Dissertations / Theses on the topic 'Heterogeneous neural networks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 39 dissertations / theses for your research on the topic 'Heterogeneous neural networks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Belanche, Muñoz Lluís A. (Lluís Antoni). "Heterogeneous neural networks: theory and applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2000. http://hdl.handle.net/10803/6660.
Full textLa similitud proporciona una marc conceptual i serveix de cobertura unificadora de molts models neuronals de la literatura i d'exploració de noves instàncies de models de neurona.
La visió basada en similitud porta amb naturalitat a integrar informació heterogènia, com ara quantitats contínues i discretes (nominals i ordinals), i difuses ó imprecises. Els valors perduts es tracten de manera explícita.
Una neurona d'aquesta classe s'anomena neurona heterogènia i qualsevol arquitectura neuronal que en faci ús serà una Xarxa Neuronal Heterogènia.
En aquest treball ens concentrem en xarxes neuronals endavant, com focus inicial d'estudi. Els algorismes d'aprenentatge són basats en algorisms evolutius, especialment extesos per treballar amb informació heterogènia.
En aquesta tesi es descriu com una certa classe de neurones heterogènies porten a xarxes neuronals que mostren un rendiment molt satisfactori, comparable o superior al de xarxes neuronals tradicionals (com el perceptró multicapa ó la xarxa de base radial), molt especialment en presència d'informació heterogènia, usual en les bases de dades actuals.
This work presents a class of functions serving as generalized neuron models to be used in artificial neural networks. They are cast into the common framework of computing a similarity function, a flexible definition of a neuron as a pattern recognizer. The similarity endows the model with a clear conceptual view and serves as a unification cover for many of the existing neural models, including those classically used for the MultiLayer Perceptron (MLP) and most of those used in Radial Basis Function Networks (RBF). These families of models are conceptually unified and their relation is clarified.
The possibilities of deriving new instances are explored and several neuron models --representative of their families-- are proposed.
The similarity view naturally leads to further extensions of the models to handle heterogeneous information, that is to say, information coming from sources radically different in character, including continuous and discrete (ordinal) numerical quantities, nominal (categorical) quantities, and fuzzy quantities. Missing data are also explicitly considered. A neuron of this class is called an heterogeneous neuron and any neural structure making use of them is an Heterogeneous Neural Network (HNN), regardless of the specific architecture or learning algorithm. Among them, in this work we concentrate on feed-forward networks, as the initial focus of study. The learning procedures may include a great variety of techniques, basically divided in derivative-based methods (such as the conjugate gradient)and evolutionary ones (such as variants of genetic algorithms).
In this Thesis we also explore a number of directions towards the construction of better neuron models --within an integrant envelope-- more adapted to the problems they are meant to solve.
It is described how a certain generic class of heterogeneous models leads to a satisfactory performance, comparable, and often better, to that of classical neural models, especially in the presence of heterogeneous information, imprecise or incomplete data, in a wide range of domains, most of them corresponding to real-world problems.
Belanche, Muñoz Lluis. "Heterogeneous neural networks: theory and applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2000. http://hdl.handle.net/10803/6660.
Full textThis work presents a class of functions serving as generalized neuron models to be used in artificial neural networks. They are cast into the common framework of computing a similarity function, a flexible definition of a neuron as a pattern recognizer. The similarity endows the model with a clear conceptual view and serves as a unification cover for many of the existing neural models, including those classically used for the MultiLayer Perceptron (MLP) and most of those used in Radial Basis Function Networks (RBF). These families of models are conceptually unified and their relation is clarified. The possibilities of deriving new instances are explored and several neuron models --representative of their families-- are proposed. The similarity view naturally leads to further extensions of the models to handle heterogeneous information, that is to say, information coming from sources radically different in character, including continuous and discrete (ordinal) numerical quantities, nominal (categorical) quantities, and fuzzy quantities. Missing data are also explicitly considered. A neuron of this class is called an heterogeneous neuron and any neural structure making use of them is an Heterogeneous Neural Network (HNN), regardless of the specific architecture or learning algorithm. Among them, in this work we concentrate on feed-forward networks, as the initial focus of study. The learning procedures may include a great variety of techniques, basically divided in derivative-based methods (such as the conjugate gradient)and evolutionary ones (such as variants of genetic algorithms).In this Thesis we also explore a number of directions towards the construction of better neuron models --within an integrant envelope-- more adapted to the problems they are meant to solve.It is described how a certain generic class of heterogeneous models leads to a satisfactory performance, comparable, and often better, to that of classical neural models, especially in the presence of heterogeneous information, imprecise or incomplete data, in a wide range of domains, most of them corresponding to real-world problems.
Cabana, Tanguy. "Large deviations for the dynamics of heterogeneous neural networks." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066551/document.
Full textThis thesis addresses the rigorous derivation of mean-field results for the continuous time dynamics of heterogeneous large neural networks. In our models, we consider firing-rate neurons subject to additive noise. The network is fully connected, with highly random connectivity weights. Their variance scales as the inverse of the network size, and thus conserves a non-trivial role in the thermodynamic limit. Moreover, another heterogeneity is considered at the level of each neuron. It is interpreted as a spatial location. For biological relevance, a model considered includes delays, mean and variance of connections depending on the distance between cells. A second model considers interactions depending on the states of both neurons at play. This last case notably applies to Kuramoto's model of coupled oscillators. When the weights are independent Gaussian random variables, we show that the empirical measure of the neurons' states satisfies a large deviations principle, with a good rate function achieving its minimum at a unique probability measure, implying averaged convergence of the empirical measure and propagation of chaos. In certain cases, we also obtained quenched results. The limit is characterized through a complex non Markovian implicit equation in which the network interaction term is replaced by a non-local Gaussian process whose statistics depend on the solution over the whole neural field. We further demonstrate the universality of this limit, in the sense that neuronal networks with non-Gaussian interconnections but sub-Gaussian tails converge towards it. Moreover, we present a few numerical applications, and discuss possible perspectives
Zhao, Qiwei. "Federated Learning with Heterogeneous Challenge." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/27399.
Full textSchliebs, Stefan. "Heterogeneous probabilistic models for optimisation and modelling of evolving spiking neural networks." AUT University, 2010. http://hdl.handle.net/10292/963.
Full textAntoniou, Christos Andrea. "Improving the acoustic modelling of speech using modular/ensemble combinations of heterogeneous neural networks." Thesis, University of Essex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340582.
Full textWilson, Daniel B. "Combining genetic algorithms and artificial neural networks to select heterogeneous dispatching rules for a job shop system." Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1177701025.
Full textHobro, Mark. "Semantic Integration across Heterogeneous Databases : Finding Data Correspondences using Agglomerative Hierarchical Clustering and Artificial Neural Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226657.
Full textDataintegrering är en viktig del inom området databaser när det kommer till databasmigreringar och sammanslagning av data. Forskning inom området har ökat i takt med att maskininlärning blivit ett attraktivt tillvägagångssätt under de senaste 20 åren. På grund av komplexiteten av forskningsområdet, har inga optimala lösningar hittats. Istället har flera olika tekniker framställts, som tillsammans kan förbättra databasmigreringar. Denna avhandling undersöker hur bra en lösning baserad på maskininlärning presterar för dataintegreringsproblemet vid databasmigreringar. Två algoritmer har implementerats. En är baserad på informationssökningsteori, som främst används för att ha en prestandamässig utgångspunkt för algoritmen som är baserad på maskininlärning. Den algoritmen består av ett första steg, där data grupperas med hjälp av hierarkisk klustring. Sedan tränas ett artificiellt neuronnät att hitta mönster i dessa grupperingar, för att kunna göra förutsägelser huruvida olika datainstanser har ett samband mellan två databaser. Resultatet visar att agglomerativ hierarkisk klustring presterar väl i uppgiften att klassificera den data som använts. Resultatet av matchningsalgoritmen visar på att en stor mängd av de matchande tabellerna kan hittas. Men förbättringar behöver göras för att både ge hög en hög återkallelse av matchningar och hög precision för de matchningar som hittas. Slutsatsen är att ett inlärningsbaserat tillvägagångssätt, i detta fall att använda agglomerativ hierarkisk klustring och sedan träna ett artificiellt neuronnät, fungerar bra som en basis för att till viss del automatisera ett dataintegreringsproblem likt det som presenterats i denna avhandling. För att få bättre resultat, krävs att lösningen förbättras med mer situationsspecifika algoritmer och regler.
Tekleyohannes, Anteneh Tesfaye. "Unified and heterogeneous modeling of water vapour sorption in Douglas-fir wood with artificial neural networks." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/23032.
Full textToledo, Testa Juan Ignacio. "Information extraction from heterogeneous handwritten documents." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667388.
Full textEl objetivo de esta tesis es la extracción de Información de documentos total o parcialmente manuscritos, con una cierta estructura. Básicamente trabajamos con dos escenarios de aplicación diferentes. El primer escenario son los documentos modernos altamente estructurados, como los formularios. En estos documentos, la información semántica está pre-definida en campos con una posición concreta en el documento i la extracción de información es equivalente a una transcripción. El segundo escenario son los documentos semi-estructurados totalmente manuscritos, donde, además de transcribir, es necesario asociar un valor semántico, de entre un conjunto conocido de valores posibles, a las palabras manuscritas. En ambos casos, la calidad de la transcripción tiene un gran peso en la precisión del sistema. Por ese motivo proponemos modelos basados en redes neuronales para transcribir el texto manuscrito. Para poder afrontar el reto de los documentos semi-estructurados, hemos generado un benchmark, compuesto de dataset, una serie de tareas y una métrica que fue presentado a la comunidad científica a modo de competición internacional. También proponemos diferentes modelos basados en Redes Neuronales Convolucionales y Recurrentes, capaces de transcribir y asignar diferentes etiquetas semánticas a cada palabra manuscrita, es decir, capaces de extraer información.
The goal of this thesis is information Extraction from totally or partially handwritten documents. Basically we are dealing with two different application scenarios. The first scenario are modern highly structured documents like forms. In this kind of documents, the semantic information is encoded in different fields with a pre-defined location in the document, therefore, information extraction becomes equivalent to transcription. The second application scenario are loosely structured totally handwritten documents, besides transcribing them, we need to assign a semantic label, from a set of known values to the handwritten words. In both scenarios, transcription is an important part of the information extraction. For that reason in this thesis we present two methods based on Neural Networks, to transcribe handwritten text.In order to tackle the challenge of loosely structured documents, we have produced a benchmark, consisting of a dataset, a defined set of tasks and a metric, that was presented to the community as an international competition. Also, we propose different models based on Convolutional and Recurrent neural networks that are able to transcribe and assign different semantic labels to each handwritten words, that is, able to perform Information Extraction.
Calabuig, Soler Daniel. "Common Radio Resource Management Strategies for Quality of Service Support in Heterogeneous Wireless Networks." Doctoral thesis, Universitat Politècnica de València, 2010. http://hdl.handle.net/10251/7348.
Full textCalabuig Soler, D. (2010). Common Radio Resource Management Strategies for Quality of Service Support in Heterogeneous Wireless Networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/7348
Palancia
Ali, Muhammad. "Load balancing in heterogeneous wireless communications networks : optimized load aware vertical handovers in satellite-terrestrial hybrid networks incorporating IEEE 802.21 media independent handover and cognitive algorithms." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/6307.
Full textLIMA, Natália Flora De. "Frankenstein PSO na definição das arquiteturas e ajustes dos pesos e uso de PSO heterogêneo no treinamento de redes neurais feed-forward." Universidade Federal de Pernambuco, 2011. https://repositorio.ufpe.br/handle/123456789/17738.
Full textMade available in DSpace on 2016-08-24T17:35:05Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertacao-Natalia_Flora_de_Lima.pdf: 2000980 bytes, checksum: 107f0691d21b9d94e253d08f06a4fbdd (MD5) Previous issue date: 2011-08-29
Facepe
Este trabalho apresenta dois novos algoritmos, PSO-FPSO e FPSO-FPSO, para a otimização global de redes neurais MLP (do inglês Multi Layer Perceptron) do tipo feed-forward. O propósito destes algoritmos é otimizar de forma simultânea as arquiteturas e pesos sinápticos, objetivando melhorar a capacidade de generalização da rede neural artificial (RNA). O processo de otimização automática das arquiteturas e pesos de uma rede neural vem recebendo grande atenção na área de aprendizado supervisionado, principalmente em problemas de classificação de padrões. Além dos Algoritmos Genéticos, Busca Tabu, Evolução Diferencial, Recozimento simulado que comumente são empregados no treinamento de redes neurais podemos citar abordagens populacionais como a otimização por colônia de formigas, otimização por colônia de abelhas e otimização por enxame de partículas que vêm sendo largamente utilizadas nesta tarefa. A metodologia utilizada neste trabalho trata da aplicação de dois algoritmos do tipo PSO, sendo empregados na otimização das arquiteturas e na calibração dos pesos das conexões. Nesta abordagem os algoritmos são executados de forma alternada e por um número definido de vezes. Ainda no processo de ajuste dos pesos de uma rede neural MLP foram realizados experimentos com enxame de partículas heterogêneos, que nada mais é que a junção de dois ou mais PSOs de tipos diferentes. Para validar os experimentos com os enxames homogêneos foram utilizadas sete bases de dados para problemas de classificação de padrões, são elas: câncer, diabetes, coração, vidros, cavalos, soja e tireóide. Para os experimentos com enxames heterogêneos foram utilizadas três bases, a saber: câncer, diabetes e coração. O desempenho dos algoritmos foi medido pela média do erro percentual de classificação. Algoritmos da literatura são também considerados. Os resultados mostraram que os algoritmos investigados neste trabalho obtiveram melhor acurácia de classificação quando comparados com os algoritmos da literatura mencionados neste trabalho.
This research presents two new algorithms, PSO-FPSO e FPSO-FPSO, that can be used in feed-forward MLP (Multi Layer Perceptron) neural networks for global optimization. The purpose of these algorithms is to optimize architectures and synaptic weight, at same time, to improve the capacity of generalization from Artificial Neural Network (ANN). The automatic optimization process of neural network’s architectures and weights has received much attention in supervised learning, mainly in pattern classification problems. Besides the Genetic Algorithms, Tabu Search, Differential Evolution, Simulated Annealing that are commonly used in the training of neural networks we can mentioned population approaches such Ant Colony Optimization, Bee Colony Optimization and Particle Swarm Optimization that have been widely used this task. The methodology applied in this research reports the use of two PSO algorithms, used in architecture optimization and connection weight adjust. In this approach the algorithms are performed alternately and by predefined number of times. Still in the process of adjusting the weights of a MLP neural network experiments were performed with swarm of heterogeneous particles, which is nothing more than the joining of two or more different PSOs. To validate the experiments with homogeneous clusters were used seven databases for pattern classification problems, they are: cancer, diabetes, heart, glasses, horses, soy and thyroid. For the experiments with heterogeneous clusters were used three bases, namely cancer, diabetes and heart. The performance of the algorithms was measured by the average percentage of misclassification, literature algorithms are also considered. The results showed that the algorithms investigated in this research had better accuracy rating compared with some published algorithms.
Zhang, Wuming. "Towards non-conventional face recognition : shadow removal and heterogeneous scenario." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC030/document.
Full textIn recent years, biometrics have received substantial attention due to the evergrowing need for automatic individual authentication. Among various physiological biometric traits, face offers unmatched advantages over the others, such as fingerprints and iris, because it is natural, non-intrusive and easily understandable by humans. Nowadays conventional face recognition techniques have attained quasi-perfect performance in a highly constrained environment wherein poses, illuminations, expressions and other sources of variations are strictly controlled. However these approaches are always confined to restricted application fields because non-ideal imaging environments are frequently encountered in practical cases. To adaptively address these challenges, this dissertation focuses on this unconstrained face recognition problem, where face images exhibit more variability in illumination. Moreover, another major question is how to leverage limited 3D shape information to jointly work with 2D based techniques in a heterogeneous face recognition system. To deal with the problem of varying illuminations, we explicitly build the underlying reflectance model which characterizes interactions between skin surface, lighting source and camera sensor, and elaborate the formation of face color. With this physics-based image formation model involved, an illumination-robust representation, namely Chromaticity Invariant Image (CII), is proposed which can subsequently help reconstruct shadow-free and photo-realistic color face images. Due to the fact that this shadow removal process is achieved in color space, this approach could thus be combined with existing gray-scale level lighting normalization techniques to further improve face recognition performance. The experimental results on two benchmark databases, CMU-PIE and FRGC Ver2.0, demonstrate the generalization ability and robustness of our approach to lighting variations. We further explore the effective and creative use of 3D data in heterogeneous face recognition. In such a scenario, 3D face is merely available in the gallery set and not in the probe set, which one would encounter in real-world applications. Two Convolutional Neural Networks (CNN) are constructed for this purpose. The first CNN is trained to extract discriminative features of 2D/3D face images for direct heterogeneous comparison, while the second CNN combines an encoder-decoder structure, namely U-Net, and Conditional Generative Adversarial Network (CGAN) to reconstruct depth face image from its counterpart in 2D. Specifically, the recovered depth face images can be fed to the first CNN as well for 3D face recognition, leading to a fusion scheme which achieves gains in recognition performance. We have evaluated our approach extensively on the challenging FRGC 2D/3D benchmark database. The proposed method compares favorably to the state-of-the-art and show significant improvement with the fusion scheme
Ritholtz, Lee. "Intelligent text recognition system on a heterogeneous multi-core processor cluster a performance profile and architecture exploration /." Diss., Online access via UMI:, 2009.
Find full textIncludes bibliographical references.
Westphal, Florian. "Efficient Document Image Binarization using Heterogeneous Computing and Interactive Machine Learning." Licentiate thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-16797.
Full textScalable resource-efficient systems for big data analytics
Ong, Felicia Li Chin. "Heterogeneous Networking for Beyond 3G system in a High-Speed Train Environment. Investigation of handover procedures in a high-speed train environment and adoption of a pattern classification neural-networks approach for handover management." Thesis, University of Bradford, 2016. http://hdl.handle.net/10454/12341.
Full textBradley, Patrick Justin. "Heterogeneously coupled neural oscillators." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33938.
Full textMartignano, Anna. "Real-time Anomaly Detection on Financial Data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281832.
Full textDetta arbete presenterar en undersökning av tillämpningar av Network Representation Learning (NRL) inom den finansiella industrin. Metoder inom NRL möjliggör datadriven kondensering av grafstrukturer till lågdimensionella och lätthanterliga vektorer.Dessa vektorer kan sedan användas i andra maskininlärningsuppgifter. Närmare bestämt, kan metoder inom NRL underlätta hantering av och informantionsutvinning ur beräkningsintensiva och storskaliga grafer inom den finansiella sektorn, till exempel avvikelsehantering bland finansiella transaktioner. Arbetet med data av denna typ försvåras av det faktum att transaktionsgrafer är dynamiska och i konstant förändring. Utöver detta kan noderna, dvs transaktionspunkterna, vara vitt skilda eller med andra ord härstamma från olika fördelningar.I detta arbete har Graph Convolutional Network (ConvGNN) ansetts till den mest lämpliga lösningen för nämnda tillämpningar riktade mot upptäckt av avvikelser i transaktioner. GraphSAGE har använts som utgångspunkt för experimenten i två olika varianter: en dynamisk version där vikterna uppdateras allteftersom nya transaktionssekvenser matas in, och en variant avsedd särskilt för bipartita (tvådelade) grafer. Dessa varianter har utvärderats genom användning av faktiska datamängder med avvikelsehantering som slutmål.
Diaz, Boada Juan Sebastian. "Polypharmacy Side Effect Prediction with Graph Convolutional Neural Network based on Heterogeneous Structural and Biological Data." Thesis, KTH, Numerisk analys, NA, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288537.
Full textFör att minska dödligheten och sjukligheten hos patienter som lider av komplexa sjukdomar är det avgörande att kunna förutsäga biverkningar från polyfarmaci. Att experimentellt förutsäga biverkningarna är dock ogenomförbart på grund av det stora antalet möjliga läkemedelskombinationer, vilket lämnar in silico-verktyg som det mest lovande sättet att lösa detta problem. Detta arbete förbättrar prestandan och robustheten av ett av det senaste grafiska faltningsnätverken som är utformat för att förutsäga biverkningar från polyfarmaci, genom att mata det med läkemedel-protein-nätverkets komplexitetsegenskaper. Ändringarna involverar också skapandet av en direkt pipeline för att återge resultaten och testa den med olika dataset.
Nguyen, Thanh Hai. "Some contributions to deep learning for metagenomics." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS102.
Full textMetagenomic data from human microbiome is a novel source of data for improving diagnosis and prognosis in human diseases. However, to do a prediction based on individual bacteria abundance is a challenge, since the number of features is much bigger than the number of samples. Hence, we face the difficulties related to high dimensional data processing, as well as to the high complexity of heterogeneous data. Machine Learning has obtained great achievements on important metagenomics problems linked to OTU-clustering, binning, taxonomic assignment, etc. The contribution of this PhD thesis is multi-fold: 1) a feature selection framework for efficient heterogeneous biomedical signature extraction, and 2) a novel deep learning approach for predicting diseases using artificial image representations. The first contribution is an efficient feature selection approach based on visualization capabilities of Self-Organizing Maps for heterogeneous data fusion. The framework is efficient on a real and heterogeneous datasets containing metadata, genes of adipose tissue, and gut flora metagenomic data with a reasonable classification accuracy compared to the state-of-the-art methods. The second approach is a method to visualize metagenomic data using a simple fill-up method, and also various state-of-the-art dimensional reduction learning approaches. The new metagenomic data representation can be considered as synthetic images, and used as a novel data set for an efficient deep learning method such as Convolutional Neural Networks. The results show that the proposed methods either achieve the state-of-the-art predictive performance, or outperform it on public rich metagenomic benchmarks
Bailey, Tony J. "Neuromorphic Architecture with Heterogeneously Integrated Short-Term and Long-Term Learning Paradigms." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1554217105047975.
Full textLiu, Chang. "Data Analysis of Minimally-Structured Heterogeneous Logs : An experimental study of log template extraction and anomaly detection based on Recurrent Neural Network and Naive Bayes." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191334.
Full textPETRINI, ALESSANDRO. "HIGH PERFORMANCE COMPUTING MACHINE LEARNING METHODS FOR PRECISION MEDICINE." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/817104.
Full textPrecision Medicine is a new paradigm which is reshaping several aspects of clinical practice, representing a major departure from the "one size fits all" approach in diagnosis and prevention featured in classical medicine. Its main goal is to find personalized prevention measures and treatments, on the basis of the personal history, lifestyle and specific genetic factors of each individual. Three factors contributed to the rapid rise of Precision Medicine approaches: the ability to quickly and cheaply generate a vast amount of biological and omics data, mainly thanks to Next-Generation Sequencing; the ability to efficiently access this vast amount of data, under the Big Data paradigm; the ability to automatically extract relevant information from data, thanks to innovative and highly sophisticated data processing analytical techniques. Machine Learning in recent years revolutionized data analysis and predictive inference, influencing almost every field of research. Moreover, high-throughput bio-technologies posed additional challenges to effectively manage and process Big Data in Medicine, requiring novel specialized Machine Learning methods and High Performance Computing techniques well-tailored to process and extract knowledge from big bio-medical data. In this thesis we present three High Performance Computing Machine Learning techniques that have been designed and developed for tackling three fundamental and still open questions in the context of Precision and Genomic Medicine: i) identification of pathogenic and deleterious genomic variants among the "sea" of neutral variants in the non-coding regions of the DNA; ii) detection of the activity of regulatory regions across different cell lines and tissues; iii) automatic protein function prediction and drug repurposing in the context of biomolecular networks. For the first problem we developed parSMURF, a novel hyper-ensemble method able to deal with the huge data imbalance that characterizes the detection of pathogenic variants in the non-coding regulatory regions of the human genome. We implemented this approach with highly parallel computational techniques using supercomputing resources at CINECA (Marconi – KNL) and HPC Center Stuttgart (HLRS Apollo HAWK), obtaining state-of-the-art results. For the second problem we developed Deep Feed Forward and Deep Convolutional Neural Networks to respectively process epigenetic and DNA sequence data to detect active promoters and enhancers in specific tissues at genome-wide level using GPU devices to parallelize the computation. Finally we developed scalable semi-supervised graph-based Machine Learning algorithms based on parametrized Hopfield Networks to process in parallel using GPU devices large biological graphs, using a parallel coloring method that improves the classical Luby greedy algorithm. We also present ongoing extensions of parSMURF, very recently awarded by the Partnership for Advance in Computing in Europe (PRACE) consortium to further develop the algorithm, apply them to huge genomic data and embed its results into Genomiser, a state-of-the-art computational tool for the detection of pathogenic variants associated with Mendelian genetic diseases, in the context of an international collaboration with the Jackson Lab for Genomic Medicine.
Galbincea, Nicholas D. "Critical Analysis of Dimensionality Reduction Techniques and Statistical Microstructural Descriptors for Mesoscale Variability Quantification." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1500642043518197.
Full text"Heterogeneous neural networks: theory and applications." Universitat Politècnica de Catalunya, 2000. http://www.tesisenxarxa.net/TDX-0302109-114922/.
Full textSu, Yu-Sheng, and 蘇裕勝. "Heterogeneous Graph Embedding Based on Graph Convolutional Neural Networks." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/222yfr.
Full text國立政治大學
資訊科學系
108
In recent years, information network embedding has become popular because the techniques enable to encode information into low-dimensions representation, even for a graph/network with multiple types of nodes and relations. In addition, graph neural network (GNN) has also shown its effectiveness in learning large-scale node representations on node classification. In this paper, therefore, we propose a framework based on the heterogeneous network embedding and the idea of graph neural network. In our framework, we first generate node representations by various network embedding methods. Then, we split a homogeneous network graph into subgraphs and concatenate the learned node representations into the same embedding space. After that, we apply one of variant GNN, called GraphSAGE, to generate representations for the tasks of link prediction and recommendation. In our experiments, the results on the tasks of link prediction and recommendation both show the effectiveness of the proposed framework.
Marques, José Fernando Duarte. "Distributed Learning of Convolutional Neural Networks on Heterogeneous Processing Units." Master's thesis, 2016. http://hdl.handle.net/10316/41280.
Full textA área de deep learning tem sido o foco de muita pesquisa e desenvolvimento ao longo dos últimos anos. As DNNs, e mais concretamente as CNNs provaram ser ferramentas poderosas em tarefas que vão desde as mais comuns, como leitura de cheques, às mais essenciais, sendo usadas em diagnóstico médico. Esta evolução na área levou ao desenvolvimento de frameworks, como o Torch e o Theano, que simplificaram o processo de treino de uma CNN, sendo necessário apenas estruturar a rede, escolhendo os parâmetros ideais e fornecer os inputs e outputs desejados. No entanto, o fácil acesso a essas frameworks levou a um aumento no tamanho tanto das redes como dos conjuntos de dados usados, uma vez que as redes tiveram que se tornar maiores e mais complexas para obter resultados mais significativos. Isto levou a tempos de treinos maiores, que nem a melhoria de GPUs e mais especificamente o uso de GPGPU conseguiu acompanhar. Para dar resposta a isso, foram desenvolvidos métodos de treino distribuído, dividindo o trabalho quer por várias GPUs na mesma máquina, quer por CPUs e GPUs em máquinas distintas. As diferentes técnicas de distribuição podem ser dividas em 2 grupos: paralelismo de dados e paralelismo de modelo. O primeiro método consiste em usar réplicas de uma rede e treinar fornecendo dados diferentes. O paralelismo de modelo passa por dividir o trabalho de toda a rede pelos diferentes dispositivos usados. No entanto, nenhuma destas técnicas usadas pela diferentes frameworks existentes tira partido da paralelização oferecida pelas CNNs, e tentar usar um outro método com essas frameworks revela-se um trabalho demasiado complexo e muitas vezes impossível. Nesta tese, é apresentada uma nova técnica de treino distribuído, que faz uso da paralelização que as CNNs oferecem. O método é uma variação do paralelismo de modelo, onde apenas a camada de convolução é distribuída. Todas as máquinas recebem as mesmas entradas mas um conjunto diferente de filtros, sendo que no final das convoluções os resultados são enviados para uma máquina central, designada como nó mestre. Este método foi alvo de uma série de testes, variando o número de máquinas envolvidas e a arquitectura da rede, cujos resultados se encontram neste documento. Os resultados mostram que esta técnica é capaz de diminuir os tempos de treino consideravelmente sem perda de desempenho de classificação, tanto para CPU como para GPU. Também foi feita uma análise detalhada sobre a influência do tamanho da rede e do batchsize no speedup conseguido. Por fim, foram também simulados resultados para um número superior de máquinas usadas, bem como o possível uso de GPUs de dispositivos móveis, cuja eficiência energética aplicada ao deep learning foi também explorada neste trabalhado, suportado pelo conteúdo do Appendix A.
Mahapatra, Dheeren Ku. "Modelling of Heterogeneous SAR Clutter for Speckle Suppression using MAP Estimation." Thesis, 2019. http://ethesis.nitrkl.ac.in/9865/1/2019_PHD_DKMahapatra_513EC1003_Modelling.pdf.
Full textSilva, Juliana Couras Fernandes. "A theory of spike coding networks with heterogeneous postsynaptic potentials." Master's thesis, 2021. http://hdl.handle.net/10773/32002.
Full textModelar redes neuronais com princípios biologicamente plausíveis é um desafio para a neurociência teórica. De facto, há evidência crescente de que os tempos precisos dos potenciais de ação emitidos por um neurónio desempenham um papel crucial na computação neuronal. No entanto, construir redes neuronais funcionais que mimetizem a variabilidade de disparos encontrada in vivo não é uma tarefa trivial. Boerlin et al. sugeriu um modelo de redes leaky integrate-and-fire que, através de um balanço apertado entre excitação e inibição neuronal, conseguem construir uma estimativa de um sinal multi-dimensional em tempo real, usando a combinação ponderada de séries de potenciais de ação com variabilidade do tipo Poisson. Apesar destas plausabilidades biológicas, estas redes codificantes por potenciais de ação sustentam-se na propagação instantânea desta entidade biofísica. Uma vez que esta assunção não vai de encontro às escalas de tempo das sinapses observadas no cérebro, esta é uma limitação do modelo. Assim, tendo como objectivo construir uma rede codificante por potenciais de ação com potenciais pós-sinápticos biologicamente plasíveis, neste trabalho usamos o facto do modelo original destas redes permitir a reconstrução de sinais multi-dimensionais para transformar o problema de reconstrução preditiva num problema multi-dimensional no domínio temporal. Através desta transformação, emergem três propriedades que estas redes devem ter para se manterem funcionais: não codificar o presente; permitir heterogeneidade temporal; prever o futuro da estimativa da rede de acordo com a dinâmica do sinal original. Assim, introduzindo estas propriedades nas assunções originais de Boerlin et al., mostramos que é possível conceber uma rede codificante por potenciais de ação que reconstrua sinais multi-dimensionais sem a necessidade da comunicação instantânea dos mesmos.
Mestrado em Engenharia Computacional
Salamat, Amirreza. "Heterogeneous Graph Based Neural Network for Social Recommendations with Balanced Random Walk Initialization." Thesis, 2020. http://hdl.handle.net/1805/24769.
Full textResearch on social networks and understanding the interactions of the users can be modeled as a task of graph mining, such as predicting nodes and edges in networks. Dealing with such unstructured data in large social networks has been a challenge for researchers in several years. Neural Networks have recently proven very successful in performing predictions on number of speech, image, and text data and have become the de facto method when dealing with such data in a large volume. Graph NeuralNetworks, however, have only recently become mature enough to be used in real large-scale graph prediction tasks, and require proper structure and data modeling to be viable and successful. In this research, we provide a new modeling of the social network which captures the attributes of the nodes from various dimensions. We also introduce the Neural Network architecture that is required for optimally utilizing the new data structure. Finally, in order to provide a hot-start for our model, we initialize the weights of the neural network using a pre-trained graph embedding method. We have also developed a new graph embedding algorithm. We will first explain how previous graph embedding methods are not optimal for all types of graphs, and then provide a solution on how to combat those limitations and come up with a new graph embedding method.
(9740444), Amirreza Salamat. "Heterogeneous Graph Based Neural Network for Social Recommendations with Balanced Random Walk Initialization." Thesis, 2021.
Find full textAlhubail, Ali. "Application of Physics-Informed Neural Networks to Solve 2-D Single-phase Flow in Heterogeneous Porous Media." Thesis, 2021. http://hdl.handle.net/10754/670174.
Full textMittal, Divyansh. "Robustness of Neural Activity Dynamics in the Medial Entorhinal Cortex." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5808.
Full textCHU, CHIA-HO, and 朱佳荷. "Application of Neural Networks and Genetic Algorithm to Optimize the Heterogeneous Metals Welding Parameters of Magnesium and Copper." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/vya5st.
Full text華梵大學
工業工程與經營資訊學系碩士班
106
Lightweight and strong magnesium alloys and highly conductive copper are widely used in various fields of application. When joining the both, it is frequent to find brittle compound at the joint. Typically, the industries heavily depend on the experience of master welders but that often leads to wobbling quality and their experience is difficult to pass on, not to mention the multiple quality characteristics. For this, a process was developed in this study to resolve the multiple quality characteristics issue in the heterogeneous soldering between magnesium alloy and copper for better soldering strength. Mg alloy AZ31B and copper alloy C1100 were selected for this study. The Taguchi method was employed to develop an arc soldering experiment using inert gas and tungsten electrodes. Non-destructive test (for thickness and width of the joints and Rockwell hardness) and destructive test (impact test and tension test) were selected. A series of literature reviews, cause and effect analyses and discussions with experts led to the conclusion that the controllable factors for welding were welding current and welding rate. The fixed factors were the distance between tungsten bar and plate, elongation of tungsten bar and the flow rate of masking gas and the noise factor is different intermediate layers. Two experiments were repeated using the L9 (34) orthogonal array. The measurements were analyzed using S/N ratio analysis, TOPSIS analysis, back propagation neural network and genetic algorithm to identify the best-fit parameter combination for the welding of copper and magnesium alloys.
Adhatarao, Sripriya Srikant. "PHOENIX: A Premise to Reinforce Heterogeneous and Evolving Internet Architectures with Exemplary Applications." Thesis, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-150A-9.
Full textJiang, Xinxin. "Mining heterogeneous enterprise data." Thesis, 2018. http://hdl.handle.net/10453/129377.
Full textHeterogeneity is becoming one of the key characteristics inside enterprise data, because the current nature of globalization and competition stress the importance of leveraging huge amounts of enterprise accumulated data, according to various organizational processes, resources and standards. Effectively deriving meaningful insights from complex large-scaled heterogeneous enterprise data poses an interesting, but critical challenge. The aim of this thesis is to investigate the theoretical foundations of mining heterogeneous enterprise data in light of the above challenges and to develop new algorithms and frameworks that are able to effectively and efficiently consider heterogeneity in four elements of the data: objects, events, context, and domains. Objects describe a variety of business roles and instruments involved in business systems. Object heterogeneity means that object information at both the data and structural level is heterogeneous. The cost-sensitive hybrid neural network (Cs-HNN) proposed leverages parallel network architectures and an algorithm specifically designed for minority classification to generate a robust model for learning heterogeneous objects. Events trace an object’s behaviours or activities. Event heterogeneity reflects the level of variety in business events and is normally expressed in the type and format of features. The approach proposed in this thesis focuses on fleet tracking as a practical example of an application with a high degree of event heterogeneity. Context describes the environment and circumstances surrounding objects and events. Context heterogeneity reflects the degree of diversity in contextual features. The coupled collaborative filtering (CCF) approach proposed in this thesis is able to provide context-aware recommendations by measuring the non-independent and identically distributed (non-IID) relationships across diverse contexts. Domains are the sources of information and reflect the nature of the business or function that has generated the data. The cross-domain deep learning (Cd-DLA) proposed in this thesis provides a potential avenue to overcome the complexity and nonlinearity of heterogeneous domains. Each of the approaches, algorithms, and frameworks for heterogeneous enterprise data mining presented in this thesis outperform the state-of-the-art methods in a range of backgrounds and scenarios, as evidenced by a theoretical analysis, an empirical study, or both. All outcomes derived from this research have been published or accepted for publication, and the follow-up work has also been recognised, which demonstrates scholarly interest in mining heterogeneous enterprise data as a research topic. However, despite this interest, heterogeneous data mining still holds increasing attractive opportunities for further exploration and development in both academia and industry.
Chia-Pin, Wang, and 王嘉斌. "Neural-Network Based handoff algorithm to support QoS Multimedia application in Heterogeneous WLAN Environments." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/93139591775176572911.
Full text國立臺灣大學
電信工程學研究所
91
Abstract The integration of heterogeneous wireless access networks is expected in the future. It offers more selections of various services for mobile users. However, to support continuous link as mobile users roam in different networks, the handoff mechanism plays a very important role. Handoff mechanisms consist of handoff decision algorithms and handoff procedure algorithms. For real-time applications, handoff decision algorithm is much more critical because of its irretrievable property. As considering the heterogeneous wireless networks supporting real-time applications, the RSS based handoff decision algorithms with threshold and hysteresis are not suitable. They can’t make handoff decision efficiently and avoid unnecessary handoff simultaneously. Furthermore, it is difficult for them to deal with the asymmetry of bandwidth and signal power of different wireless access networks. To support multimedia services in the heterogeneous wireless access network, we propose our neural network based handoff algorithm. We simulate our handoff algorithm in the heterogeneous WLAN environment as an example. From the simulation results, our proposed neural network based handoff algorithm could make handoff decision efficiently, avoid unnecessary handoff, and select for higher data rate if available in the mean time.
Touati, Redha. "Détection de changement en imagerie satellitaire multimodale." Thèse, 2019. http://hdl.handle.net/1866/22662.
Full textCette recherche a pour objet l’étude de la détection de changements temporels entre deux (ou plusieurs) images satellitaires multimodales, i.e., avec deux modalités d’imagerie différentes acquises par deux capteurs hétérogènes donnant pour la même scène deux images encodées différemment suivant la nature du capteur utilisé pour chacune des prises de vues. Les deux (ou multiples) images satellitaires multimodales sont prises et co-enregistrées à deux dates différentes, avant et après un événement. Dans le cadre de cette étude, nous proposons des nouveaux modèles de détection de changement en imagerie satellitaire multimodale semi ou non supervisés. Comme première contribution, nous présentons un nouveau scénario de contraintes exprimé sur chaque paire de pixels existant dans l’image avant et après changement. Une deuxième contribution de notre travail consiste à proposer un opérateur de gradient textural spatio-temporel exprimé avec des normes complémentaires ainsi qu’une nouvelle stratégie de dé-bruitage de la carte de différence issue de cet opérateur. Une autre contribution consiste à construire un champ d’observation à partir d’une modélisation par paires de pixels et proposer une solution au sens du maximum a posteriori. Une quatrième contribution est proposée et consiste à construire un espace commun de caractéristiques pour les deux images hétérogènes. Notre cinquième contribution réside dans la modélisation des zones de changement comme étant des anomalies et sur l’analyse des erreurs de reconstruction dont nous proposons d’apprendre un modèle non-supervisé à partir d’une base d’apprentissage constituée seulement de zones de non-changement afin que le modèle reconstruit les motifs de non-changement avec une faible erreur. Dans la dernière contribution, nous proposons une architecture d’apprentissage par paires de pixels basée sur un réseau CNN pseudo-siamois qui prend en entrée une paire de données au lieu d’une seule donnée et est constituée de deux flux de réseau (descripteur) CNN parallèles et partiellement non-couplés suivis d’un réseau de décision qui comprend de couche de fusion et une couche de classification au sens du critère d’entropie. Les modèles proposés s’avèrent assez flexibles pour être utilisés efficacement dans le cas des données-images mono-modales.