Dissertations / Theses on the topic 'Hétérostructures Van der Waals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Hétérostructures Van der Waals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Henck, Hugo. "Hétérostructures de van der Waals à base de Nitrure." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS319/document.
Full textThis thesis is at the interface between the study of nitride based compounds and the emerging structures formed by atomically thin bi-dimensional (2D) materials. This work consists in the study of the hybridization of the properties of large band gap materials from the nitride family and the mechanical, electronic and optical performances of layered materials, recently isolated at the monolayer level, highly considered due to their possible applications in electronics devices and fundamental research. In particular, a study of electronics and structural properties of stacked layered materials and 2D/3D interfaces have been realised with microscopic and spectroscopic means such as Raman, photoemission and absorption spectroscopy.This work is firstly focused on the structural and electronic properties of hexagonal boron nitride (h-BN), insulating layered material with exotic optical properties, essential in in the purpose of integrating these 2D materials with disclosed performances. Using graphene as an ideal substrate in order to enable the measure of insulating h-BN during photoemission experiments, a study of structural defects has been realized. Consequently, the first direct observation of multilayer h-BN band structure is presented in this manuscript. On the other hand, a different approach consisting on integrating bi-dimensional materials directly on functional bulk materials has been studied. This 2D/3D heterostructure composed of naturally N-doped molybdenum disulphide and intentionally P-doped gallium nitride using magnesium has been characterised. A charge transfer from GaN to MoS2 has been observed suggesting a fine-tuning of the electronic properties of such structure by the choice of materials.In this work present the full band alignment diagrams of the studied structure allowing a better understanding of these emerging systems
Nayak, Goutham. "Amélioration des propriétés physiques de matériaux de basse-dimensionnalité par couplage dans des hétérostructures Van der Waals." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY084/document.
Full textThe extraordinary intrinsic properties of low dimensional materials depend highly on the environment they are subjected to. Hence they need to be prepared, processed and characterized without defects. In this thesis, I discuss about how to control the environment of low dimensional nanomaterials such as graphene, MoS2 and carbon nanotubes to preserve their intrinsic physical properties. Novel solutions for property enhancements are discussed in depth. In the first part, we fabricate state-of-the-art, edge-contacted, graphene Van der Waals(VdW) heterostructuredevices encapsulated in hexagonal-boron nitride(hBN), to obtain ballistic transport. We use a technique based on 1/f-noise measurements to probe bulk and edge transport during integer and fractional Quantum Hall regimes. In the second part, the same fabrication concept of VdW heterostructures has been extended to encapsulate monolayer MoS2 in hBN to improve optical properties. In this regard we present an extensive study about the origin and characterization of intrinsic and extrinsic defects and their affect on optical properties. Further, we describe a technique to probe the interlayer coupling along with the generation of light with spatialresolution below the diffraction limit of light. Finally, we discuss a natural systemic process to enhance the mechanical properties of natural polymer silk using HipCO-made single walled carbon nanotubes as a food for silkworm
Lorchat, Étienne. "Optical spectroscopy of heterostructures based on atomically-thin semiconductors." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAE035.
Full textDuring this thesis, we have fabricated and studied by optical spectroscopy, van der Waals heterostructures composed of semiconductor monolayers (transition metal dichalcogenides, TMD) coupled to a graphene monolayer or to a plasmonic resonator. We have observed significant changes in the dynamics of the TMD optically excited states (excitons) when it is in direct contact with graphene. Graphene neutralizes the TMD monolayer and enables non-radiative transfer of excitons within less than a few picoseconds. This energy transfer process may be accompanied by a considerably less efficient, extrinsic photodoping. The reduced lifetime of TMD excitons in the presence of graphene has been exploited to show that their valley pseudo-spin maintains a high degree of polarization and coherence up to room temperature. Finally, by strongly coupling TMD excitons to the modes of a geometric phase plasmonic resonator, we have demonstrated, at room temperature, that the momentum of the resulting chiral polaritons (chiralitons) is locked to their valley pseudo-spin
Froehlicher, Guillaume. "Optical spectroscopy of two-dimensional materials : graphene, transition metal dichalcogenides and van der Waals heterostructures." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE033/document.
Full textIn this project, we have used micro-Raman and micro-photoluminescence spectroscopy to study two-dimensional materials (graphene and transition metal dichalcogenides) and van der Waals heterostructures. First, using electrochemically-gated graphene transistors, we show that Raman spectroscopy is an extremely sensitive tool for advanced characteri-zations of graphene samples. Then, we investigate the evolution of the physical properties of N-layer semiconducting transition metal dichalcogenides, in particular molybdenum ditelluride (MoTe2) and molybdenum diselenide (MoSe2). In these layered structures, theDavydov splitting of zone-center optical phonons is observed and remarkably well described by a ‘textbook’ force constant model. We then describe an all-optical study of interlayer charge and energy transfer in van der Waals heterostructures made of graphene and MoSe2 monolayers. This work sheds light on the very rich photophysics of these atomically thin two-dimensional materials and on their potential in view of optoelectronic applications
Di, Felice Daniela. "Electronic structure and transport in the graphene/MoS₂ heterostructure for the conception of a field effect transistor." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS267/document.
Full textThe isolation of graphene, a single stable layer of graphite, composed by a plane of carbon atoms, demonstrated the possibility to separate a single layer of atomic thickness, called bidimensional (2D) material, from the van der Waals (vdW) solids. Thanks to their stability, 2D materials can be used to form vdW heterostructures, a vertical stack of different 2D crystals maintained together by the vdW forces. In principle, due to the weakness of the vdW interaction, each layer keeps its own global electronic properties. Using a theoretical and computational approach based on the Density Functional Theory (DFT) and Keldish-Green formalism, we have studied graphene/MoS₂ heterostructure. In this work, we are interested in the specific electronic properties of graphene and MoS₂ for the conception of field effect transistor: the high mobility of graphene as a basis for high performance transistor and the gap of MoS₂ able to switch the device. First, the graphene/MoS₂ interface is electronically characterized by analyzing the effects of different orientations between the layers on the electronic properties. We demonstrated that the global electronic properties as bandstructure and Density of State (DOS) are not affected by the orientation, whereas, by mean of Scanning Tunneling Microscope (STM) images, we found that different orientations leads to different local DOS. In the second part, graphene/MoS₂ is used as a very simple and efficient model for Field Effect Transistor. The role of the vdW heterostructure in the transistor operation is analyzed by stacking additional and alternate graphene and MoS₂ layers on the simple graphene/MoS₂ interface. We demonstrated that the shape of the DOS at the gap band edge is the fundamental parameter in the switch velocity of the transistor, whereas the additional layers do not improve the transistor behavior, because of the independence of the interfaces in the vdW heterostructures. However, this demonstrates the possibility to study, in the framework of DFT, the transport properties of more complex vdW heterostructures, separating the single interfaces and reducing drastically the calculation time. The 2D materials are also studied in the role of a tip for STM and Atomic Force Microscopy (AFM). A graphene-like tip, tested on defected MoS₂, is compared with a standard copper tip, and it is found to provide atomic resolution in STM images. In addition, due to vdW interaction with the sample, this tip avoids the contact effect responsible for the transfer of atoms between the tip and the sample. Furthermore, the analysis of defects can be very useful since they induce new peaks in the gap of MoS₂: hence, they can be used to get a peak of current representing an interesting perspective to improve the transistor operation
Ben, Jabra Zouhour. "Study of new heterostructures : silicene on graphene." Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0583.
Full textThe topic of this thesis deals with the study of the growth and properties of silicene (Si-ene) on graphene (Gr) on 6H-SiC(0001) with the final goal of forming free-standing (FS) Si-ene on an insulating or semiconductor substrate. I have described the substrate as a function of the CVD processing conditions. When the proportion of H2 is low it is possible to obtain homogeneous Gr on buffer layer (BL) on SiC. The STM and LEED show the superposition of the Gr mesh and the BL reconstruction representative of the epitaxial Gr. When the proportion of H2 is high, the resulting Gr layer is fully hydrogenated. This is a new result as no hydrogen intercalation process has been able to fully hydrogenate (6x6)Gr samples epitaxial on BL until now. For intermediate proportions of H2/Ar, the coexistence of (6x6)Gr and H-Gr is observed. Depending on the proportion of H2 in the gas mixture, either the SiC surface remains passivated during the entire Gr growth and H-Gr is obtained, or the H2 partially or totally desorbs and either both structures coexist or full plate (6x6)Gr is obtained. I have studied the MBE growth of Si-ene on (6x6)Gr. I have shown that it is possible to form Si-ene puddles for deposit thicknesses <0.5MC. We observe the presence of flat areas of 0.2-0.3nm thickness corresponding to a Si-ene monolayer, surrounded by 3D dendritic islands of Si. The Raman spectra show a peak up to 563cm-1 which is the closest value to Si-ene FS ever obtained. This demonstrates the formation of quasi-FS Si-ene. This work contributes to a better understanding of the CVD growth mechanism of Gr and to the advancement of research in the field of epitaxial growth of 2D materials
Marcon, Paul. "Calcul ab-initio des propriétés physiques d'hétérostructures associant des matériaux ferromagnétiques à anisotropie magnétique perpendiculaire et des dichalcogénures de métaux de transition." Electronic Thesis or Diss., Toulouse 3, 2023. http://www.theses.fr/2023TOU30273.
Full textThe ability to synthesize heterostructures made up of 2D materials provides significant opportunities for improving current spintronic components or developing new devices. Thus, the control and deep understanding of the physical properties of these systems become a critical technological challenge. During this thesis, we examined heterostructures composed of transition metal dichalcogenide (TMDC) monolayers and ferromagnetic crystals exhibiting perpendicular magnetic anisotropy, using ab initio calculations based on density functional theory (DFT). We focus on three main goals: (i) understanding how to use magnetic proximity to lift valley degeneracy and quantify the valley Zeeman effect; (ii) assessing the possibility of injecting spin-polarized electron gas into specific valleys of the TMDC sheet; (iii) investigating the impact of proximity on spin-orbit coupling in the TMDC sheet and on the Rashba and Dresselhaus phenomena in these systems. We first studied multilayers with an electrode made up of a metal and a non-2D insulating barrier. In the Fe/MgO/MoS2 system, we computed that a spontaneous electron transfer occurs from the Fe layer to the MoS2 monolayer, leading to the formation of a non-spin-polarized electron gas. We established a model explaining the competition between Rashba and Dresselhaus-type spin-orbit effects and magnetic proximity effect on the MoS2 valence bands: This model allowed us to show that proximity effect predominate for thin MgO (<0.42 nm) and tend to disappear in favor of spin-orbit effects for thicker layers (> 1.06 nm). We predicted that stronger spin-orbit effects can be achieved by replacing the Fe electrode with a non-magnetic V electrode. To boost the magnetic proximity effects, we finally decided to study [Co1Ni2]n/h-BN/WSe2 heterostructures, in which [Co1Ni2]n is a superlattice with perpendicular magnetic anisotropy, and h-BN is a two-dimensional insulator. For this system, we predict that it could be possible to have a spin polarization of the valleys at the K and K' points. Ultimately, we explored the unique properties of the van der Waals heterostructure Graphene/CrI3/WSe2, where the magnetic electrode is also replaced by 2D materials
Mouafo, Notemgnou Louis Donald. "Two dimensional materials, nanoparticles and their heterostructures for nanoelectronics and spintronics." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAE002/document.
Full textThis thesis investigates the charge and spin transport processes in 0D, 2D nanostructures and 2D-0D Van der Waals heterostructures (VdWh). The La0.67Sr0.33MnO3 perovskite nanocrystals reveal exceptional magnetoresistances (MR) at low temperature driven by their paramagnetic shell magnetization independently of their ferromagnetic core. A detailed study of MoSe2 field effect transistors enables to elucidate a complete map of the charge injection mechanisms at the metal/MoSe2 interface. An alternative approach is reported for fabricating 2D-0D VdWh suitable for single electron electronics involving the growth of self-assembled Al nanoclusters over the graphene and MoS2 surfaces. The transparency the 2D materials to the vertical electric field enables efficient modulation of the electric state of the supported Al clusters resulting to single electron logic functionalities. The devices consisting of graphene exhibit MR attributed to the magneto-Coulomb effect
Bezzi, Luca. "Materiali 2D van der Waals." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textBoddison-Chouinard, Justin. "Fabricating van der Waals Heterostructures." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38511.
Full textTiller, Andrew R. "Spectra of Van der Waals complexes." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333415.
Full textMauro, Diego. "Electronic properties of Van der Waals heterostructures." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10565/.
Full textKlein, Andreas. "Energietransferprozesse in matrixisolierten van-der-Waals-Komplexen." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=962344761.
Full textOdeyemi, Tinuade A. "Numerical Modelling of van der Waals Fluids." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22661.
Full textMarsden, Alexander J. "Van der Waals epitaxy in graphene heterostructures." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/77193/.
Full textConnelly, James Patrick. "Microwave studies of Van der Waals complexes." Thesis, University of Oxford, 1993. http://ora.ox.ac.uk/objects/uuid:3865eb1d-d288-44c9-8d42-84f7ff2c0608.
Full textWright, Nicholas J. "Bound states of Van der Waals trimers." Thesis, Durham University, 1998. http://etheses.dur.ac.uk/5048/.
Full textBryan, Robert. "Theoretical studies of Van der Waals clusters." Thesis, Durham University, 1997. http://etheses.dur.ac.uk/4712/.
Full textTulegenov, Akyl S. "SIMPER method for van der Waals complexes." Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431329.
Full textMcDowell, Sean Alistair Courtney. "Theoretical studies of Van der Waals molecules." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259733.
Full textLe, Sueur Catherine Ruth. "Induction effects in Van der Waals complexes." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385523.
Full textWillberg, Dean Michael Zewail Ahmed H. "Picosecond spectroscopy of van der Waals clusters /." Diss., Pasadena, Calif. : California Institute of Technology, 1994. http://resolver.caltech.edu/CaltechETD:etd-04042008-110156.
Full textColumberg, Gieri. "Mikrowellen-Spektroskopie T-förmiger Van der Waals Komplexe /." [S.l.] : [s.n.], 1996. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=11636.
Full textCoy, Diaz Horacio. "Preparation and Characterization of Van der Waals Heterostructures." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6212.
Full textLawrence, Stuart John. "High-resolution spectroscopy of van der Waals molecules." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318824.
Full textKettley, J. C. "Van der Waals complexes of large aromatic molecules." Thesis, University of Nottingham, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371128.
Full textAlthorpe, Stuart C. "Bound state calculations for van der Waals dimers." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319937.
Full textMa, Qiong Ph D. Massachusetts Institute of Technology. "Optoelectronics of graphene-based Van der Waals heterostructures." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104523.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Research on van der Waals (vdW) materials (homo- or hetero-) is a rapidly emerging field in condensed matter physics. They are layered structures with strong chemical bonding within layers and relatively weak van der Waals force to combine layers together. This unique layer-bylayer nature makes it easy to exfoliate layers out and at the same time to re-assemble in arbitrary sequences with different combinations. The versatility, flexibility, and relatively low cost of production make the scientific community enthusiastic about their future. In this thesis, I investigate the fundamental physical processes of light-matter interactions in these layered structures, including graphene, boron nitride, transition metal dichalcogenides and heterostructures formed from these materials. My research involves state-of-the-art nanoscale fabrication and microscale photocurrent spectroscopy and imaging. In Chapter 1, 1 will briefly discuss basic physical properties of the vdW materials involved in this thesis and introduce the main nanofabrication and measurement techniques. Chapter 2-4 are about hot electron dynamics and electron-phonon coupling in intrinsic graphene systems, among which Chapter 2 is focusing on the generation mechanism of the photocurrent at the p-n interface, which is demonstrated to have a photothermoelectric origin. This indicates a weak electron-phonon coupling strength in graphene. Chapter 3 is a direct experimental follow-up of the work in Chapter 2 and reveals the dominant electron-phonon coupling mechanism at different temperature and doping regimes. In Chapter 4, I present the observation of anomalous geometric photocurrent patterns in various devices at the charge neutral point. The spatial pattern can be understood as a local photo-generated current near edges being collected by remote electrodes. The anomalous behavior as functions of change density and temperature indicates an interesting regime of energy and charge dynamics. In Chapter 5 and 6, 1 will show the photoresponse of graphene-BN heterostuctures. In graphene-BN stack directly on SiO₂, we observed strong photo-induced doping phenomenon, which can be understood as charge transfer from graphene across BN and eventually trapped at the interface between BN and SiO₂. By inserting another layer of graphene between BN and SiO₂ , we can measure an electrical current after photoexcitation due to such charge transfer. We further studied the competition between this vertical charge transfer and in-plane carrier-carrier scattering in different regimes. In Chapter 7, I will briefly summarize collaborated work with Prof. Dimitri Basov's group on near-field imaging of surface polariton in two-dimensional materials. This technique provides a complementary tool to examine the intriguing light-matter interaction (for large momentum excitations) in low-dimensional materials. Chapter 8 is the outlook, from my own point of view, what more can be done following this thesis.
by Qiong Ma.
Ph. D.
Waage, Magnus Heskestad. "Radiative corrections to van der Waals interaction in fluids." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18872.
Full textDelRio, Frank William. "Van der Waals and capillary adhesion in microelectromechanical systems." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3239374.
Full textPeet, Andrew Charles. "Vibrational predissociation of Van der Waals complexes containing ethylene." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329168.
Full textHowson, Joanna M. M. "Obtaining potential energy surfaces of Van der Waals molecules." Thesis, Durham University, 1999. http://etheses.dur.ac.uk/4488/.
Full textSanz-Garcia, Aranzazu. "Modelling the dispersion energy for Van der Waals complexes." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252013.
Full textMusgrave, Adam. "Electronic spectroscopy of Van der Waals clusters and complexes." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445684.
Full textKhestanova, Ekaterina. "Van der Waals heterostructures : fabrication, mechanical and electronic properties." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/van-der-waals-heterostructures-fabrication-mechanical-and-electronic-properties(047ce24b-7a58-4192-845d-54c7506f179f).html.
Full textSchofield, Robert Christopher. "Raman studies of 2-dimensional van der Waals materials." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/21313/.
Full textDavid, Lamuel Abraham. "Van der Waals sheets for rechargeable metal-ion batteries." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/32796.
Full textDepartment of Mechanical and Nuclear Engineering
Gurpreet Singh
The inevitable depletion of fossil fuels and related environmental issues has led to exploration of alternative energy sources and storage technologies. Among various energy storage technologies, rechargeable metal-ion batteries (MIB) are at the forefront. One dominant factor affecting the performance of MIB is the choice of electrode material. This thesis reports synthesis of paper like electrodes composed for three representative layered materials (van der Waals sheets) namely reduced graphene oxide (rGO), molybdenum disulfide (MoS₂) and hexagonal boron nitride (BN) and their use as a flexible negative electrode for Li and Na-ion batteries. Additionally, layered or sandwiched structures of vdW sheets with precursor-derived ceramics (PDCs) were explored as high C-rate electrode materials. Electrochemical performance of rGO paper electrodes depended upon its reduction temperature, with maximum Li charge capacity of 325 mAh.g⁻¹ observed for specimen annealed at 900°C. However, a sharp decline in Na charge capacity was noted for rGO annealed above 500 °C. More importantly, annealing of GO in NH₃ at 500 °C showed negligible cyclability for Na-ions while there was improvement in electrode's Li-ion cycling performance. This is due to increased level of ordering in graphene sheets and decreased interlayer spacing with increasing annealing temperatures in Ar or reduction at moderate temperatures in NH₃. Further enhancement in rGO electrodes was achieved by interfacing exfoliated MoS₂ with rGO in 8:2 wt. ratios. Such papers showed good Na cycling ability with charge capacity of approx. 225.mAh.g⁻¹ and coulombic efficiency reaching 99%. Composite paper electrode of rGO and silicon oxycarbide SiOC (a type of PDC) was tested as high power-high energy anode material. Owing to this unique structure, the SiOC/rGO composite electrode exhibited stable Li-ion charge capacity of 543.mAh.g⁻¹ at 2400 mA.g⁻¹ with nearly 100% average cycling efficiency. Further, mechanical characterization of composite papers revealed difference in fracture mechanism between rGO and 60SiOC composite freestanding paper. This work demonstrates the first high power density silicon based PDC/rGO composite with high cyclic stability. Composite paper electrodes of exfoliated MoS₂ sheets and silicon carbonitride (another type of PDC material) were prepared by chemical interfacing of MoS₂ with polysilazane followed by pyrolysis . Microscopic and spectroscopic techniques confirmed ceramization of polymer to ceramic phase on surfaces on MoS₂. The electrode showed classical three-phase behavior characteristics of a conversion reaction. Excellent C-rate performance and Li capacity of 530 mAh.g⁻¹ which is approximately 3 times higher than bulk MoS₂ was observed. Composite papers of BN sheets with SiCN (SiCN/BN) showed improved electrical conductivity, high-temperature oxidation resistance (at 1000 °C), and high electrochemical activity (~517 mAh g⁻¹ at 100 mA g⁻¹) toward Li-ions generally not observed in SiCN or B-doped SiCN. Chemical characterization of the composite suggests increased free-carbon content in the SiCN phase, which may have exceeded the percolation limit, leading to the improved conductivity and Li-reversible capacity. The novel approach to synthesis of van der Waals sheets and its PDC composites along with battery cyclic performance testing offers a starting point to further explore the cyclic performance of other van der Waals sheets functionalized with various other PDC chemistries.
Gée, Christelle. "Reactions chimiques isolees sur agregats de van der waals." Paris 11, 1997. http://www.theses.fr/1997PA112092.
Full textYu, Geliang. "Transport properties of graphene based van der Waals heterostructures." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/transport-properties-of-graphene-based-van-der-waals-heterostructures(5cbb782f-4d49-42da-a05e-15b26606e263).html.
Full textGani, Yohanes Satrio. "Electronic Properties of Two-Dimensional Van Der Waals Systems." W&M ScholarWorks, 2019. https://scholarworks.wm.edu/etd/1563899012.
Full textTomarken, Spencer Louis. "Thermodynamic and tunneling measurements of van der Waals heterostructures." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123567.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 201-212).
In certain electronic systems, strong Coulomb interactions between electrons can favor novel electronic phases that are difficult to anticipate theoretically. Accessing fundamental quantities such as the density of states in these platforms is crucial to their analysis. In this thesis, I explore the application of two measurement techniques towards this goal: capacitance measurements that probe the thermodynamic ground state of an electronic system and planar tunneling measurements that access its quasiparticle excitation spectrum. Both techniques were applied to van der Waals materials, a class of crystals composed of layered atomic sheets with weak interplane bonding which permits the isolation of single and few-layer sheets that can be manually assembled into heterostructures. Capacitance measurements were performed on a material system commonly known as magic-angle twisted bilayer graphene (MATBG).
When two monolayers of graphene, a single sheet of graphite, are stacked on top of one another with a relative twist between their crystal axes, the resultant band structure is substantially modified from the cases of both monolayer graphene and Bernal-stacked (non-twisted) bilayer graphene. At certain magic angles, the low energy bands become extremely flat, quenching the electronic kinetic energy and allowing strong electron-electron interactions to become relevant. Exotic insulating and superconducting phases have been observed using conventional transport measurements. By accessing the thermodynamic density of states of MATBG, we estimate its low energy bandwidth, Fermi velocity, and interaction-driven energy gaps. Time-domain planar tunneling was performed on a heterostructure that consisted of monolayer graphene and hexagonal boron nitride (serving as the dielectric and tunnel barrier) sandwiched between a graphite tunneling probe and metal gate.
Tunneling currents were induced by applying a sudden voltage pulse across the full parallel plate structure. The lack of in-plane charge motion allowed access to the tunneling density of states even when the heterostructure was electrically insulating in the quantum Hall regime. These measurements represent the first application of time-domain planar tunneling to the van der Waals class of materials, an important step in extending the technique to new material platforms.
by Spencer Louis Tomarken.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
Scheele, Iris. "Hochauflösende Infrarot-Spektroskopie an schwach gebundenen Van-der-Waals-Systemen." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963558668.
Full textQuayle, Christopher John Kendrick. "Alignment effects in the photodissociation of van der Waals molecules." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357431.
Full textLuo, Yuanhong Ph D. Massachusetts Institute of Technology. "Twist angle physics in graphene based van der Waals heterostructures." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119050.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged student-submitted from PDF version of thesis.
Includes bibliographical references (pages 121-131).
In this thesis, I present my experimental work on twisted bilayer graphene, a van der Waals heterostructure consisting of two graphene sheets stack on top of each other. In particular, the twist angle is a new degree of freedom in this system, and has an important effect in the determination of its transport properties. The work presented will explore the twist-dependent physics in two regimes: the large twist angle and small twist angle regimes. In the large-twist angle limit, the two sheets have little interlayer interactions and are strongly decoupled, allowing us to put independent quantum Hall edge modes in both layers. We study the edge state interactions in this system, culminating in the formation of a quantum spin Hall state in twisted bilayer graphene. In the small twist angle limit, interlayer interactions are strong and the layers are strongly hybridized. Additionally, a new long-range moiré phenomenon emerges, and we study the effects of the interplay between moiré physics and interlayer interactions on its transport properties.
by Yuanhong Luo.
Ph. D.
Yankowitz, Matthew Abraham. "Local Probe Spectroscopy of Two-Dimensional van der Waals Heterostructures." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/594649.
Full textMatope, Stephen. "Application of Van-der-Waals forces in micro-material handling." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71608.
Full textThis doctoral dissertation focuses on the application of Van-der-Waals’ forces in micromaterial handling. A micro-material handling system consists of four main elements, which include: the micro-gripper, the micro-workpart, the picking up position and the placement position. The scientific theoretical frameworks of Van-der-Waals’ forces, presented by Van der Waals, Hamaker, London, Lifshitz, Israelachvilli, Parsegian, Rumpf and Rabinovich, are employed in exploring the extent to which these forces could be applied in a micromanufacturing situation. Engineering theoretical frameworks presented by Fearing, Bohringer, Sitti, Feddema, Arai and Fukuda, are employed in order to provide an in-depth synthesis of the application of Van-der-Waals’ forces in micro-material handling. An empirical or pragmatic methodology was adopted in the research. The Electron Beam Evaporation (e-beam) method was used in generating interactive surfaces of uniform surface roughness values. E-beam depositions of copper, aluminum and silver on silicon substrates were developed. The deposition rates were in the range of 0.6 – 1.2 Angstrom/s, at an average vacuum pressure of 2 x 10-6 mbar. The topographies were analysed and characterised using an Atomic Force Microscope and the corresponding rms surface roughness values were obtained. The Rumpf-Rabinovich equation, which gives the relationship of the exerted Van-der-Waals’ forces and the rms surface roughness values, is used to numerically model the results. In the final synthesis it is observed that the e-beam depositions of copper are generally suited for the pick-up position. Aluminum is suited for the micro-gripper and silver is suited for the placement position in an optimised micro-material handling system. Another Atomic Force Microscope was used in order to validate the numerically modelled results of the exerted Van- der-Waals’ forces. The aim was to measure the magnitude of Vander- Waals’ forces exerted by the e-beam depositions and to evaluate their applicability in micro-material handling operations. The measurements proved that Van-der-Waals’ forces exerted by the samples could be used for micro-material handling purposes on condition that they exceeded the weight of the micro-part being handled. Three fundamental parameters, ie: material type, geometrical configuration and surface topography were used to develop strategies of manipulation of micro-materials by Van-der- Waals’ forces. The first strategy was based on the material type variation of the interactive surfaces in a micro-material handling operation. This strategy hinged on the fact that materials have different Hamaker coefficients, which resulted in them experiencing a specific Van-der- Waals’ forces’ intensity during handling. The second strategy utilised variation in the geometrical configuration of the interacting surfaces. The guiding principle in this case was that, the larger the contact area was, the greater the exerted Van-der-Waals’ forces would be In the analytical modelling of Van-der-Waals’ forces with reference to geometrical configuration, a flat surface was found to exert more force than other configurations. The application of the design, for purposes of manufacturing and assembling (DFMA) criteria, also proved that flat interactive surfaces have high design efficiency. The third strategy was based on surface roughness. The rougher the topography of a given surface was, the lesser the Van-der-Waals’ forces exerted were. It was synthesised that in order for a pick-transfer-place cycle to be realised, the root-mean-square (rms) interactive surface roughness values of the micro-part (including the picking position, the micro-gripper, and the placement position) should decrease successively. Hybrid strategies were also identified in this research in order to deal with some complex cases. The hybrids combined at least two of the aforementioned strategies.
Economides, George. "Investigations of open-shell open-shell Van der Waals complexes." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e27330e0-2eaa-4181-af30-70e8b7a3a692.
Full textDhont, Guillaume. "Spectroscopie Renner-Teller dans des complexes van der Waals chargés." Université de Marne-la-Vallée, 2003. http://www.theses.fr/2003MARN0175.
Full textBENSLIMANE, MOHAMED. "Collisions agregats de van der waals surface aux energies thermiques." Palaiseau, Ecole polytechnique, 1995. http://www.theses.fr/1995EPXX0041.
Full textSchwarz, Stefan. "Microcavity-enhanced light-matter interaction in van der Waals heterostructures." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/12278/.
Full text