages, Geochemistry and Metamorphism of Neoarchean Basement in Shandong Province, 79–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45343-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Türkan, Nurettin, Hüseyin Erdem, Davut Olgun, İhsan Uluer, and Sait İnan. "The Investigation of Multipolarity of the Electromagnetic Transitions in Some Even-Even Hf Isotopes." In Structure and Dynamics of Elementary Matter, 669–71. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2705-5_61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vervoort, Jeff. "Lu-Hf Dating: The Lu-Hf Isotope System." In Encyclopedia of Scientific Dating Methods, 1–20. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6326-5_46-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vervoort, Jeff. "Lu-Hf Dating: The Lu-Hf Isotope System." In Encyclopedia of Scientific Dating Methods, 379–90. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6304-3_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kinny, Peter D., and Roland Maas. "12. Lu-Hf and Sm-Nd isotope systems in zircon." In Zircon, edited by John M. Hanchar and Paul W. O. Hoskin, 327–42. Berlin, Boston: De Gruyter, 2003. http://dx.doi.org/10.1515/9781501509322-015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Osipova, Tatyana A., Maria V. Zaitceva, and Sergei Votyakov. "U–Pb Age and Analysis of the Lu–Hf Isotope System of Zircon from Granitoids of the Final Phases of the Nepluyevsky Pluton (The Southern Urals)." In Springer Proceedings in Earth and Environmental Sciences, 153–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00925-0_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Savko, Konstantin A., Maria V. Zaitceva, Sergei Votyakov, and Sergey V. Tsybulyaev. "Hf Isotopic Composition of Zircons from the Granodiorites of the Talovsky Intrusion as the Evidence for the Juvenile Paleoproterozoic Crust of the Vorontsovsky Terrane, Eastern Sarmatia." In Springer Proceedings in Earth and Environmental Sciences, 215–20. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00925-0_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hf isotopes"

1

MA, WENCHAO. "TRIAXIAL SUPERDEFORMATION AND WOBBLING MODE IN LU-HF ISOTOPES." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702401_0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duggan, Brian Daniel. "HF-ND ISOTOPES OF EQUATORIAL PACIFIC OXYHYDROXIDE LEACHATES ACROSS THE EOT." In 65th Annual Southeastern GSA Section Meeting. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016se-273830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Elkins, Lynne J., Andrea Marzoli, Michael Bizimis, Sara Callegaro, Christine Meyzen, Nathan Sorsen, John C. Lassiter, and Marcia Ernesto. "MANTLE SOURCES FOR CENTRAL ATLANTIC MAGMATIC PROVINCE BASALTS FROM HF ISOTOPES." In 52nd Annual North-Central GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018nc-313144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wisshak, K. "Stellar Neutron Capture Cross Sections of the Lu and Hf Isotopes." In INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY. AIP, 2005. http://dx.doi.org/10.1063/1.1945247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tomson, J. K., and J. Amal Dev. "Crustal evolution of south Indian granulites: Insights from zircon Hf isotopes." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fisher, Chris, Jeffrey Vervoort, Ross Salerno, Da Wang, and Tony Kemp. "Early Earth decoupling of Hf-Nd isotopes: the accessory mineral perspective." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.7002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Jin-Hui, Ji-Heng Zhang, Jing-Yuan Chen, and Jin-Feng Sun. "Mesozoic Lithospheric Rejuvenation of South China: Evidence from Magmatic Zircon Hf-O Isotopes." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Doucelance, Régis, Claudine Israel, Maud Boyet, Pierre Bonnand, Matthew G. Jackson, and Jane Barling. "A Ce-Nd-Hf Isotopes Perspective on the EMI-Emii End-Members Distinction." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yakut, Hakan, Ali Kuliev, Ekber Guliyev, Ismail Boztosun, and A. B. Balantekin. "Investigations of the g[sub K]-factors in the [sup 175,177,179]Hf Isotopes." In NUCLEAR PHYSICS AND ASTROPHYSICS: Nuclear Physics and Astrophysics: From Stable Beams to Exotic Nuclei. AIP, 2008. http://dx.doi.org/10.1063/1.3039842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Basu, Asish R., and Puloma Chakrabarty. "U-PB AGES AND HF-ISOTOPES OF ZIRCONS IN ASH BEDS AND RE-OS ISOTOPES OF THE EAGLE FORD FORMATION OF SOUTH TEXAS." In 51st Annual GSA South-Central Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017sc-289602.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hf isotopes"

1

Manor, M. J., and S. J. Piercey. Whole-rock lithogeochemistry, Nd-Hf isotopes, and in situ zircon geochemistry of VMS-related felsic rocks, Finlayson Lake VMS district, Yukon. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328992.

Full text
Abstract:
The Finlayson Lake district in southeastern Yukon is composed of a Late Paleozoic arc-backarc system that consists of metamorphosed volcanic, plutonic, and sedimentary rocks of the Yukon-Tanana and Slide Mountain terranes. These rocks host &amp;gt;40 Mt of polymetallic resources in numerous occurrences and styles of volcanogenic massive sulphide (VMS) mineralization. Geochemical and isotopic data from these rocks support previous interpretations that volcanism and plutonism occurred in arc-marginal arc (e.g., Fire Lake formation) and continental back-arc basin environments (e.g., Kudz Ze Kayah formation, Wind Lake formation, and Wolverine Lake group) where felsic magmatism formed from varying mixtures of crust- and mantle-derived material. The rocks have elevated high field strength element (HFSE) and rare earth element (REE) concentrations, and evolved to chondritic isotopic signatures, in VMS-proximal stratigraphy relative to VMS-barren assemblages. These geochemical features reflect the petrogenetic conditions that generated felsic rocks and likely played a role in the localization of VMS mineralization in the district. Preliminary in situ zircon chemistry supports these arguments with Th/U and Hf isotopic fingerprinting, where it is interpreted that the VMS-bearing lithofacies formed via crustal melting and mixing with increased juvenile, mafic magmatism; rocks that were less prospective have predominantly crustal signatures. These observations are consistent with the formation of VMS-related felsic rocks by basaltic underplating, crustal melting, and basalt-crustal melt mixing within an extensional setting. This work offers a unique perspective on magmatic petrogenesis that underscores the importance of integrating whole-rock with mineral-scale geochemistry in the characterization of VMS-related stratigraphy.
APA, Harvard, Vancouver, ISO, and other styles
2

De Matheus Marques Dos Santos, Mariana, Cláudia Regina Passarelli, Miguel Angelo Stipp Basei, Antonio Roberto Saad, Paulo Roberto Dos Santos, and Oswaldo Siga Júnior. Zircon U Pb ages and Hf isotopes tracking the origin of Permian Paraná Basin ash fall layers: are they coming from Choiyoi formation? Peeref, October 2022. http://dx.doi.org/10.54985/peeref.2210p5895640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Piercey, S. J., and J. L. Pilote. Nd-Hf isotope geochemistry and lithogeochemistry of the Rambler Rhyolite, Ming VMS deposit, Baie Verte Peninsula, Newfoundland: evidence for slab melting and implications for VMS localization. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328988.

Full text
Abstract:
New high precision lithogeochemistry and Nd and Hf isotopic data were collected on felsic rocks of the Rambler Rhyolite formation from the Ming volcanogenic massive sulphide (VMS) deposit, Baie Verte Peninsula, Newfoundland. The Rambler Rhyolite formation consists of intermediate to felsic volcanic and volcaniclastic rocks with U-shaped primitive mantle normalized trace element patterns with negative Nb anomalies, light rare earth element-enrichment (high La/Sm), and distinctively positive Zr and Hf anomalies relative to surrounding middle rare earth elements (high Zr-Hf/Sm). The Rambler Rhyolite samples have epsilon-Ndt = -2.5 to -1.1 and epsilon-Hft = +3.6 to +6.6; depleted mantle model ages are TDM(Nd) = 1.3-1.5 Ga and TDM(Hf) = 0.9-1.1Ga. The decoupling of the Nd and Hf isotopic data is reflected in epsilon-Hft isotopic data that lies above the mantle array in epsilon-Ndt -epsilon-Hft space with positive ?epsilon-Hft values (+2.3 to +6.2). These Hf-Nd isotopic attributes, and high Zr-Hf/Sm and U-shaped trace element patterns, are consistent with these rocks having formed as slab melts, consistent with previous studies. The association of these slab melt rocks with Au-bearing VMS mineralization, and their FI-FII trace element signatures that are similar to rhyolites in Au-rich VMS deposits in other belts (e.g., Abitibi), suggests that assuming that FI-FII felsic rocks are less prospective is invalid and highlights the importance of having an integrated, full understanding of the tectono-magmatic history of a given belt before assigning whether or not it is prospective for VMS mineralization.
APA, Harvard, Vancouver, ISO, and other styles
4

Matte, S., M. Constantin, and R. Stevenson. Mineralogical and geochemical characterisation of the Kipawa syenite complex, Quebec: implications for rare-earth element deposits. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329212.

Full text
Abstract:
The Kipawa rare-earth element (REE) deposit is located in the Parautochton zone of the Grenville Province 55 km south of the boundary with the Superior Province. The deposit is part of the Kipawa syenite complex of peralkaline syenites, gneisses, and amphibolites that are intercalated with calc-silicate rocks and marbles overlain by a peralkaline gneissic granite. The REE deposit is principally composed of eudialyte, mosandrite and britholite, and less abundant minerals such as xenotime, monazite or euxenite. The Kipawa Complex outcrops as a series of thin, folded sheet imbricates located between regional metasediments, suggesting a regional tectonic control. Several hypotheses for the origin of the complex have been suggested: crustal contamination of mantle-derived magmas, crustal melting, fluid alteration, metamorphism, and hydrothermal activity. Our objective is to characterize the mineralogical, geochemical, and isotopic composition of the Kipawa complex in order to improve our understanding of the formation and the post-formation processes, and the age of the complex. The complex has been deformed and metamorphosed with evidence of melting-recrystallization textures among REE and Zr rich magmatic and post magmatic minerals. Major and trace element geochemistry obtained by ICP-MS suggest that syenites, granites and monzonite of the complex have within-plate A2 type anorogenic signatures, and our analyses indicate a strong crustal signature based on TIMS whole rock Nd isotopes. We have analyzed zircon grains by SEM, EPMA, ICP-MS and MC-ICP-MS coupled with laser ablation (Lu-Hf). Initial isotopic results also support a strong crustal signature. Taken together, these results suggest that alkaline magmas of the Kipawa complex/deposit could have formed by partial melting of the mantle followed by strong crustal contamination or by melting of metasomatized continental crust. These processes and origins strongly differ compare to most alkaline complexes in the world. Additional TIMS and LA-MC-ICP-MS analyses are planned to investigate whether all lithologies share the same strong crustal signature.
APA, Harvard, Vancouver, ISO, and other styles
5

Waltenberg, K., C. Curtis, A. Lem, and S. Bodorkos. . Isotopic Atlas of Australia: Lu-Hf and O isotope data structure and delivery. Version 1.0: North Australian Craton compilation. Geoscience Australia, 2021. http://dx.doi.org/10.11636/record.2021.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Peytcheva, Irena, Albrecht von Quadt, Lubomira Macheva, Krastina Kolcheva, and Stoyan Sarov. Relics of Devonian Oceanic Lithosphere in Byala Reka Dome, Eastern Rhodopes: Evidence from Zircon U‑Pb Dating and Hf‑isotope Tracing. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, December 2018. http://dx.doi.org/10.7546/crabs.2018.12.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Todd, Erin, Andrew Kylander-Clark, Alicja Wypych, Evan Twelker, and K. R. Sicard. U-Pb and Lu-Hf isotope, age, and trace-element data from zircons at four sites in the western Alaska Range and Talkeetna Mountains, Alaska. Alaska Division of Geological & Geophysical Surveys, April 2017. http://dx.doi.org/10.14509/29717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Todd, Erin, Alicja Wypych, and Andrew Kylander-Clark. U-Pb and Lu-Hf isotope, age, and trace element data from zircon separates from the Tanacross D-1, and parts of D-2, C-1, and C-2 quadrangles. Alaska Division of Geological & Geophysical Surveys, July 2019. http://dx.doi.org/10.14509/30198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography