To see the other types of publications on this topic, follow the link: Hétérostructures Van der Waals.

Journal articles on the topic 'Hétérostructures Van der Waals'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hétérostructures Van der Waals.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Arunan, E. "van der Waals." Resonance 15, no. 7 (July 2010): 584–87. http://dx.doi.org/10.1007/s12045-010-0043-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Han, Jianing. "Two-Dimensional Six-Body van der Waals Interactions." Atoms 10, no. 1 (January 24, 2022): 12. http://dx.doi.org/10.3390/atoms10010012.

Full text
Abstract:
Van der Waals interactions, primarily attractive van der Waals interactions, have been studied over one and half centuries. However, repulsive van der Waals interactions are less widely studied than attractive van der Waals interactions. In this article, we focus on repulsive van der Waals interactions. Van der Waals interactions are dipole–dipole interactions. In this article, we study the van der Waals interactions between multiple dipoles. Specifically, we focus on two-dimensional six-body van der Waals interactions. This study has many potential applications. For example, the result may be applied to physics, chemistry, chemical engineering, and other fields of sciences and engineering, such as breaking molecules.
APA, Harvard, Vancouver, ISO, and other styles
3

Bernasek, Steven L. "Van der Waals rectifiers." Nature Nanotechnology 8, no. 2 (January 6, 2013): 80–81. http://dx.doi.org/10.1038/nnano.2012.242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Geim, A. K., and I. V. Grigorieva. "Van der Waals heterostructures." Nature 499, no. 7459 (July 2013): 419–25. http://dx.doi.org/10.1038/nature12385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Levitov, L. S. "Van Der Waals' Friction." Europhysics Letters (EPL) 8, no. 6 (March 15, 1989): 499–504. http://dx.doi.org/10.1209/0295-5075/8/6/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Capozziello, S., S. De Martino, and M. Falanga. "Van der Waals quintessence." Physics Letters A 299, no. 5-6 (July 2002): 494–98. http://dx.doi.org/10.1016/s0375-9601(02)00753-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bärwinkel, Klaus, and Jürgen Schnack. "van der Waals revisited." Physica A: Statistical Mechanics and its Applications 387, no. 18 (July 2008): 4581–88. http://dx.doi.org/10.1016/j.physa.2008.03.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Levelt Sengers, J. M. H., and J. V. Sengers. "van der Waals fund, van der Waals laboratory and Dutch high-pressure science." Physica A: Statistical Mechanics and its Applications 156, no. 1 (March 1989): 1–14. http://dx.doi.org/10.1016/0378-4371(89)90107-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Yan-Fei, Meng-Yuan Zhu, Rui-Jie Zhao, Xin-Jie Liu, Yun-Chi Zhao, Hong-Xiang Wei, Jing-Yan Zhang, et al. "The fabrication and physical properties of two-dimensional van der Waals heterostructures." Acta Physica Sinica 71, no. 4 (2022): 048502. http://dx.doi.org/10.7498/aps.71.20212033.

Full text
Abstract:
Two-dimensional van der Waals materials (2D materials for short) have developed into a novel material family that has attracted much attention, and thus the integration, performance and application of 2D van der Waals heterostructures has been one of the research hotspots in the field of condensed matter physics and materials science. The 2D van der Waals heterostructures provide a flexible and extensive platform for exploring diverse physical effects and novel physical phenomena, as well as for constructing novel spintronic devices. In this topical review article, starting with the transfer technology of 2D materials, we will introduce the construction, performance and application of 2D van der Waals heterostructures. Firstly, the preparation technology of 2D van der Waals heterostructures in detail will be presented according to the two classifications of wet transfer and dry transfer, including general equipment for transfer technology, the detailed steps of widely used transfer methods, a three-dimensional manipulating method for 2D materials, and hetero-interface cleaning methods. Then, we will introduce the performance and application of 2D van der Waals heterostructures, with a focus on 2D magnetic van der Waals heterostructures and their applications in the field of 2D van der Waals magnetic tunnel junctions and moiré superlattices. The development and optimization of 2D materials transfer technology will boost 2D van der Waals heterostructures to achieve breakthrough results in fundamental science research and practical application.
APA, Harvard, Vancouver, ISO, and other styles
10

Ao, Hong Rui, Ming Dong, Xi Chao Wang, and Hong Yuan Jiang. "Analysis of Pressure Distribution on Head Disk Air Bearing Slider Involved Van der Waals Force." Applied Mechanics and Materials 419 (October 2013): 111–16. http://dx.doi.org/10.4028/www.scientific.net/amm.419.111.

Full text
Abstract:
This paper focuses on the pressure distribution on the surface of slider in hard disk drive when its flying height is in nanoscale. The gas rarefaction effect and van der Waals force are involved in the analysis process. Here the air bearing force model is based on F-K model and we establish the equation of van der Waals force between the head and disk. Using the finite element method, the modified Reynolds equation and the van der Waals force were obtained. The air bearing force on slider before and after the van der Waals force involved were compared. The results illustrate that the effect of van der Waals force on the air bearing force is different according to the slider shapes and flying heights. As a result, van der Waals force plays an important role when the flying height of slider is below 10 nm.
APA, Harvard, Vancouver, ISO, and other styles
11

Linder, Bruno, and Robert A. Kromhout. "van der Waals induced dipoles." Journal of Chemical Physics 84, no. 5 (March 1986): 2753–60. http://dx.doi.org/10.1063/1.450299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Han, Xiaodong. "Ductile van der Waals materials." Science 369, no. 6503 (July 30, 2020): 509. http://dx.doi.org/10.1126/science.abd4527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wells, B. H., and S. Wilson. "van der Waals interaction potentials." Molecular Physics 66, no. 2 (February 10, 1989): 457–64. http://dx.doi.org/10.1080/00268978900100221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Holstein, Barry R. "The van der Waals interaction." American Journal of Physics 69, no. 4 (April 2001): 441–49. http://dx.doi.org/10.1119/1.1341251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lu, J. X., and W. H. Marlow. "Nonsingular van der Waals potentials." Physical Review A 52, no. 3 (September 1, 1995): 2141–54. http://dx.doi.org/10.1103/physreva.52.2141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wells, B. H., and S. Wilson. "van der Waals interaction potentials." Molecular Physics 55, no. 1 (May 1985): 199–210. http://dx.doi.org/10.1080/00268978500101271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wells, Bryan H., and Stephen Wilson. "van der Waals interaction potentials." Molecular Physics 54, no. 4 (March 1985): 787–98. http://dx.doi.org/10.1080/00268978500103161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wells, B. H., and S. Wilson. "van der Waals interaction potentials." Molecular Physics 57, no. 1 (January 1986): 21–32. http://dx.doi.org/10.1080/00268978600100021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wells, B. H., and S. Wilson. "van der Waals interaction potentials." Molecular Physics 57, no. 2 (February 10, 1986): 421–26. http://dx.doi.org/10.1080/00268978600100331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wells, B. H. "Van der Waals interaction potentials." Molecular Physics 61, no. 5 (August 10, 1987): 1283–93. http://dx.doi.org/10.1080/00268978700101791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wells, B. H., and S. Wilson. "van der Waals interaction potentials." Molecular Physics 65, no. 6 (December 20, 1988): 1363–76. http://dx.doi.org/10.1080/00268978800101851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Rajagopal, Aruna, David Kubizňák, and Robert B. Mann. "Van der Waals black hole." Physics Letters B 737 (October 2014): 277–79. http://dx.doi.org/10.1016/j.physletb.2014.08.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Han, Zhumin, Xinyuan Wei, Chen Xu, Chi-lun Chiang, Yanxing Zhang, Ruqian Wu, and W. Ho. "Imaging van der Waals Interactions." Journal of Physical Chemistry Letters 7, no. 24 (December 5, 2016): 5205–11. http://dx.doi.org/10.1021/acs.jpclett.6b02749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kiessling, M. K. H., and J. K. Percus. "Nonuniform van der Waals theory." Journal of Statistical Physics 78, no. 5-6 (March 1995): 1337–76. http://dx.doi.org/10.1007/bf02180135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Cole, Milton W., Darrell Velegol, Hye-Young Kim, and Amand A. Lucas. "Nanoscale van der Waals interactions." Molecular Simulation 35, no. 10-11 (August 14, 2009): 849–66. http://dx.doi.org/10.1080/08927020902929794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Magnasco, Valerio, Giuseppe Figari, and Camilla Costa. "Understanding van der Waals bonding." Journal of Molecular Structure: THEOCHEM 261 (July 1992): 237–53. http://dx.doi.org/10.1016/0166-1280(92)87078-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Feil, Sylvia. "Van der Waals: erstmals gemessen." Chemie in unserer Zeit 50, no. 5 (August 17, 2016): 303. http://dx.doi.org/10.1002/ciuz.201680049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Liu, Chang-Hua, Jiajiu Zheng, Shane Colburn, Taylor K. Fryett, Yueyang Chen, Xiaodong Xu, and Arka Majumdar. "Ultrathin van der Waals Metalenses." Nano Letters 18, no. 11 (October 8, 2018): 6961–66. http://dx.doi.org/10.1021/acs.nanolett.8b02875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kilian, H. G. "Filled van der Waals networks." Progress in Colloid & Polymer Science 75, no. 1 (December 1987): 213–30. http://dx.doi.org/10.1007/bf01188373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Avramenko, Andriy A., Igor V. Shevchuk, and Margarita M. Kovetskaya. "An Analytical Investigation of Natural Convection of a Van Der Waals Gas over a Vertical Plate." Fluids 6, no. 3 (March 15, 2021): 121. http://dx.doi.org/10.3390/fluids6030121.

Full text
Abstract:
The study focused on a theoretical study of natural convection in a van der Waals gas near a vertical plate. A novel simplified form of the van der Waals equation derived in the study enabled analytical modeling of fluid flow and heat transfer. Analytical solutions were obtained for the velocity and temperature profiles, as well as the Nusselt numbers. It was revealed that nonlinear effects considered by the van der Waals equation of state contribute to acceleration or deceleration of the flow. This caused respective enhancement or deterioration of heat transfer. Results for a van der Waals gas were compared with respective computations using an ideal gas model. Limits of the applicability of the simplified van der Waals equations were pinpointed.
APA, Harvard, Vancouver, ISO, and other styles
31

Zhang, Ya-ni, Zhuo-ying Song, Dun Qiao, Xiao-hui Li, Zhe Guang, Shao-peng Li, Li-bin Zhou, and Xiao-han Chen. "2D van der Waals materials for ultrafast pulsed fiber lasers: review and prospect." Nanotechnology 33, no. 8 (December 3, 2021): 082003. http://dx.doi.org/10.1088/1361-6528/ac3611.

Full text
Abstract:
Abstract 2D van der Waals materials are crystals composed of atomic layers, which have atomic thickness scale layers and rich distinct properties, including ultrafast optical response, surface effects, light-mater interaction, small size effects, quantum effects and macro quantum tunnel effects. With the exploration of saturable absorption characteristic of 2D van der Waals materials, a series of potential applications of 2D van der Waals materials as high threshold, broadband and fast response saturable absorbers (SAs) in ultrafast photonics have been proposed and confirmed. Herein, the photoelectric characteristics, nonlinear characteristic measurement technique of 2D van der Waals materials and the preparation technology of SAs are systematically described. Furthermore, the ultrafast pulsed fiber lasers based on classical 2D van der Waals materials including graphene, transition metal chalcogenides, topological insulators and black phosphorus have been fully summarized and analyzed. On this basis, opportunities and directions in this field, as well as the research results of ultrafast pulsed fiber lasers based on the latest 2D van der Waals materials (such as PbO, FePSe3, graphdiyne, bismuthene, Ag2S and MXene etc), are reviewed and summarized.
APA, Harvard, Vancouver, ISO, and other styles
32

Gonzalez, R. I., J. Mella, P. Díaz, S. Allende, E. E. Vogel, C. Cardenas, and F. Munoz. "Hematene: a 2D magnetic material in van der Waals or non-van der Waals heterostructures." 2D Materials 6, no. 4 (July 1, 2019): 045002. http://dx.doi.org/10.1088/2053-1583/ab2501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Motoc, I., G. R. Marshall, R. A. Dammkoehler, and J. Labanowski. "Molecular Shape Descriptors. 1. Three-Dimensional Molecular Shape Descriptor." Zeitschrift für Naturforschung A 40, no. 11 (November 1, 1985): 1108–13. http://dx.doi.org/10.1515/zna-1985-1106.

Full text
Abstract:
The paper presents and illustrates a method which uses numerical integration of the van der Waals envelope(s) to calculate with desired accuracy the molecular van der Waals volume and the three-dimensional molecular shape descriptor defined as the twin-number [OV(α, β); NOV(β, α), where OV and NOV represent the overlapping and, respectively, the nonoverlapping van der Waals volumes of the molecules α and ß superimposed according to appropriate criteria.
APA, Harvard, Vancouver, ISO, and other styles
34

Avramenko, A. A., I. V. Shevchuk, Yu Yu Kovetskaya, and N. P. Dmitrenko. "An Integral Method for Natural Convection of Van Der Waals Gases over a Vertical Plate." Energies 14, no. 15 (July 27, 2021): 4537. http://dx.doi.org/10.3390/en14154537.

Full text
Abstract:
This paper focuses on a study of natural convection in a van der Waals gas over a vertical heated plate. In this paper, for the first time, an approximate analytical solution of the problem was obtained using an integral method for momentum and energy equations. A novel simplified form of the van der Waals equation for real gases enabled estimating the effects of the dimensionless van der Waals parameters on the normalized heat transfer coefficients and Nusselt numbers in an analytical form. Trends in the variation of the Nusselt number depending on the nature of the interaction between gas molecules and the wall were analyzed. The results of computations for a van der Waals gas were compared with the results for an ideal gas.
APA, Harvard, Vancouver, ISO, and other styles
35

Zhao, Lu, Lijuan Zhang, Houfu Song, Hongda Du, Junqiao Wu, Feiyu Kang, and Bo Sun. "Incoherent phonon transport dominates heat conduction across van der Waals superlattices." Applied Physics Letters 121, no. 2 (July 11, 2022): 022201. http://dx.doi.org/10.1063/5.0096861.

Full text
Abstract:
Heat conduction mechanisms in superlattices could be different across different types of interfaces. Van der Waals superlattices are structures physically assembled through weak van der Waals interactions by design and may host properties beyond the traditional superlattices limited by lattice matching and processing compatibility, offering a different type of interface. In this work, natural van der Waals (SnS)1.17(NbS2)n superlattices are synthesized, and their thermal conductivities are measured by time-domain thermoreflectance as a function of interface density. Our results show that heat conduction of (SnS)1.17(NbS2)n superlattices is dominated by interface scattering when the coherent length of phonons is larger than the superlattice period, indicating that incoherent phonon transport dominates through-plane heat conduction in van der Waals superlattices even when the period is atomically thin and abrupt, in contrast to conventional superlattices. Our findings provide valuable insights into the understanding of the thermal behavior of van der Waals superlattices and devise approaches for effective thermal management of superlattices depending on the distinct types of interfaces.
APA, Harvard, Vancouver, ISO, and other styles
36

Apostol, M. "On the Van der Waals equation." Open Access Journal of Mathematical and Theoretical Physics 1, no. 5 (October 15, 2018): 215–17. http://dx.doi.org/10.15406/oajmtp.2018.01.00037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Quevedo, Hernando, María N. Quevedo, and Alberto Sánchez. "Geometrothermodynamics of van der Waals systems." Journal of Geometry and Physics 176 (June 2022): 104495. http://dx.doi.org/10.1016/j.geomphys.2022.104495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Housecroft, Catherine E. "Geckos, Ceilings and van der Waals." CHIMIA International Journal for Chemistry 72, no. 6 (June 27, 2018): 428–29. http://dx.doi.org/10.2533/chimia.2018.428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Tian, Shangjie, Jian-Feng Zhang, Chenghe Li, Tianping Ying, Shiyan Li, Xiao Zhang, Kai Liu, and Hechang Lei. "Ferromagnetic van der Waals Crystal VI3." Journal of the American Chemical Society 141, no. 13 (March 11, 2019): 5326–33. http://dx.doi.org/10.1021/jacs.8b13584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Xiang, Rong, Taiki Inoue, Yongjia Zheng, Akihito Kumamoto, Yang Qian, Yuta Sato, Ming Liu, et al. "One-dimensional van der Waals heterostructures." Science 367, no. 6477 (January 30, 2020): 537–42. http://dx.doi.org/10.1126/science.aaz2570.

Full text
Abstract:
We present the experimental synthesis of one-dimensional (1D) van der Waals heterostructures, a class of materials where different atomic layers are coaxially stacked. We demonstrate the growth of single-crystal layers of hexagonal boron nitride (BN) and molybdenum disulfide (MoS2) crystals on single-walled carbon nanotubes (SWCNTs). For the latter, larger-diameter nanotubes that overcome strain effect were more readily synthesized. We also report a 5-nanometer–diameter heterostructure consisting of an inner SWCNT, a middle three-layer BN nanotube, and an outer MoS2 nanotube. Electron diffraction verifies that all shells in the heterostructures are single crystals. This work suggests that all of the materials in the current 2D library could be rolled into their 1D counterparts and a plethora of function-designable 1D heterostructures could be realized.
APA, Harvard, Vancouver, ISO, and other styles
41

Jariwala, Deep, Tobin J. Marks, and Mark C. Hersam. "Mixed-dimensional van der Waals heterostructures." Nature Materials 16, no. 2 (August 1, 2016): 170–81. http://dx.doi.org/10.1038/nmat4703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wentzell, R. A. "Van der Waals stabilization of bubbles." Physical Review Letters 56, no. 7 (February 17, 1986): 732–33. http://dx.doi.org/10.1103/physrevlett.56.732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Manson, J. R., and R. H. Ritchie. "Corrections to van der Waals Forces." Physical Review Letters 57, no. 2 (July 14, 1986): 261. http://dx.doi.org/10.1103/physrevlett.57.261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ajayan, Pulickel, Philip Kim, and Kaustav Banerjee. "Two-dimensional van der Waals materials." Physics Today 69, no. 9 (September 2016): 38–44. http://dx.doi.org/10.1063/pt.3.3297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Yang, Ji-Hui, and Hongjun Xiang. "Van der Waals engineering of magnetism." Nature Materials 18, no. 12 (October 28, 2019): 1273–74. http://dx.doi.org/10.1038/s41563-019-0524-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Oukouiss, A., and A. Daanoun. "Nematic van der Waals Free-energy." Journal of Scientific Research 1, no. 3 (August 29, 2009): 409–21. http://dx.doi.org/10.3329/jsr.v1i3.2595.

Full text
Abstract:
We develop the calculation of free energy in a nematic phase for a model of spherical particles with the long-range anisotropic interaction from the van der Waals theory. We map the gas-liquid equilibrium, which is coupled to a first-order isotropic-nematic transition. We discus how the topology of the phase diagrams changes upon varying the strengths of the isotropic and nematic interactions.Keywords: Phase diagrams; Nematic interactions; Free energy; Transitions.© 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.DOI: 10.3329/jsr.v1i3.2595 J. Sci. Res. 1(3), 409-421 (2009)
APA, Harvard, Vancouver, ISO, and other styles
47

Tomaš, Marin-Slobodan. "Surface enhanced van der Waals force." Physica Scripta T135 (July 2009): 014020. http://dx.doi.org/10.1088/0031-8949/2009/t135/014020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Basov, D. N., M. M. Fogler, and F. J. Garcia de Abajo. "Polaritons in van der Waals materials." Science 354, no. 6309 (October 13, 2016): aag1992. http://dx.doi.org/10.1126/science.aag1992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sutter, Peter, Shawn Wimer, and Eli Sutter. "Chiral twisted van der Waals nanowires." Nature 570, no. 7761 (April 22, 2019): 354–57. http://dx.doi.org/10.1038/s41586-019-1147-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kushima, Akihiro, Xiaofeng Qian, Peng Zhao, Sulin Zhang, and Ju Li. "Ripplocations in van der Waals Layers." Nano Letters 15, no. 2 (January 14, 2015): 1302–8. http://dx.doi.org/10.1021/nl5045082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography