Academic literature on the topic 'Heuristic processes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heuristic processes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heuristic processes"
Özcan, Ender, Mustafa Misir, Gabriela Ochoa, and Edmund K. Burke. "A Reinforcement Learning - Great-Deluge Hyper-Heuristic for Examination Timetabling." International Journal of Applied Metaheuristic Computing 1, no. 1 (January 2010): 39–59. http://dx.doi.org/10.4018/jamc.2010102603.
Full textCao, Qianning. "The Availability Heuristic." Communications in Humanities Research 27, no. 1 (March 1, 2024): 271–74. http://dx.doi.org/10.54254/2753-7064/27/20231715.
Full textCavarretta, Fabrice L. "On the hard problem of selecting bundles of rules: a conceptual exploration of heuristic emergence processes." Management Decision 59, no. 7 (May 10, 2021): 1598–616. http://dx.doi.org/10.1108/md-09-2019-1322.
Full textGragson, Ted L. "Heuristic Mapping of Frontier Processes." Field Methods 14, no. 4 (November 2002): 368–89. http://dx.doi.org/10.1177/152582202237726.
Full textGrodzinsky, Yosef, and Alexander Marek. "Algorithmic and heuristic processes revisited." Brain and Language 33, no. 2 (March 1988): 216–25. http://dx.doi.org/10.1016/0093-934x(88)90065-x.
Full textDu, Ruibo. "Availability Heuristic: An Overview and Applications." Highlights in Business, Economics and Management 1 (November 28, 2022): 153–59. http://dx.doi.org/10.54097/hbem.v1i.2548.
Full textWimsatt, William C. "Heuristics refound." Behavioral and Brain Sciences 23, no. 5 (October 2000): 766–67. http://dx.doi.org/10.1017/s0140525x00513442.
Full textWeis, Patrick P., and Eva Wiese. "Speed Considerations Can Be of Little Concern When Outsourcing Thought to External Devices." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 62, no. 1 (September 2018): 14–18. http://dx.doi.org/10.1177/1541931218621004.
Full textJasper, Fabian, and Tuulia M. Ortner. "The Tendency to Fall for Distracting Information While Making Judgments." European Journal of Psychological Assessment 30, no. 3 (January 1, 2014): 193–207. http://dx.doi.org/10.1027/1015-5759/a000214.
Full textKarakoyun, Gülen Önal, and Erol Asiltürk. "Analysis of Pre-Service Science Teachers’ Heuristic Reasoning Processes about Hydrogen Bonding." Journal of Science Learning 4, no. 1 (November 27, 2020): 50–60. http://dx.doi.org/10.17509/jsl.v4i1.23737.
Full textDissertations / Theses on the topic "Heuristic processes"
Liersch, Michael James. "Testing the boundary conditions of biases resulting from heuristic processes /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3266844.
Full textDummel, Sebastian [Verfasser], and Jan [Akademischer Betreuer] Rummel. "Cognitive Processes Underlying Heuristic Decision Making / Sebastian Dummel ; Betreuer: Jan Rummel." Heidelberg : Universitätsbibliothek Heidelberg, 2016. http://d-nb.info/1180615336/34.
Full textLu, Yufeng. "Scheduling of Wafer Test Processes in Semiconductor Manufacturing." Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/10153.
Full textMaster of Science
Lusena, Christopher. "Finite memory policies for partially observable Markov decision processes." Lexington, Ky. : [University of Kentucky Libraries], 2001. http://lib.uky.edu/ETD/ukycosc2001d00021/lusena01.pdf.
Full textTitle from document title page. Document formatted into pages; contains viii, 89 p. : ill. Includes abstract. Includes bibliographical references (p. 81-86).
Zambrano, Abad Julio Cesar. "Identification of nonlinear processes based on Wiener-Hammerstein models and heuristic optimization." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/171739.
Full text[CA] En molts camps de l'enginyeria els models matemàtics són utilitzats per a descriure el comportament dels sistemes, processos o fenòmens. Hui dia, existeixen diverses tècniques o mètodes que poden ser usades per a obtindre aquests models. A causa de la seua versatilitat i simplicitat, sovint es prefereixen els mètodes d'identificació de sistemes. En general, aquests mètodes requereixen la definició d'una estructura i l'estimació computacional dels paràmetres que la componen utilitzant un conjunt de procediments i mesuraments dels senyals d'entrada i eixida del sistema. En el context de la identificació de sistemes no lineals, un desafiament important és la selecció de l'estructura. En el cas que el sistema a identificar presente una no linealitat de tipus estàtic, els models orientats a blocs, poden ser útils per a definir adequadament una estructura. No obstant això, el dissenyador pot enfrontar-se a cert grau d'incertesa en seleccionar el model orientat a blocs adequat en concordança amb el sistema real. A més d'aquest inconvenient, s'ha de tindre en compte que l'estimació d'alguns models orientats a blocs no és senzilla, com és el cas dels models de Wiener-Hammerstein que consisteixen en un bloc NL enmig de dos subsistemes LTI. La presència de dos subsistemes LTI en els models de Wiener-Hammerstein és el que principalment dificulta la seua estimació. Generalment, el procediment d'identificació comença amb l'estimació de la dinàmica lineal, i el principal desafiament és dividir aquesta dinàmica entre els dos blocs LTI. En general, això implica una alta interacció de l'usuari per a desenvolupar diversos procediments, i el model final estimat depén principalment d'aquestes etapes prèvies. L'objectiu d'aquesta tesi és contribuir a la identificació dels models de Wiener-Hammerstein. Aquesta contribució es basa en la presentació de dos nous algorismes per a atendre aspectes específics que no han sigut adreçats en la identificació d'aquesta mena de models. El primer algorisme, denominat WH-EA (Algorisme Evolutiu per a la identificació de sistemes de Wiener-Hammerstein), permet estimar tots els paràmetres d'un model de Wiener-Hammerstein amb un sol procediment a partir d'un model dinàmic lineal. Amb WH-EA, una bona estimació no depén de procediments intermedis ja que l'algorisme evolutiu simultàniament busca la millor distribució de la dinàmica, afina la ubicació dels pols i els zeros i captura la no linealitat estàtica. Un altre avantatge important d'aquest algorisme és que sota consideracions específiques i utilitzant un senyal d'excitació adequada, és possible crear un enfocament unificat que permet també la identificació dels models de Wiener i Hammerstein, que són casos particulars del model de Wiener-Hammerstein quan un dels seus blocs LTI manca de dinàmica. L'interessant d'aquest enfocament unificat és que amb un mateix algorisme és possible identificar els models de Wiener, Hammerstein i Wiener-Hammerstein sense que l'usuari especifique per endavant el tipus d'estructura a identificar. El segon algorisme anomenat WH-MOEA (Algorisme evolutiu multi-objectiu per a la identificació de models de Wiener-Hammerstein), permet abordar el problema d'identificació com un Problema d'Optimització Multiobjectiu (MOOP). Sobre la base d'aquest algorisme es presenta un nou enfocament per a la identificació dels models de Wiener-Hammerstein considerant un compromís entre la precisió aconseguida i la complexitat del model. Amb aquest enfocament és possible comparar diversos models amb diferents prestacions incloent com un objectiu d'identificació el nombre de paràmetres que pot tindre el model estimat. L'aportació d'aquest enfocament se sustenta en el fet que en molts problemes d'enginyeria els requisits de disseny i les preferències de l'usuari no sempre apunten a la precisió del model com un únic objectiu, sinó que moltes vegades la complexitat és també un factor predominant en la presa de decisions.
[EN] In several engineering fields, mathematical models are used to describe the behaviour of systems, processes or phenomena. Nowadays, there are several techniques or methods for obtaining mathematical models. Because of their versatility and simplicity, system identification methods are often preferred. Generally, systems identification methods require defining a structure and estimating computationally the parameters that make it up, using a set of procedures y measurements of the system's input and output signals. In the context of nonlinear system identification, a significant challenge is the structure selection. In the case that the system to be identified presents a static type of nonlinearity, block-oriented models can be useful to define a suitable structure. However, the designer may face a certain degree of uncertainty when selecting the block-oriented model in accordance with the real system. In addition to this inconvenience, the estimation of some block-oriented models is not an easy task, as is the case with the Wiener-Hammerstein models consisting of a NL block in the middle of two LTI subsystems. The presence of two LTI subsystems in the Wiener-Hammerstein models is what mainly makes their estimation difficult. Generally, the identification procedure begins with the estimation of the linear dynamics, and the main challenge is to split this dynamic between the two LTI block. Usually, this implies a high user interaction to develop several procedures, and the final model estimated mostly depends on these previous stages. The aim of this thesis is to contribute to the identification of the Wiener-Hammerstein models. This contribution is based on the presentation of two new algorithms to address specific aspects that have not been addressed in the identification of this type of model. The first algorithm, called WH-EA (An Evolutionary Algorithm for Wiener-Hammerstein System Identification), allows estimating all the parameters of a Wiener-Hammerstein model with a single procedure from a linear dynamic model. With WH-EA, a good estimate does not depend on intermediate procedures since the evolutionary algorithm looks for the best dynamic division, while the locations of the poles and zeros are fine-tuned, and nonlinearity is captured simultaneously. Another significant advantage of this algorithm is that under specific considerations and using a suitable excitation signal; it is possible to create a unified approach that also allows the identification of Wiener and Hammerstein models which are particular cases of the Wiener-Hammerstein model when one of its LTI blocks lacks dynamics. What is interesting about this unified approach is that with the same algorithm, it is possible to identify Wiener, Hammerstein, and Wiener-Hammerstein models without the user specifying in advance the type of structure to be identified. The second algorithm called WH-MOEA (Multi-objective Evolutionary Algorithm for Wiener-Hammerstein identification), allows to address the identification problem as a Multi-Objective Optimisation Problem (MOOP). Based on this algorithm, a new approach for the identification of Wiener-Hammerstein models is presented considering a compromise between the accuracy achieved and the model complexity. With this approach, it is possible to compare several models with different performances, including as an identification target the number of parameters that the estimated model may have. The contribution of this approach is based on the fact that in many engineering problems the design requirements and user's preferences do not always point to the accuracy of the model as a single objective, but many times the complexity is also a predominant factor in decision-making.
Zambrano Abad, JC. (2021). Identification of nonlinear processes based on Wiener-Hammerstein models and heuristic optimization [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171739
TESIS
Dai, Peng. "FASTER DYNAMIC PROGRAMMING FOR MARKOV DECISION PROCESSES." UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_theses/428.
Full textArcher, Sandra. "Stochastic resource constrained project scheduling with stochastic task insertions problems." Orlando, Fla. : University of Central Florida, 2008. http://purl.fcla.edu/fcla/etd/CFE0002491.
Full textLiu, Xin. "Heuristic strategies for the single-item lot-sizing problem with convex variable production cost." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B3642917X.
Full textTai, Chia-Hung C. "A stochastic project scheduling problem with resource constraints /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9842569.
Full textLiu, Xin, and 劉忻. "Heuristic strategies for the single-item lot-sizing problem with convex variable production cost." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B3642917X.
Full textBooks on the topic "Heuristic processes"
Aldous, D. J. Probability approximations via the Poisson clumping heuristic. New York: Springer-Verlag, 1989.
Find full textKindl, Mark R. A stochastic approach to the weighted-region problem: 1. the design of the path annealing algorithm. Monterey, Calif: Naval Postgraduate School, 1991.
Find full textGigerenzer, Gerd. Simple heuristics that make us smart. New York: Oxford University Press, 1999.
Find full textCasas, Arturo. Procesos da historiografía literaria galega Para un debate crítico. Venice: Fondazione Università Ca’ Foscari, 2021. http://dx.doi.org/10.30687/978-88-6969-530-8.
Full textAldous, David. Probability Approximations via the Poisson Clumping Heuristic. Springer New York, 2010.
Find full textAldous, David. Probability Approximations Via the Poisson Clumping Heuristic. Springer London, Limited, 2013.
Find full textEvans, John Lebron. A heuristic procedure to evaluate investment decisions for flexible process equipment for electronic assembly: A dissertation. 1991.
Find full textKindt, Sara, Liesbet Goubert, Maarten Vansteenkiste, and Tine Vervoort. Chronic Pain and Interpersonal Processes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190627898.003.0007.
Full textGerken, Mikkel. The Psychology of Knowledge Ascriptions. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803454.003.0006.
Full textHandbook of Research on Applied Optimization Methodologies in Manufacturing Systems. IGI Global, 2017.
Find full textBook chapters on the topic "Heuristic processes"
Kolobov, Mausam, and Andrey Kolobov. "Heuristic Search Algorithms." In Planning with Markov Decision Processes, 59–82. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-01559-5_4.
Full textReijers, Hajo A. "Heuristic Workflow Redesign." In Design and Control of Workflow Processes, 207–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36615-6_6.
Full textBeugnon, Guy. "The Heuristic Value of Visual Spatial Orientation in Insects." In Cognitive Processes and Spatial Orientation in Animal and Man, 266–74. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3531-0_21.
Full textYang, Ziqi, Zhile Yang, Kang Li, Wasif Naeem, and Kailong Liu. "Heuristic Based Terminal Iterative Learning Control of ISBM Reheating Processes." In Communications in Computer and Information Science, 262–71. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6373-2_27.
Full textDas, N. C. "Bivariate Normal Distribution and Heuristic-Algorithm of BIVNOR for Generating Biquantile Pairs." In Decision Processes by Using Bivariate Normal Quantile Pairs, 61–90. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2364-1_4.
Full textCossins, Anne. "The Nature and Effects of Adversarialism: Sites of Activation for Heuristic Reasoning Processes." In Closing the Justice Gap for Adult and Child Sexual Assault, 245–75. London: Palgrave Macmillan UK, 2020. http://dx.doi.org/10.1057/978-1-137-32051-3_6.
Full textFountas, Nikolaos A., Ioannis Papantoniou, John Kechagias, Dimitrios E. Manolakos, and Nikolaos M. Vaxevanidis. "Implementation of Modern Meta-Heuristic Algorithms for Optimizing Machinability in Dry CNC Finish-Turning of AISI H13 Die Steel Under Annealed and Hardened States." In Evolutionary Optimization of Material Removal Processes, 45–59. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003258421-4.
Full textSutterlütti, Simon, and Stefan Meretz. "Seed Form Theory." In Make Capitalism History, 191–230. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-14645-9_7.
Full textSouza, Filipe, Diarmuid Grimes, and Barry O’Sullivan. "A Large Neighborhood Search Approach for the Data Centre Machine Reassignment Problem." In Communications in Computer and Information Science, 397–408. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26438-2_31.
Full textFernandes, Domingos. "Examining Effects of Heuristic Processes on the Problem-Solving Education of Preservice Mathematics Teachers." In Mathematical Problem Solving and New Information Technologies, 313–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-58142-7_22.
Full textConference papers on the topic "Heuristic processes"
Barhate, Yash, Daniel Casas-Orozco, Daniel J. Laky, Gintaras V. Reklaitis, and Zoltan K. Nagy. "Hybrid Rule-based and Optimization-driven Decision Framework for the Rapid Synthesis of End-to-End Optimal (E2EO) and Sustainable Pharmaceutical Manufacturing Flowsheets." In Foundations of Computer-Aided Process Design, 261–66. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.115998.
Full textAllen, R. Cory, Youngdae Kim, and Dimitri J. Papageorgiou. "A GRASP Heuristic for Solving an Acquisition Function Embedded in a Parallel Bayesian Optimization Framework." In Foundations of Computer-Aided Process Design, 237–44. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.173606.
Full textLynch, Hailey G., Aaron Bjarnason, Daniel J. Laky, Cameron J. Brown, and Alexander W. Dowling. "Optimizing Batch Crystallization with Model-based Design of Experiments." In Foundations of Computer-Aided Process Design, 308–15. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.152239.
Full textHorn, S., G. Weigert, and E. Beier. "Heuristic optimization strategies for scheduling of manufacturing processes." In 2006 29th International Spring Seminar on Electronics Technology. IEEE, 2006. http://dx.doi.org/10.1109/isse.2006.365142.
Full textEtemad, Shahab. "Heuristic view of NLO processes in conjugated polymers." In New York - DL tentative, edited by Daniel L. Akins and Robert R. Alfano. SPIE, 1992. http://dx.doi.org/10.1117/12.56705.
Full textEtemad, Shahab. "A heuristic view of NLO processes in conjugated polymers." In Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine. SPIE, 1992. http://dx.doi.org/10.1117/12.2322311.
Full textSendrescu, Dorin, Eugen Bobasu, and Dan Popescu. "Identification techniques based on heuristic optimization for propagation processes." In 2013 2nd International Conference on Systems and Computer Science (ICSCS). IEEE, 2013. http://dx.doi.org/10.1109/icconscs.2013.6632046.
Full textSarno, Riyanarto, Fitrianing Haryadita, Dwi Sunaryono, and Abdul Munif. "Model discovery of parallel business processes using modified Heuristic Miner." In 2015 International Conference on Science in Information Technology (ICSITech). IEEE, 2015. http://dx.doi.org/10.1109/icsitech.2015.7407772.
Full textGavrikov, Mikhail M., Anna Y. Mezentseva, and Roman M. Sinetsky. "Heuristic Techniques for Constructing Hidden Markov Models of Stochastic Processes." In 2023 International Russian Smart Industry Conference (SmartIndustryCon). IEEE, 2023. http://dx.doi.org/10.1109/smartindustrycon57312.2023.10110792.
Full textPatel, Himanshukumar Rajendrabhai. "Lévy Distribution Meta-Heuristic Fuzzy-Based Optimization Algorithm for Optimal Framework Design of Type-2 Fuzzy Controller: Subject to Perturbations." In International Electronic Conference on Processes. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024105029.
Full textReports on the topic "Heuristic processes"
Bobashev, Georgiy, John Holloway, Eric Solano, and Boris Gutkin. A Control Theory Model of Smoking. RTI Press, June 2017. http://dx.doi.org/10.3768/rtipress.2017.op.0040.1706.
Full textGaleano-Ramírez, Franky Juliano, Nicolás Martínez-Cortés, Carlos D. Rojas-Martínez, and Margaret Guerrero. Nowcasting Colombian Economic Activity: DFM and Factor-MIDAS approaches. Banco de la República, August 2021. http://dx.doi.org/10.32468/be.1168.
Full textYan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Full textRaychev, Nikolay. Can human thoughts be encoded, decoded and manipulated to achieve symbiosis of the brain and the machine. Web of Open Science, October 2020. http://dx.doi.org/10.37686/nsrl.v1i2.76.
Full textWillson. L51756 State of the Art Intelligent Control for Large Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 1996. http://dx.doi.org/10.55274/r0010423.
Full textEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak, and Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, July 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Full text