Contents
Academic literature on the topic 'HERONIAN TRIANGLE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'HERONIAN TRIANGLE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "HERONIAN TRIANGLE"
Dolan, Stan. "Ratios in Heronian triangles." Mathematical Gazette 104, no. 560 (June 18, 2020): 193–208. http://dx.doi.org/10.1017/mag.2020.41.
Full textMazėtis, Edmundas, and Grigorijus Melničenko. "Rational cuboids and Heron triangles II." Lietuvos matematikos rinkinys 60 (December 5, 2019): 34–38. http://dx.doi.org/10.15388/lmr.b.2019.15233.
Full textMazėtis, Edmundas, and Grigorijus Melničenko. "Algebraic values of sines and cosines and their arguments." Lietuvos matematikos rinkinys 61 (March 15, 2021): 21–28. http://dx.doi.org/10.15388/lmr.2020.22717.
Full textRead, Emrys. "100.01 Heronian triangles." Mathematical Gazette 100, no. 547 (March 2016): 103–8. http://dx.doi.org/10.1017/mag.2016.10.
Full textYiu, Paul. "Heronian Triangles Are Lattice Triangles." American Mathematical Monthly 108, no. 3 (March 2001): 261. http://dx.doi.org/10.2307/2695390.
Full textYiu, Paul. "Heronian Triangles Are Lattice Triangles." American Mathematical Monthly 108, no. 3 (March 2001): 261–63. http://dx.doi.org/10.1080/00029890.2001.11919751.
Full textStephenson, Paul. "92.55 Reconstructing heronian triangles." Mathematical Gazette 92, no. 524 (July 2008): 328–31. http://dx.doi.org/10.1017/s0025557200183342.
Full textNelsen, Roger B. "Almost Equilateral Heronian Triangles." Mathematics Magazine 93, no. 5 (October 19, 2020): 378–79. http://dx.doi.org/10.1080/0025570x.2020.1817708.
Full textKozhegel'dinov, S. Sh. "On fundamental Heronian triangles." Mathematical Notes 55, no. 2 (February 1994): 151–56. http://dx.doi.org/10.1007/bf02113294.
Full textDolan, Stan. "Less than equable Heronian triangles." Mathematical Gazette 100, no. 549 (October 17, 2016): 482–89. http://dx.doi.org/10.1017/mag.2016.113.
Full textDissertations / Theses on the topic "HERONIAN TRIANGLE"
Silva, Henri Flávio da. "Triângulos Heronianos." reponame:Repositório Institucional da UFABC, 2017.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2017.
Neste trabalho,apresentamos um estudos obre os triângulos que possuem lados e área de medidas inteiras,doravante chamados de Triângulos Heronianos, muito estudados na teoria dos números a partir da fórmula de Heron,que relaciona a área de um triângulo aos seus três lados.Este tema traz o desafio de se encontrar triplas de inteiros que satisfaçam as condições da fórmula de Heron, problema este já resolvido desde o século VI pelo matemático indiano Brahmagupta por meio de parametrizações. Outro fator enriquecedor deste estudo é que esta classe de triângulos apresenta diversas propriedades que, apesar de não serem óbvias,podem ser demonstradas com conceitos de matemática básica,viabilizando o seu ensino nas aulas regulares de matemática.
In this work, we present a study on the triangles that have sides and area that are all integers, hance called Heronian Triangles, well studied in nnumber theory based on Heron¿s formula, which relates the area of a triangle to its three sides.This theme brings the challenge of finding triples of integers that satisfy the conditions of Heron¿s formula, a problem that has been solved since the sixth century by the Indian mathematician Brahmagupta by means of parametrizations. Another enriching factor of this study is that this class of triangles presents several properties that,although not obvious, can be demonstrated with concepts of basic mathematics,facilitating their teaching in regular math classes.
DOHNALOVÁ, Alice. "Heronovské trojúhelníky." Master's thesis, 2010. http://www.nusl.cz/ntk/nusl-54336.
Full text