Academic literature on the topic 'Heterogeneous catalysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Heterogeneous catalysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Heterogeneous catalysis"
Muñoz-Batista, Mario J., and Rafael Luque. "Heterogeneous Photocatalysis." ChemEngineering 5, no. 2 (May 25, 2021): 26. http://dx.doi.org/10.3390/chemengineering5020026.
Full textWan, Qiang, Sen Lin, and Hua Guo. "Frustrated Lewis Pairs in Heterogeneous Catalysis: Theoretical Insights." Molecules 27, no. 12 (June 10, 2022): 3734. http://dx.doi.org/10.3390/molecules27123734.
Full textBaráth, Eszter. "Selective Reduction of Carbonyl Compounds via (Asymmetric) Transfer Hydrogenation on Heterogeneous Catalysts." Synthesis 52, no. 04 (January 2, 2020): 504–20. http://dx.doi.org/10.1055/s-0039-1691542.
Full textMotokura, Ken, and Kyogo Maeda. "Recent Advances in Heterogeneous Ir Complex Catalysts for Aromatic C–H Borylation." Synthesis 53, no. 18 (April 9, 2021): 3227–34. http://dx.doi.org/10.1055/a-1478-6118.
Full textKaplunenko, Volodymyr, and Mykola Kosinov. "Electric field - induced catalysis. Laws of field catalysis." InterConf, no. 26(129) (October 18, 2022): 332–51. http://dx.doi.org/10.51582/interconf.19-20.10.2022.037.
Full textLomic, Gizela, Erne Kis, Goran Boskovic, and Radmila Marinkovic-Neducin. "Application of scanning electron microscopy in catalysis." Acta Periodica Technologica, no. 35 (2004): 67–77. http://dx.doi.org/10.2298/apt0435067l.
Full textShetty, Apoorva, Vandana Molahalli, Aman Sharma, and Gurumurthy Hegde. "Biomass-Derived Carbon Materials in Heterogeneous Catalysis: A Step towards Sustainable Future." Catalysts 13, no. 1 (December 23, 2022): 20. http://dx.doi.org/10.3390/catal13010020.
Full textYam, Kah Meng, Na Guo, Zhuoling Jiang, Shulong Li, and Chun Zhang. "Graphene-Based Heterogeneous Catalysis: Role of Graphene." Catalysts 10, no. 1 (January 1, 2020): 53. http://dx.doi.org/10.3390/catal10010053.
Full textLi, Shangkun, Rizwan Ahmed, Yanhui Yi, and Annemie Bogaerts. "Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis." Catalysts 11, no. 5 (May 1, 2021): 590. http://dx.doi.org/10.3390/catal11050590.
Full textScholten, J. J. F. "Heterogeneous catalysis." Applied Catalysis 16, no. 1 (April 1985): 130–32. http://dx.doi.org/10.1016/s0166-9834(00)84084-1.
Full textDissertations / Theses on the topic "Heterogeneous catalysis"
Meadows, G. R. "Heterogeneous redox catalysis." Thesis, Swansea University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638165.
Full textXu, Jiahui. "Catalytic properties of nano ceria in heterogeneous catalysis." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:02e68ff9-ce28-475a-bd08-6b60bcda64e7.
Full textGuo, Chris. "Alkane Oxidation Catalysis by Homogeneous and Heterogeneous Catalyst." Thesis, The University of Sydney, 2005. http://hdl.handle.net/2123/622.
Full textGuo, Chris. "Alkane Oxidation Catalysis by Homogeneous and Heterogeneous Catalyst." University of Sydney. Chemistry, 2005. http://hdl.handle.net/2123/622.
Full textRichardson, John Michael. "Distinguishing between surface and solution catalysis for palladium catalyzed C-C coupling reactions: use of selective poisons." Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22704.
Full textSvengren, Henrik. "Water splitting by heterogeneous catalysis." Doctoral thesis, Stockholms universitet, Institutionen för material- och miljökemi (MMK), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-148181.
Full textKumarasamy, Puvaneswary. "Heterogeneous catalysis for methane oxidation." Thesis, Brunel University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326890.
Full textDurgun, Gülay Artok Levent. "Short-time suzuki reactions of arly halides catalyzed by palladium-loaded NaY zeolite under aerobic conditions/." [s.l.]: [s.n.], 2006. http://library.iyte.edu.tr/tezler/master/kimya/T000528.pdf.
Full textKeywords:Suzuki reactions, palladium, NaYzeolite, heterogeneous catalyst, C-C coupling. Includes bibliographical references (leaves. 71-81).
Peneau, Virginie. "Activation of hydrocarbons and their catalytic oxidation by heterogeneous catalysis." Thesis, Cardiff University, 2014. http://orca.cf.ac.uk/74614/.
Full textPosada, Pérez Sergio. "Heterogeneous catalysis of green chemistry reactions on molybdenum carbide based catalysts." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/552405.
Full textEn aquesta tesi es mostra un treball computacional sobre l'ús de catalitzadors econòmics per a la conversió de CO2, un perillós gas d'efecte hivernacle i també per a la producció d'hidrogen, el combustible del futur. En la recerca actual de nous catalitzadors, els carburs de metalls de transició (TMC) han sorgit com una alternativa atractiva pel el seu baix cost i per exhibir excel·lents propietats físiques i químiques. En aquest treball utilitzarem com a catalitzadors les superfícies cúbica δ-MoC (001) i ortoròmbica β-Mo2C (001). L'adsorció de la molècula de CO2 mostra que ambdues superfícies són capaces d'activar i doblegar la molècula. La superfície β-Mo2C (001) és capaç de dissociar fàcilment la molècula de CO2, mentre que la superfície δ-MoC (001) activa CO2 però no la dissocia. Els experiments realitzats pel grup del Dr. Jose Rodriguez van revelar que el CO i el metà són els principals productes de la hidrogenació de CO2 utilitzant β-Mo2C (001) com a catalitzador, i la quantitat de metanol és menor. D'altra banda, només es produeixen CO i metanol utilitzant δ-MoC (001). La deposició de partícules de coure a les superfícies del carbur augmenta dràsticament l'activitat dels catalitzadors, cosa que es va demostrar mitjançant càlculs teòrics. A la superfície β-Mo2C, la quantitat de CO i metanol augmenten mentre que la quantitat de metà disminueix. D'altra banda, la deposició de coure a δ-MoC (001) augmenta molt la quantitat de CO i metanol. En resum, el nostre estudi proposa el Cu/δ-MoC com a prometedor catalitzador de la hidrogenació de CO2 a causa de la seva activitat (la quantitat de productes és superior a la resta de TMCS, metalls i el model de catalitzadors comercials), selectivitat (només el CO i el metanol es produeixen) i l'estabilitat (aquests catalitzadors no es desactiven per la deposició d'oxigen). Tenint en compte els resultats previs, es va proposar la deposició d'or en la superfície δ-MoC per a la producció d'hidrogen. Els càlculs teòrics demostren que la superfície δ-MoC (001) no és un bon catalitzador per WGS, però la deposició dels clústers d'or canvia el mecanisme de reacció i augmenta la quantitat d'H2 produïda.
Books on the topic "Heterogeneous catalysis"
Ma, Zhen, and Sheng Dai, eds. Heterogeneous Gold Catalysts and Catalysis. Cambridge: Royal Society of Chemistry, 2014. http://dx.doi.org/10.1039/9781782621645.
Full textBoreskov, Georgiĭ Konstantinovich. Heterogeneous catalysis. New York: Nova Science Publishers, 2003.
Find full textLuque, Rafael, and Anand S. Burange. Heterogeneous Catalysis. Washington, DC, USA: American Chemical Society, 2022. http://dx.doi.org/10.1021/acsinfocus.7e5032.
Full textBoreskov, Georgiĭ Konstantinovich. Heterogeneous catalysis. Novosibirsk: Boreskov Institute of Catalysis SB RAS, 2002.
Find full textJ, Thomas W., ed. Principles and practice of heterogeneous catalysis. Weinheim: VCH, 1996.
Find full textvan Santen, Rutger A., ed. Modern Heterogeneous Catalysis. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527810253.
Full textlibrary, Wiley online, ed. Handbook of heterogeneous catalysis. 2nd ed. Weinheim: Wiley-VCH, 2008.
Find full textB, Gunther Mathias, ed. Heterogeneous catalysis research progress. New York: Nova Science Publishers, 2008.
Find full textL, Marmaduke Dieter, ed. Progress in heterogeneous catalysis. Hauppauge, N.Y: Nova Science Publishers, 2008.
Find full textJ, Hargreaves J. S., Jackson S. D, and Webb Geoff, eds. Isotopes in heterogeneous catalysis. London: Imperial College Press, 2006.
Find full textBook chapters on the topic "Heterogeneous catalysis"
Lefferts, Leon, Emiel Hensen, and Hans Niemantsverdriet. "Heterogeneous Catalysis." In Catalysis, 15–71. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527810932.ch2.
Full textBlaser, Hans-Ulrich, and Martin Studer. "Heterogeneous Catalysis." In Comprehensive Asymmetric Catalysis I–III, 1353–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58571-5_15.
Full textPei, Yuchen, and Wenyu Huang. "Heterogeneous Catalysis." In Bimetallic Nanostructures, 360–424. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119214618.ch11.
Full textOsawa, Tsutomu. "Heterogeneous Catalysis." In Modern Organonickel Chemistry, 273–305. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527604847.ch10.
Full textFan, Li, and Kaoru Fujimoto. "Heterogeneous Catalysis." In Chemical Synthesis Using Supercritical Fluids, 388–413. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2007. http://dx.doi.org/10.1002/9783527613687.ch18.
Full textKanitkar, S. R., B. Dutta, Md A. Abedin, X. Bai, and D. J. Haynes. "Advanced manufacturing in heterogeneous catalysis." In Catalysis, 1–41. Royal Society of Chemistry, 2024. http://dx.doi.org/10.1039/bk9781837672035-00001.
Full textAtkins, Peter, Julio de Paula, and David Smith. "Heterogeneous catalysis." In Elements of Physical Chemistry. Oxford University Press, 2016. http://dx.doi.org/10.1093/hesc/9780198727873.003.0043.
Full textAtkins, Peter, Julio de Paula, and James Keeler. "Heterogeneous catalysis." In Atkins’ Physical Chemistry. Oxford University Press, 2022. http://dx.doi.org/10.1093/hesc/9780198847816.003.0109.
Full textAtkins, Peter, Julio de Paula, and Ronald Friedman. "Heterogeneous catalysis." In Physical Chemistry: Quanta, Matter, and Change. Oxford University Press, 2013. http://dx.doi.org/10.1093/hesc/9780199609819.003.0125.
Full textBitter, Harry. "Heterogeneous Catalysis." In Contemporary Catalysis: Science, Technology, and Applications, 175–88. The Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781849739900-00175.
Full textConference papers on the topic "Heterogeneous catalysis"
VEDRINE, JACQUES C. "HETEROGENEOUS OXIDATION CATALYSIS ON METALLIC OXIDES." In Proceedings of the NIOK (Netherlands Institute for Catalysis Research) Course on Catalytic Oxidation. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503884_0003.
Full textSHELDON, R. A. "HETEROGENEOUS CATALYSIS OF LIQUID PHASE OXIDATIONS." In Proceedings of the NIOK (Netherlands Institute for Catalysis Research) Course on Catalytic Oxidation. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503884_0009.
Full textWüthrich, Kurt, R. H. Grubbs, T. Visart de Bocarmé, and Anne De Wit. "Heterogeneous Catalysis and Characterization of Catalyst Surfaces." In 24th International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813237179_others02.
Full textHaber, Jerzy. "MECHANISM OF HETEROGENEOUS CATALYTIC OXIDATION." In Proceedings of the NIOK (Netherlands Institute for Catalysis Research) Course on Catalytic Oxidation. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503884_0002.
Full textMILLS, P. L., M. P. HAROLD, and J. J. LEROU. "INDUSTRIAL HETEROGENEOUS GAS-PHASE OXIDATION PROCESSES." In Proceedings of the NIOK (Netherlands Institute for Catalysis Research) Course on Catalytic Oxidation. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503884_0013.
Full textERTL, GERHARD. "HETEROGENEOUS CATALYSIS: WHERE ARE WE?" In 24th International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813237179_0012.
Full textHELVEG, STIG. "ELECTRON MICROSCOPY IN HETEROGENEOUS CATALYSIS." In 24th International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813237179_0030.
Full textVAN SANTEN, R. A. "SELECTIVE CATALYTIC OXIDATION BY HETEROGENEOUS TRANSITION METAL CATALYSTS." In Proceedings of the NIOK (Netherlands Institute for Catalysis Research) Course on Catalytic Oxidation. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789814503884_0004.
Full textNØRSKOV, JENS K. "TOWARDS A THEORY OF HETEROGENEOUS CATALYSIS." In 24th International Solvay Conference on Chemistry. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813237179_0014.
Full textWilletts, D. V., and M. R. Harris. "Homogeneous Catalysis for CO2 Lasers." In Coherent Laser Radar. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/clr.1991.mc2.
Full textReports on the topic "Heterogeneous catalysis"
Surko, Clifford M. Spatiotemporal Dynamics in Heterogeneous Catalysis. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada389981.
Full textFrancisco Zaera. Molecular-Level Design of Heterogeneous Chiral Catalysis. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1036747.
Full textHervier, Antoine. Charge Transfer and Support Effects in Heterogeneous Catalysis. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1076791.
Full textSachdeva, Yesh P. At-Resin Research: Biotechnical Support and Heterogeneous Catalysis. Fort Belvoir, VA: Defense Technical Information Center, July 1990. http://dx.doi.org/10.21236/ada226076.
Full textSchneider, William. Towards Realistic Models of Heterogeneous Catalysis: Simulations of Oxidation Catalysis from First Principles. Office of Scientific and Technical Information (OSTI), December 2021. http://dx.doi.org/10.2172/1835236.
Full textRioux, Robert M. Dynamic Chemical and Structural Changes of Heterogeneous Catalysts Observed in Real Time: From Catalysis-Induced Fluxionality to Catalytic Cycles. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada613847.
Full textBoszormenyi, Istvan. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study. Office of Scientific and Technical Information (OSTI), May 1991. http://dx.doi.org/10.2172/10115869.
Full textBoszormenyi, I. Model heterogeneous acid catalysts and metal-support interactions: A combined surface science and catalysis study. Office of Scientific and Technical Information (OSTI), May 1991. http://dx.doi.org/10.2172/6827194.
Full textLi, Xinle. Active sites engineering of metal-organic frameworks for heterogeneous catalysis. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1409199.
Full textCeyer, S. T. High pressure heterogeneous catalysis in a low pressure UHV environment. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6829327.
Full text