Academic literature on the topic 'Hermitian metric'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hermitian metric.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hermitian metric"
Kawamura, Masaya. "On Kähler-like and G-Kähler-like almost Hermitian manifolds." Complex Manifolds 7, no. 1 (April 3, 2020): 145–61. http://dx.doi.org/10.1515/coma-2020-0009.
Full textFaran, V, James J. "Hermitian Finsler metrics and the Kobayashi metric." Journal of Differential Geometry 31, no. 3 (1990): 601–25. http://dx.doi.org/10.4310/jdg/1214444630.
Full textALDEA, NICOLETA, and GHEORGHE MUNTEANU. "NEW CANDIDATES FOR A HERMITIAN APPROACH OF GRAVITY." International Journal of Geometric Methods in Modern Physics 10, no. 09 (August 30, 2013): 1350041. http://dx.doi.org/10.1142/s0219887813500412.
Full textTalmadge, Andrew. "Symmetry breaking via internal geometry." International Journal of Mathematics and Mathematical Sciences 2005, no. 13 (2005): 2023–30. http://dx.doi.org/10.1155/ijmms.2005.2023.
Full textZelewski, Piotr M. "On the Hermitian-Einstein Tensor of a Complex Homogenous Vector Bundle." Canadian Journal of Mathematics 45, no. 3 (June 1, 1993): 662–72. http://dx.doi.org/10.4153/cjm-1993-037-5.
Full textLIU, KE-FENG, and XIAO-KUI YANG. "GEOMETRY OF HERMITIAN MANIFOLDS." International Journal of Mathematics 23, no. 06 (May 6, 2012): 1250055. http://dx.doi.org/10.1142/s0129167x12500553.
Full textSalimov, Arif. "On anti-Hermitian metric connections." Comptes Rendus Mathematique 352, no. 9 (September 2014): 731–35. http://dx.doi.org/10.1016/j.crma.2014.07.004.
Full textMostafazadeh, Ali. "Pseudo-Hermitian quantum mechanics with unbounded metric operators." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1989 (April 28, 2013): 20120050. http://dx.doi.org/10.1098/rsta.2012.0050.
Full text,, Haripamyu, Jenizon ,, and I. Made Arnawa. "Metrik Finsler Pseudo-Konveks Kuat pada Bundel Vektor Holomorfik." Jurnal Matematika 7, no. 1 (June 10, 2017): 12. http://dx.doi.org/10.24843/jmat.2017.v07.i01.p78.
Full textVERGARA-DIAZ, E., and C. M. WOOD. "HARMONIC CONTACT METRIC STRUCTURES AND SUBMERSIONS." International Journal of Mathematics 20, no. 02 (February 2009): 209–25. http://dx.doi.org/10.1142/s0129167x09005224.
Full textDissertations / Theses on the topic "Hermitian metric"
Musumbu, Dibwe Pierrot. "The metric for non-Hermitian Hamiltonians : a case study." Thesis, Stellenbosch : Stellenbosch University, 2006. http://hdl.handle.net/10019.1/17403.
Full textENGLISH ABSTRACT: We are studying a possible implementation of an appropriate framework for a proper non- Hermitian quantum theory. We present the case where for a non-Hermitian Hamiltonian with real eigenvalues, we define a new inner product on the Hilbert space with respect to which the non-Hermitian Hamiltonian is Quasi-Hermitian. The Quasi-hermiticity of the Hamiltonian introduces the bi-orthogonality between the left-hand eigenstates and the right-hand eigenstates, in which case the metric becomes a basis transformation. We use the non-Hermitian quadratic Hamiltonian to show that such a metric is not unique but can be uniquely defined by requiring to hermitize all elements of one of the irreducible sets defined on the set of all observables. We compare the constructed metric with specific known examples in the literature in which cases a unique choice is made.
AFRIKAANSE OPSOMMING: Ons ondersoek die implementering van n gepaste raamwerk virn nie-Hermitiese kwantumteorie. Ons beskoun nie-Hermitiese Hamilton-operator met reele eiewaardes en definieer in gepaste binneproduk ten opsigtewaarvan die operator kwasi-Hermitiese is. Die kwasi- Hermities aard van die Hamilton operator lei dan tot n stel bi-ortogonale toestande. Ons konstrueer n basistransformasie wat die linker en regter eietoestande van hierdie stel koppel. Hierdie transformasie word dan gebruik omn nuwe binneproduk op die Hilbert-ruimte te definieer. Die oorspronklike nie-HermitieseHamilton-operator is danHermitiesmet betrekking tot hierdie nuwe binneproduk. Ons gebruik die nie-Hermitiese kwadratieseHamilton-operator omte toon dat hierdie metriek nie uniek is nie, maar wel uniek bepaal kan word deur verder te vereis dat dit al die elemente van n onherleibare versameling operatoreHermitiseer. Ons vergelyk hierdie konstruksiemet die bekende voorbeelde in die literatuur en toon dat diemetriek in beide gevalle uniek bepaal kan word.
Barberis, Maria Laura, and barberis@mate uncor edu. "Homogeneous Hyper-Hermitian Metrics Which are Conformally." ESI preprints, 2000. ftp://ftp.esi.ac.at/pub/Preprints/esi925.ps.
Full textRoth, John Charles. "Perturbations of Kähler-Einstein metrics /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/5737.
Full textSilva, Neiton Pereira da. "Metricas de Einstein e estruturas Hermitianas invariantes em variedades bandeira." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306785.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-14T14:44:13Z (GMT). No. of bitstreams: 1 Silva_NeitonPereirada_D.pdf: 4231710 bytes, checksum: af4dc57e0a7215547662f87d1744bb27 (MD5) Previous issue date: 2009
Resumo: Neste trabalho encontramos todas as métricas de Einstein invariantes em quatro famílias de variedades bandeira do tipo B1 e C1. Os nossos resultados são consistentes com a conjectura de Wang e Ziller sobre a finitude das métricas de Einstein. O nosso método para resolver as equações de Einstein e baseado nas simetrias do sistema algébrico. Obtemos os sistemas algébricos de Einstein para variedades bandeira generalizadas do tipo B1 C1e G2. Estes sistemas são as condições necessárias e suficientes para métricas invariantes nessas variedades serem Einstein. Os sistemas algébricos que obtivemos generalizam as equações de Einstein obtidas por Sakane nos casos maximais. As equações nos casos Al e Dl foram obtidas por Arvanitoyeorgos. Calculamos o conjunto das trazes para as variedades bandeira generalizadas dos grupos de Lie clássicos. Assim estendemos à essas variedades certos resultados sobre estruturas Hermitianas invariantes obtidos por San Martin, Cohen e Negreiros.
Abstract: In this work we and all the invariant Einstein metrics on four families of ag manifolds of type Bl and Cl. Our results are consistent with the finiteness conjecture of Einstein metrics proposed by Wang and Ziller. Our approach for solving the Einstein equations is based on the symmetries of the algebraic system. We obtain the Einstein algebraic systems for the generalized ag manifolds of type Bl, Cl and G2. These systems are necessary and sufficient conditions for invariant metrics on these manifolds to be Einstein. The algebraic systems that we obtained generalize the Einstein equations obtained by Sakane in the maximal cases. The equations in the cases Al and Dl were obtained by Arvanitoyeorgos. We calculate all the t-roots on the generalized ag manifolds of the classical Lie groups. Thus we extend to these manifolds certain results on invariant structures Hermitian obtained by San Martin, Cohen and Negreiros.
Doutorado
Geometria Diferencial
Doutor em Matemática
Ben, Ahmed Ali. "Géométrie et dynamique des structures Hermite-Lorentz." Thesis, Lyon, École normale supérieure, 2013. http://www.theses.fr/2013ENSL0824.
Full textIn the vein of Klein's Erlangen program, the research works of E. Cartan, M.Gromov and others, this work straddles between geometry and group actions. The overall theme is to understand the isometry groups of pseudo-Riemannian manifolds. Precisely, following a "vague conjecture" of Gromov, our aim is to classify Pseudo-Riemannian manifolds whose isometry group act’s not properly, i.e that it’s action does not preserve any auxiliary Riemannian metric. Several studies have been made in the case of the Lorentzian metrics (i.e of signature (- + .. +)). However, general pseudo-Riemannian case seems out of reach. The Hermite-Lorentz structures are between the Lorentzian case and the former general pseudo-Riemannian, i.e of signature (- -+ ... +). In addition, it’s defined on complex manifolds, and promises an extra-rigidity. More specifically, a Hermite-Lorentz structure on a complex manifold is a pseudo-Riemannian metric of signature (- -+ ... +), which is Hermitian in the sense that it’s invariant under the almost complex structure. By analogy with the classical Hermitian case, we naturally define a notion of Kähler-Lorentz metric. We cite as example the complex Minkowski space in where, in a sense, we have a one-dimensional complex time (the real point of view, the time is two-dimensional). We cite also the de Sitter and Anti de Sitter complex spaces. They have a constant holomorphic curvature, and generalize in this direction the projective and complex hyperbolic spaces.This thesis focuses on the Hermite-Lorentz homogeneous spaces. In addition with given examples, two other symmetric spaces can naturally play the role of complexification of the de Sitter and anti de Sitter real spaces.The main result of the thesis is a rigidity theorem of these symmetric spaces: any space Hermite-Lorentz isotropy irreducible homogeneous is one of the five previous symmetric spaces. Other results concern the case where we replace the irreducible hypothesis by the fact that the isometry group is semisimple
Tshikunguila, Tshikuna-Matamba. "The differential geometry of the fibres of an almost contract metric submersion." Thesis, 2013. http://hdl.handle.net/10500/18622.
Full textMathematical Sciences
D. Phil. (Mathematics)
Sun, Jian. "Kähler-Einstein metrics and Sobolev inequality /." 2000. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:9965165.
Full textTong, Cheng Yu. "On the Kahler Ricci flow, positive curvature in Hermitian geometry and non-compact Calabi-Yau metrics." Thesis, 2021. https://doi.org/10.7916/d8-mcn0-2p05.
Full text(9132815), Kuang-Ru Wu. "Hermitian-Yang-Mills Metrics on Hilbert Bundles and in the Space of Kahler Potentials." Thesis, 2020.
Find full textStemmler, Matthias [Verfasser]. "Stability and Hermitian-Einstein metrics for vector bundles on framed manifolds / vorgelegt von Matthias Stemmler." 2009. http://d-nb.info/1003965474/34.
Full textBooks on the topic "Hermitian metric"
Metric rigidity theorems on Hermitian locally symmetric manifolds. Singapore: World Scientific, 1989.
Find full textKähler-Einstein metrics and integral invariants. Berlin: Springer-Verlag, 1988.
Find full textSiu, Yum-Tong. Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1.
Full textADS/CFT CORRESPONDENCE: Einstein metrics and their conformal boundaries. Zürich: EUROPEAN MATHEMATICAL SOCIETY, 2005.
Find full textSiu, Yum-Tong. Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics: Delivered at the German Mathematical Society Seminar in Düsseldorf in June, 1986. Basel: Birkhäuser Verlag, 1987.
Find full textTong, Cheng Yu. On the Kahler Ricci flow, positive curvature in Hermitian geometry and non-compact Calabi-Yau metrics. [New York, N.Y.?]: [publisher not identified], 2021.
Find full text1950-, Mabuchi Toshiki, Mukai Shigeru 1953-, and International Tanaguchi Symposium (27th : 1990 : Sanda-shi, Japan), eds. Einstein metrics and Yang-Mills connections: Proceedings of the 27th Taniguchi international symposium. New York: M. Dekker, 1993.
Find full textSiu, Yum-Tong. Lectures on Hermitian-Einstein Metric for Stable Bundles and Kahler-Einstein Metrics (DMV Seminar). Birkhauser Verlag AG, 1989.
Find full textAdS/CFT correspondence: Einstein metrics and their conformal boundaries : 73rd meeting of theoretical physicists and mathematicians, Strasbourg, September 11-13, 2003. Zürich: European Mathematical Society, 2005.
Find full textAds/Cft Correspondence: Einstein Metrics and Their Conformal Boundaries: 73rd Meeting of Theoretical Physicists and Mathematicians .. (IRMA Lectures in Mathematics & Theoretical Physics). A S M International, Incorporated, 2005.
Find full textBook chapters on the topic "Hermitian metric"
Trombetti, Rocco, and Ferdinando Zullo. "Hermitian Rank-Metric Codes." In Trends in Mathematics, 423–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83823-2_66.
Full textCho, Yong Seung. "Gromov–Witten Invariants on the Products of Almost Contact Metric Manifolds." In Hermitian–Grassmannian Submanifolds, 165–73. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5556-0_14.
Full textCabanes, Yann, Frédéric Barbaresco, Marc Arnaudon, and Jérémie Bigot. "Toeplitz Hermitian Positive Definite Matrix Machine Learning Based on Fisher Metric." In Lecture Notes in Computer Science, 261–70. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26980-7_27.
Full textDeza, Michel Marie, and Elena Deza. "Riemannian and Hermitian Metrics." In Encyclopedia of Distances, 133–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44342-2_7.
Full textDeza, Michel Marie, and Elena Deza. "Riemannian and Hermitian Metrics." In Encyclopedia of Distances, 125–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30958-8_7.
Full textDeza, Michel Marie, and Elena Deza. "Riemannian and Hermitian Metrics." In Encyclopedia of Distances, 135–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52844-0_7.
Full textDamailly, Jean-Pierre. "Singular hermitian metrics on positive line bundles." In Lecture Notes in Mathematics, 87–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0094512.
Full textSiu, Yum-Tong. "The Heat Equation Approach to Hermitian-Einstein Metrics on Stable Bundles." In Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, 11–84. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1_1.
Full textSiu, Yum-Tong. "Kähler-Einstein Metrics for the Case of Negative and Zero Anticanonical Class." In Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, 85–115. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1_2.
Full textSiu, Yum-Tong. "Uniqueness of Kähler-Einstein Metrics up to Biholomorphisms." In Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, 116–46. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1_3.
Full textConference papers on the topic "Hermitian metric"
MANEV, MANCHO. "TANGENT BUNDLES WITH SASAKI METRIC AND ALMOST HYPERCOMPLEX PSEUDO-HERMITIAN STRUCTURE." In Proceedings in Honor of Professor K Sekigawa's 60th Birthday. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701701_0013.
Full textReports on the topic "Hermitian metric"
Manev, Hristo. Almost Hypercomplex Manifolds with Hermitian‒Norden Metrics and 4‑dimensional Indecomposable Real Lie Algebras Depending on Two Parameters. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, May 2020. http://dx.doi.org/10.7546/crabs.2020.05.01.
Full text