Academic literature on the topic 'Hermitian metric'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hermitian metric.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hermitian metric"

1

Kawamura, Masaya. "On Kähler-like and G-Kähler-like almost Hermitian manifolds." Complex Manifolds 7, no. 1 (April 3, 2020): 145–61. http://dx.doi.org/10.1515/coma-2020-0009.

Full text
Abstract:
AbstractWe introduce Kähler-like, G-Kähler-like metrics on almost Hermitian manifolds. We prove that a compact Kähler-like and G-Kähler-like almost Hermitian manifold equipped with an almost balanced metric is Kähler. We also show that if a Kähler-like and G-Kähler-like almost Hermitian manifold satisfies B_{\bar i\bar j}^\lambda B_{\lambda j}^i \ge 0, then the metric is almost balanced and the almost complex structure is integrable, which means that the metric is balanced. We investigate a G-Kähler-like almost Hermitian manifold under some assumptions.
APA, Harvard, Vancouver, ISO, and other styles
2

Faran, V, James J. "Hermitian Finsler metrics and the Kobayashi metric." Journal of Differential Geometry 31, no. 3 (1990): 601–25. http://dx.doi.org/10.4310/jdg/1214444630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ALDEA, NICOLETA, and GHEORGHE MUNTEANU. "NEW CANDIDATES FOR A HERMITIAN APPROACH OF GRAVITY." International Journal of Geometric Methods in Modern Physics 10, no. 09 (August 30, 2013): 1350041. http://dx.doi.org/10.1142/s0219887813500412.

Full text
Abstract:
In this paper, some possible candidates for the study of gravity are proposed in terms of complex Finsler geometry. These mainly concern the complex Hermitian versions of weakly gravitational metric and Schwarzschild metric. For the weakly gravitational fields, we state few interesting geometrical and physical aspects such as the conditions under which a complex Finsler metrics are projectively related to the weakly gravitational metric. In the Kähler case, the geodesic curves of the weakly gravitational metric are obtained. Some applications concerning the deformations of the weakly gravitational Hermitian metric to a complex Randers metric are described. Another candidate for gravity is given by so-called Hermitian Schwarzschild metric for which some geodesic curves are highlighted. The last part of the paper is devoted to a generalization of the complex Klein–Gordon equations, in terms of Quantum field theory on a curved space.
APA, Harvard, Vancouver, ISO, and other styles
4

Talmadge, Andrew. "Symmetry breaking via internal geometry." International Journal of Mathematics and Mathematical Sciences 2005, no. 13 (2005): 2023–30. http://dx.doi.org/10.1155/ijmms.2005.2023.

Full text
Abstract:
Gauge theories commonly employ complex vector-valued fields to reduce symmetry groups through the Higgs mechanism of spontaneous symmetry breaking. The geometry of the internal spaceVis tacitly assumed to be the metric geometry of some static, nondynamical hermitian metrick. In this paper, we considerG-principal bundle gauge theories, whereGis a subgroup ofU(V,k)(the unitary transformations on the internal vector spaceVwith hermitian metrick) and we consider allowing the hermitian metric on the internal spaceVto become an additional dynamical element of the theory. We find a mechanism for interpreting the Higgs scalar field as a feature of the geometry of the internal space while retaining the successful aspects of the Higgs mechanism and spontaneous symmetry breaking
APA, Harvard, Vancouver, ISO, and other styles
5

Zelewski, Piotr M. "On the Hermitian-Einstein Tensor of a Complex Homogenous Vector Bundle." Canadian Journal of Mathematics 45, no. 3 (June 1, 1993): 662–72. http://dx.doi.org/10.4153/cjm-1993-037-5.

Full text
Abstract:
AbstractWe prove that any holomorphic, homogenous vector bundle admits a homogenous minimal metric—a metric for which the Hermitian-Einstein tensor is diagonal in a suitable sense. The concept of minimality depends on the choice of the Jordan-Holder filtration of the corresponding parabolic module. We show that the set of all admissible Hermitian-Einstein tensors of certain class of minimal metrics is a convex subset of the euclidean space. As an application, we obtain an algebraic criterion for semistability of homogenous holomorphic vector bundles.
APA, Harvard, Vancouver, ISO, and other styles
6

LIU, KE-FENG, and XIAO-KUI YANG. "GEOMETRY OF HERMITIAN MANIFOLDS." International Journal of Mathematics 23, no. 06 (May 6, 2012): 1250055. http://dx.doi.org/10.1142/s0129167x12500553.

Full text
Abstract:
On Hermitian manifolds, the second Ricci curvature tensors of various metric connections are closely related to the geometry of Hermitian manifolds. By refining the Bochner formulas for any Hermitian complex vector bundle (and Riemannian real vector bundle) with an arbitrary metric connection over a compact Hermitian manifold, we can derive various vanishing theorems for Hermitian manifolds and complex vector bundles by the second Ricci curvature tensors. We will also introduce a natural geometric flow on Hermitian manifolds by using the second Ricci curvature tensor.
APA, Harvard, Vancouver, ISO, and other styles
7

Salimov, Arif. "On anti-Hermitian metric connections." Comptes Rendus Mathematique 352, no. 9 (September 2014): 731–35. http://dx.doi.org/10.1016/j.crma.2014.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mostafazadeh, Ali. "Pseudo-Hermitian quantum mechanics with unbounded metric operators." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1989 (April 28, 2013): 20120050. http://dx.doi.org/10.1098/rsta.2012.0050.

Full text
Abstract:
I extend the formulation of pseudo-Hermitian quantum mechanics to η + -pseudo-Hermitian Hamiltonian operators H with an unbounded metric operator η + . In particular, I give the details of the construction of the physical Hilbert space, observables and equivalent Hermitian Hamiltonian for the case that H has a real and discrete spectrum and its eigenvectors belong to the domain of η + and consequently .
APA, Harvard, Vancouver, ISO, and other styles
9

,, Haripamyu, Jenizon ,, and I. Made Arnawa. "Metrik Finsler Pseudo-Konveks Kuat pada Bundel Vektor Holomorfik." Jurnal Matematika 7, no. 1 (June 10, 2017): 12. http://dx.doi.org/10.24843/jmat.2017.v07.i01.p78.

Full text
Abstract:
Abstract: Rizza-negativity of holomorphic vector bundle is a sufficient condition for the negativity of . In the present paper, we shall discuss that as a special case, using the Rizza metric which is derived from a Hermitian metric also implies the negativity of . Further we showed that for the negative holomorphic vector bundle there is a pseudo-convex Finsler metric with negative curvature. Keywords: Hermitian metric, Rizza metric, Rizza-negativity.
APA, Harvard, Vancouver, ISO, and other styles
10

VERGARA-DIAZ, E., and C. M. WOOD. "HARMONIC CONTACT METRIC STRUCTURES AND SUBMERSIONS." International Journal of Mathematics 20, no. 02 (February 2009): 209–25. http://dx.doi.org/10.1142/s0129167x09005224.

Full text
Abstract:
We study harmonic almost contact structures in the context of contact metric manifolds, and an analysis is carried out when such a manifold fibres over an almost Hermitian manifold, as exemplified by the Boothby–Wang fibration. Two types of almost contact metric warped products are also studied, relating their harmonicity to that of the almost Hermitian structure on the base or fibre.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hermitian metric"

1

Musumbu, Dibwe Pierrot. "The metric for non-Hermitian Hamiltonians : a case study." Thesis, Stellenbosch : Stellenbosch University, 2006. http://hdl.handle.net/10019.1/17403.

Full text
Abstract:
Thesis (MSc)--University of Stellenbosch, 2006.
ENGLISH ABSTRACT: We are studying a possible implementation of an appropriate framework for a proper non- Hermitian quantum theory. We present the case where for a non-Hermitian Hamiltonian with real eigenvalues, we define a new inner product on the Hilbert space with respect to which the non-Hermitian Hamiltonian is Quasi-Hermitian. The Quasi-hermiticity of the Hamiltonian introduces the bi-orthogonality between the left-hand eigenstates and the right-hand eigenstates, in which case the metric becomes a basis transformation. We use the non-Hermitian quadratic Hamiltonian to show that such a metric is not unique but can be uniquely defined by requiring to hermitize all elements of one of the irreducible sets defined on the set of all observables. We compare the constructed metric with specific known examples in the literature in which cases a unique choice is made.
AFRIKAANSE OPSOMMING: Ons ondersoek die implementering van n gepaste raamwerk virn nie-Hermitiese kwantumteorie. Ons beskoun nie-Hermitiese Hamilton-operator met reele eiewaardes en definieer in gepaste binneproduk ten opsigtewaarvan die operator kwasi-Hermitiese is. Die kwasi- Hermities aard van die Hamilton operator lei dan tot n stel bi-ortogonale toestande. Ons konstrueer n basistransformasie wat die linker en regter eietoestande van hierdie stel koppel. Hierdie transformasie word dan gebruik omn nuwe binneproduk op die Hilbert-ruimte te definieer. Die oorspronklike nie-HermitieseHamilton-operator is danHermitiesmet betrekking tot hierdie nuwe binneproduk. Ons gebruik die nie-Hermitiese kwadratieseHamilton-operator omte toon dat hierdie metriek nie uniek is nie, maar wel uniek bepaal kan word deur verder te vereis dat dit al die elemente van n onherleibare versameling operatoreHermitiseer. Ons vergelyk hierdie konstruksiemet die bekende voorbeelde in die literatuur en toon dat diemetriek in beide gevalle uniek bepaal kan word.
APA, Harvard, Vancouver, ISO, and other styles
2

Barberis, Maria Laura, and barberis@mate uncor edu. "Homogeneous Hyper-Hermitian Metrics Which are Conformally." ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi925.ps.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Roth, John Charles. "Perturbations of Kähler-Einstein metrics /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/5737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Silva, Neiton Pereira da. "Metricas de Einstein e estruturas Hermitianas invariantes em variedades bandeira." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306785.

Full text
Abstract:
Orientadores: Caio Jose Colleti Negreiros, Nir Cohen
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-14T14:44:13Z (GMT). No. of bitstreams: 1 Silva_NeitonPereirada_D.pdf: 4231710 bytes, checksum: af4dc57e0a7215547662f87d1744bb27 (MD5) Previous issue date: 2009
Resumo: Neste trabalho encontramos todas as métricas de Einstein invariantes em quatro famílias de variedades bandeira do tipo B1 e C1. Os nossos resultados são consistentes com a conjectura de Wang e Ziller sobre a finitude das métricas de Einstein. O nosso método para resolver as equações de Einstein e baseado nas simetrias do sistema algébrico. Obtemos os sistemas algébricos de Einstein para variedades bandeira generalizadas do tipo B1 C1e G2. Estes sistemas são as condições necessárias e suficientes para métricas invariantes nessas variedades serem Einstein. Os sistemas algébricos que obtivemos generalizam as equações de Einstein obtidas por Sakane nos casos maximais. As equações nos casos Al e Dl foram obtidas por Arvanitoyeorgos. Calculamos o conjunto das trazes para as variedades bandeira generalizadas dos grupos de Lie clássicos. Assim estendemos à essas variedades certos resultados sobre estruturas Hermitianas invariantes obtidos por San Martin, Cohen e Negreiros.
Abstract: In this work we and all the invariant Einstein metrics on four families of ag manifolds of type Bl and Cl. Our results are consistent with the finiteness conjecture of Einstein metrics proposed by Wang and Ziller. Our approach for solving the Einstein equations is based on the symmetries of the algebraic system. We obtain the Einstein algebraic systems for the generalized ag manifolds of type Bl, Cl and G2. These systems are necessary and sufficient conditions for invariant metrics on these manifolds to be Einstein. The algebraic systems that we obtained generalize the Einstein equations obtained by Sakane in the maximal cases. The equations in the cases Al and Dl were obtained by Arvanitoyeorgos. We calculate all the t-roots on the generalized ag manifolds of the classical Lie groups. Thus we extend to these manifolds certain results on invariant structures Hermitian obtained by San Martin, Cohen and Negreiros.
Doutorado
Geometria Diferencial
Doutor em Matemática
APA, Harvard, Vancouver, ISO, and other styles
5

Ben, Ahmed Ali. "Géométrie et dynamique des structures Hermite-Lorentz." Thesis, Lyon, École normale supérieure, 2013. http://www.theses.fr/2013ENSL0824.

Full text
Abstract:
Dans la veine du programme d'Erlangen de Klein, travaux d'E. Cartan, M. Gromov, et d'autres, ce travail se trouve à cheval, entre la géométrie et les actions de groupes. Le thème global serait de comprendre les groupes d'isométries des variétés pseudo-riemanniennes. Plus précisément, suivant une "conjecture vague" de Gromov, classifier les variétés pseudo-riemanniennes dont le groupe d'isométries agit non-proprement, i.e. que son action ne préserve pas de métrique riemannienne auxiliaire?Plusieurs travaux ont été accomplis dans le cas des métriques lorentziennes (i.e. de signature (- +...+)). En revanche, le cas pseudo-riemannien général semble hors de portée.Les structures Hermite-Lorentz se trouvent entre le cas lorentzien et le premier cas pseudo-riemannien général, i.e. de signature (- - +…+). De plus, elle se définit sur des variétés complexes, et promet une extra-rigidité. Plus précisément, une structure Hermite-Lorentz sur une variété complexe consiste en une métrique pseudo-riemannienne de signature (- - +…+) qui est hermitienne au sens qu'elle est invariante par la structure presque complexe. Par analogie au cas hermitien classique, on définit naturellement une notion de métrique Kähler-Lorentz.Comme exemple, on a l'espace de Minkowski complexe ; dans un certain sens, on a un temps de dimension 1 complexe (du point de vue réel, le temps est 2-dimensionnel). On a également l'espace de Sitter et anti de Sitter complexes. Ils ont une courbure holomorphe constante, et généralisent dans ce sens les espaces projectifs et hyperboliques complexes.Cette thèse porte sur les variétés Hermite-Lorentz homogènes. En plus des exemples cités, il y a deux autres espaces symétriques, qui peuvent naturellement jouer le rôle de complexification des espaces de Sitter et anti de Sitter réels.Le résultat principal de la thèse est un théorème de rigidité de ces espaces symétriques : tout espace Hermite-Lorentz homogène à isotropie irréductible est l'un des cinq espaces symétriques précédents. D'autres résultats concernent le cas où l'on remplace l'hypothèse d'irréductibilité par le fait que le groupe d'isométries soit semi-simple
In the vein of Klein's Erlangen program, the research works of E. Cartan, M.Gromov and others, this work straddles between geometry and group actions. The overall theme is to understand the isometry groups of pseudo-Riemannian manifolds. Precisely, following a "vague conjecture" of Gromov, our aim is to classify Pseudo-Riemannian manifolds whose isometry group act’s not properly, i.e that it’s action does not preserve any auxiliary Riemannian metric. Several studies have been made in the case of the Lorentzian metrics (i.e of signature (- + .. +)). However, general pseudo-Riemannian case seems out of reach. The Hermite-Lorentz structures are between the Lorentzian case and the former general pseudo-Riemannian, i.e of signature (- -+ ... +). In addition, it’s defined on complex manifolds, and promises an extra-rigidity. More specifically, a Hermite-Lorentz structure on a complex manifold is a pseudo-Riemannian metric of signature (- -+ ... +), which is Hermitian in the sense that it’s invariant under the almost complex structure. By analogy with the classical Hermitian case, we naturally define a notion of Kähler-Lorentz metric. We cite as example the complex Minkowski space in where, in a sense, we have a one-dimensional complex time (the real point of view, the time is two-dimensional). We cite also the de Sitter and Anti de Sitter complex spaces. They have a constant holomorphic curvature, and generalize in this direction the projective and complex hyperbolic spaces.This thesis focuses on the Hermite-Lorentz homogeneous spaces. In addition with given examples, two other symmetric spaces can naturally play the role of complexification of the de Sitter and anti de Sitter real spaces.The main result of the thesis is a rigidity theorem of these symmetric spaces: any space Hermite-Lorentz isotropy irreducible homogeneous is one of the five previous symmetric spaces. Other results concern the case where we replace the irreducible hypothesis by the fact that the isometry group is semisimple
APA, Harvard, Vancouver, ISO, and other styles
6

Tshikunguila, Tshikuna-Matamba. "The differential geometry of the fibres of an almost contract metric submersion." Thesis, 2013. http://hdl.handle.net/10500/18622.

Full text
Abstract:
Almost contact metric submersions constitute a class of Riemannian submersions whose total space is an almost contact metric manifold. Regarding the base space, two types are studied. Submersions of type I are those whose base space is an almost contact metric manifold while, when the base space is an almost Hermitian manifold, then the submersion is said to be of type II. After recalling the known notions and fundamental properties to be used in the sequel, relationships between the structure of the fibres with that of the total space are established. When the fibres are almost Hermitian manifolds, which occur in the case of a type I submersions, we determine the classes of submersions whose fibres are Kählerian, almost Kählerian, nearly Kählerian, quasi Kählerian, locally conformal (almost) Kählerian, Gi-manifolds and so on. This can be viewed as a classification of submersions of type I based upon the structure of the fibres. Concerning the fibres of a type II submersions, which are almost contact metric manifolds, we discuss how they inherit the structure of the total space. Considering the curvature property on the total space, we determine its corresponding on the fibres in the case of a type I submersions. For instance, the cosymplectic curvature property on the total space corresponds to the Kähler identity on the fibres. Similar results are obtained for Sasakian and Kenmotsu curvature properties. After producing the classes of submersions with minimal, superminimal or umbilical fibres, their impacts on the total or the base space are established. The minimality of the fibres facilitates the transference of the structure from the total to the base space. Similarly, the superminimality of the fibres facilitates the transference of the structure from the base to the total space. Also, it is shown to be a way to study the integrability of the horizontal distribution. Totally contact umbilicity of the fibres leads to the asymptotic directions on the total space. Submersions of contact CR-submanifolds of quasi-K-cosymplectic and quasi-Kenmotsu manifolds are studied. Certain distributions of the under consideration submersions induce the CR-product on the total space.
Mathematical Sciences
D. Phil. (Mathematics)
APA, Harvard, Vancouver, ISO, and other styles
7

Sun, Jian. "Kähler-Einstein metrics and Sobolev inequality /." 2000. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:9965165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tong, Cheng Yu. "On the Kahler Ricci flow, positive curvature in Hermitian geometry and non-compact Calabi-Yau metrics." Thesis, 2021. https://doi.org/10.7916/d8-mcn0-2p05.

Full text
Abstract:
In this thesis, we study three problems in complex geometry. In the first part, we study the behavior of the Kahler-Ricci flow on complete non-compact manifolds with negative holomorphic curvature. We show that Kahler-Ricci flow converges to a Kahler-Einstein metric when the initial manifold admits a suitable exhaustion function, thus improving upon a result of D. Wu and S.T. Yau. These results are partly obtained in joint work with S. Huang, M.-C. Lee and L.-F. Tam. In the second part of this thesis, we introduce a new Kodaira-Bochner type formula for closed (1, 1)-form in non-Kahler geometry. Based on this new formula, We propose a new curvature positivity condition in non-Kahler manifolds and proved a strong rigidity type theorem for manifolds satisfying this curvature positivity condition. We also find interesting examples non-Kahler manifolds satisfying the curvature positivity condition in a class of manifolds called Vaisman manifolds. In the third part of this thesis, we study the degenerations of asymptotically conical Calabi-Yau manifolds as the Kahler class degenerates to a non-Kahler class. Under suitable hypothesis, we prove the convergence of asymptotically conical Calabi-Yau metrics to a singular asymptotically conical Calabi-Yau current with compactly supported singularities. Using this, we construct singular asymptotically conical Calabi-Yau metrics on non-compact singular varieties and identify the topology of these singular metrics with the singular variety. We also give some interpretations of these asymptotically conical Calabi-Yau metrics from the point of view of physics. These results are obtained in joint work with T. Collins and B. Guo.
APA, Harvard, Vancouver, ISO, and other styles
9

(9132815), Kuang-Ru Wu. "Hermitian-Yang-Mills Metrics on Hilbert Bundles and in the Space of Kahler Potentials." Thesis, 2020.

Find full text
Abstract:
The two main results in this thesis have a common point: Hermitian--Yang--Mills (HYM) metrics. In the first result, we address a Dirichlet problem for the HYM equations in bundles of infinite rank over Riemann surfaces. The solvability has been known since the work of Donaldson \cite{Donaldson92} and Coifman--Semmes \cite{CoifmanSemmes93}, but only for bundles of finite rank. So the novelty of our first result is to show how to deal with infinite rank bundles. The key is an a priori estimate obtained from special feature of the HYM equation.
In the second result, we take on the topic of the so-called ``geometric quantization." This is a vast subject. In one of its instances the aim is to approximate the space of K\"ahler potentials by a sequence of finite dimensional spaces. The approximation of a point or a geodesic in the space of K\"ahler potentials is well-known, and it has many applications in K\"ahler geometry. Our second result concerns the approximation of a Wess--Zumino--Witten type equation in the space of K\"ahler potentials via HYM equations, and it is an extension of the point/geodesic approximation.
APA, Harvard, Vancouver, ISO, and other styles
10

Stemmler, Matthias [Verfasser]. "Stability and Hermitian-Einstein metrics for vector bundles on framed manifolds / vorgelegt von Matthias Stemmler." 2009. http://d-nb.info/1003965474/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hermitian metric"

1

Metric rigidity theorems on Hermitian locally symmetric manifolds. Singapore: World Scientific, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kähler-Einstein metrics and integral invariants. Berlin: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Siu, Yum-Tong. Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

ADS/CFT CORRESPONDENCE: Einstein metrics and their conformal boundaries. Zürich: EUROPEAN MATHEMATICAL SOCIETY, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Siu, Yum-Tong. Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics: Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986. Basel: Birkhäuser Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tong, Cheng Yu. On the Kahler Ricci flow, positive curvature in Hermitian geometry and non-compact Calabi-Yau metrics. [New York, N.Y.?]: [publisher not identified], 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1950-, Mabuchi Toshiki, Mukai Shigeru 1953-, and International Tanaguchi Symposium (27th : 1990 : Sanda-shi, Japan), eds. Einstein metrics and Yang-Mills connections: Proceedings of the 27th Taniguchi international symposium. New York: M. Dekker, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Siu, Yum-Tong. Lectures on Hermitian-Einstein Metric for Stable Bundles and Kahler-Einstein Metrics (DMV Seminar). Birkhauser Verlag AG, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

AdS/CFT correspondence: Einstein metrics and their conformal boundaries : 73rd meeting of theoretical physicists and mathematicians, Strasbourg, September 11-13, 2003. Zürich: European Mathematical Society, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ads/Cft Correspondence: Einstein Metrics and Their Conformal Boundaries: 73rd Meeting of Theoretical Physicists and Mathematicians .. (IRMA Lectures in Mathematics & Theoretical Physics). A S M International, Incorporated, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hermitian metric"

1

Trombetti, Rocco, and Ferdinando Zullo. "Hermitian Rank-Metric Codes." In Trends in Mathematics, 423–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83823-2_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cho, Yong Seung. "Gromov–Witten Invariants on the Products of Almost Contact Metric Manifolds." In Hermitian–Grassmannian Submanifolds, 165–73. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5556-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cabanes, Yann, Frédéric Barbaresco, Marc Arnaudon, and Jérémie Bigot. "Toeplitz Hermitian Positive Definite Matrix Machine Learning Based on Fisher Metric." In Lecture Notes in Computer Science, 261–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26980-7_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deza, Michel Marie, and Elena Deza. "Riemannian and Hermitian Metrics." In Encyclopedia of Distances, 133–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44342-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Deza, Michel Marie, and Elena Deza. "Riemannian and Hermitian Metrics." In Encyclopedia of Distances, 125–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30958-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Deza, Michel Marie, and Elena Deza. "Riemannian and Hermitian Metrics." In Encyclopedia of Distances, 135–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52844-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Damailly, Jean-Pierre. "Singular hermitian metrics on positive line bundles." In Lecture Notes in Mathematics, 87–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0094512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Siu, Yum-Tong. "The Heat Equation Approach to Hermitian-Einstein Metrics on Stable Bundles." In Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, 11–84. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Siu, Yum-Tong. "Kähler-Einstein Metrics for the Case of Negative and Zero Anticanonical Class." In Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, 85–115. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Siu, Yum-Tong. "Uniqueness of Kähler-Einstein Metrics up to Biholomorphisms." In Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, 116–46. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hermitian metric"

1

MANEV, MANCHO. "TANGENT BUNDLES WITH SASAKI METRIC AND ALMOST HYPERCOMPLEX PSEUDO-HERMITIAN STRUCTURE." In Proceedings in Honor of Professor K Sekigawa's 60th Birthday. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701701_0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hermitian metric"

1

Manev, Hristo. Almost Hypercomplex Manifolds with Hermitian‒Norden Metrics and 4‑dimensional Indecomposable Real Lie Algebras Depending on Two Parameters. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, May 2020. http://dx.doi.org/10.7546/crabs.2020.05.01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography