Academic literature on the topic 'Herb-drug interaction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Herb-drug interaction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Herb-drug interaction"

1

Cheng, Tsung O. "Comment: Drug—Herb Interaction." Annals of Pharmacotherapy 35, no. 1 (January 2001): 124. http://dx.doi.org/10.1177/106002800103500101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shakeel, Faisal, Fang Fang, Kelley M. Kidwell, Lauren A. Marcath, and Daniel L. Hertz. "Comparison of eight screening tools to detect interactions between herbal supplements and oncology agents." Journal of Oncology Pharmacy Practice 26, no. 8 (February 19, 2020): 1843–49. http://dx.doi.org/10.1177/1078155220905009.

Full text
Abstract:
Introduction Patients with cancer are increasingly using herbal supplements, unaware that supplements can interact with oncology treatment. Herb–drug interaction management is critical to ensure optimal treatment outcomes. Several screening tools exist to detect drug–drug interactions, but their performance to detect herb–drug interactions is not known. This study compared the performance of eight drug–drug interaction screening tools to detect herb–drug interaction with anti-cancer agents. Methods The herb–drug interaction detection performance of four subscription (Micromedex, Lexicomp, PEPID, Facts & Comparisons) and free (Drugs.com, Medscape, WebMD, RxList) drug–drug interaction tools was assessed. Clinical relevance of each herb–drug interaction was determined using Natural Medicine and each drug–drug interaction tool. Descriptive statistics were used to calculate sensitivity, specificity, positive predictive value, and negative predictive value. Linear regression was used to compare performance between subscription and free tools. Results All tools had poor sensitivity (<0.20) for detecting herb–drug interaction. Lexicomp had the highest positive predictive value (0.98) and best overall performance score (0.54), while Medscape was the best performing free tool (0.52). The worst subscription tools were as good as or better than the best free tools, and as a group subscription tools outperformed free tools on all metrics. Using an average subscription tool would detect one additional herb–drug interaction for every 10 herb–drug interactions screened by a free tool. Conclusion Lexicomp is the best available tool for screening herb–drug interaction, and Medscape is the best free alternative; however, the sensitivity and performance for detecting herb–drug interaction was far lower than for drug–drug interactions, and overall quite poor. Further research is needed to improve herb–drug interaction screening performance.
APA, Harvard, Vancouver, ISO, and other styles
3

Parvez, Mohammad K., and Vikas Rishi. "Herb-Drug Interactions and Hepatotoxicity." Current Drug Metabolism 20, no. 4 (June 11, 2019): 275–82. http://dx.doi.org/10.2174/1389200220666190325141422.

Full text
Abstract:
Background: In recent times, herbals or phytomedicines have become very popular due to their global acceptance as a complementary and alternative remedy. While modern drugs are commercially available only after laboratory validations, clinical trials, as well as approval from drug regulatory authorities, majority of the marketed herbal products lack such scientific evidence of efficacy and safety. This results in herb or herb-drug interaction induced unfavorable clinical outcomes without crucial documentation on their temporal relations and concomitant use. Methods: An online literature search for peer-reviewed articles was conducted on the PubMed, Europe PMC, Medline and Google Scholar portals, using the phrases: complementary & alternative medicine, traditional Chinese medicine, herb-drug interaction, mechanisms of herb-drug interaction, herb-induced toxicity, herbal hepatotoxicity and causality, traditional medicine, viral hepatitis, etc. Results: The retrieved data showed that globally, patients are attracted to herbal remedies with the misconception that these are completely safe and therefore, use them simultaneously with prescription drugs. Notably, there exists a potential risk of herb-drug interactions leading to some adverse side effects, including hepatotoxicity. The toxicological effect of a drug or herb is due to the inhibition of drug metabolizing enzymes (e.g., cytochrome P450), including interactions with certain prescription drugs through various mechanisms. Several cases of hepatotoxicity due to use of herbals in viral hepatitis-related liver diseases have been recently reported. However, limited experimental data and clinical evidence on herbal pharmacokinetics hamper the evaluation and reporting of adverse reactions and the underlying mechanisms. Conclusion: Herb-drug interaction related morbidity is thus an emerging serious public health issue with broad implications for clinicians, pharmaceutical industries and health authorities. Nonetheless, despite increasing recognition of herb-drug interaction, a standard system for interaction prediction and evaluation is still nonexistent. This review article discusses the herb-drug interactions related hepatotoxicity and underlying mechanisms, including drug metabolizing enzymes and their regulation.
APA, Harvard, Vancouver, ISO, and other styles
4

Cui, Zhijie, Hong Kang, Kailin Tang, Qi Liu, Zhiwei Cao, and Ruixin Zhu. "Screening Ingredients from Herbs against Pregnane X Receptor in the Study of Inductive Herb-Drug Interactions: Combining Pharmacophore and Docking-Based Rank Aggregation." BioMed Research International 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/657159.

Full text
Abstract:
The issue of herb-drug interactions has been widely reported. Herbal ingredients can activate nuclear receptors and further induce the gene expression alteration of drug-metabolizing enzyme and/or transporter. Therefore, the herb-drug interaction will happen when the herbs and drugs are coadministered. This kind of interaction is called inductive herb-drug interactions. Pregnane X Receptor (PXR) and drug-metabolizing target genes are involved in most of inductive herb-drug interactions. To predict this kind of herb-drug interaction, the protocol could be simplified to only screen agonists of PXR from herbs because the relations of drugs with their metabolizing enzymes are well studied. Here, a combinational in silico strategy of pharmacophore modelling and docking-based rank aggregation (DRA) was employed to identify PXR’s agonists. Firstly, 305 ingredients were screened out from 820 ingredients as candidate agonists of PXR with our pharmacophore model. Secondly, DRA was used to rerank the result of pharmacophore filtering. To validate our prediction, a curated herb-drug interaction database was built, which recorded 380 herb-drug interactions. Finally, among the top 10 herb ingredients from the ranking list, 6 ingredients were reported to involve in herb-drug interactions. The accuracy of our method is higher than other traditional methods. The strategy could be extended to studies on other inductive herb-drug interactions.
APA, Harvard, Vancouver, ISO, and other styles
5

Babos, Mary Beth, Michelle Heinan, Linda Redmond, Fareeha Moiz, Joao Victor Souza-Peres, Valerie Samuels, Tarun Masimukku, David Hamilton, Myra Khalid, and Paul Herscu. "Herb–Drug Interactions: Worlds Intersect with the Patient at the Center." Medicines 8, no. 8 (August 5, 2021): 44. http://dx.doi.org/10.3390/medicines8080044.

Full text
Abstract:
This review examines three bodies of literature related to herb–drug interactions: case reports, clinical studies, evaluations found in six drug interaction checking resources. The aim of the study is to examine the congruity of resources and to assess the degree to which case reports signal for further study. A qualitative review of case reports seeks to determine needs and perspectives of case report authors. Methods: Systematic search of Medline identified clinical studies and case reports of interacting herb–drug combinations. Interacting herb–drug pairs were searched in six drug interaction resources. Case reports were analyzed qualitatively for completeness and to identify underlying themes. Results: Ninety-nine case-report documents detailed 107 cases. Sixty-five clinical studies evaluated 93 mechanisms of interaction relevant to herbs reported in case studies, involving 30 different herbal products; 52.7% of these investigations offered evidence supporting reported reactions. Cohen’s kappa found no agreement between any interaction checker and case report corpus. Case reports often lacked full information. Need for further information, attitudes about herbs and herb use, and strategies to reduce risk from interaction were three primary themes in the case report corpus. Conclusions: Reliable herb–drug information is needed, including open and respectful discussion with patients.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Mou-Ze, Yue-Li Zhang, Mei-Zi Zeng, Fa-Zhong He, Zhi-Ying Luo, Jian-Quan Luo, Jia-Gen Wen, Xiao-Ping Chen, Hong-Hao Zhou, and Wei Zhang. "Pharmacogenomics and Herb-Drug Interactions: Merge of Future and Tradition." Evidence-Based Complementary and Alternative Medicine 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/321091.

Full text
Abstract:
The worldwide using of herb products and the increasing potential herb-drug interaction issue has raised enthusiasm on discovering the underlying mechanisms. Previous review indicated that the interactions may be mediated by metabolism enzymes and transporters in pharmacokinetic pathways. On the other hand, an increasing number of studies found that genetic variations showed some influence on herb-drug interaction effects whereas these genetic factors did not draw much attention in history. We highlight that pharmacogenomics may involve the pharmacokinetic or pharmacodynamic pathways to affect herb-drug interaction. We are here to make an updated review focused on some common herb-drug interactions in association with genetic variations, with the aim to help safe use of herbal medicines in different individuals in the clinic.
APA, Harvard, Vancouver, ISO, and other styles
7

Barone, Gary W., Bill J. Gurley, Beverley L. Ketel, Meredith L. Lightfoot, and Sameh R. Abul-Ezz. "Comment: drug–herb interaction—AUTHOR'S REPLY." Annals of Pharmacotherapy 35 (January 2001): 124–25. http://dx.doi.org/10.1345/aph.10088b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sarvesh, Sabarathinam, Preethi L, Haripritha Meganathan, M. Arjun Gokulan, Dhivya Dhanasekaran, Nila Ganamurali, and Rahul Radhakrishnan. "HCIP: An Online database for prediction CYP450 Enzyme Inhibition potential of bioactive compounds." Journal of Drug Delivery and Therapeutics 11, no. 2 (April 1, 2021): 253–55. http://dx.doi.org/10.22270/jddt.v11i2.4637.

Full text
Abstract:
Background: Concomitant administration of herbal medicine and conventional may lead to severe metabolism-oriented herb-drug interactions. However, detecting herb-drug interaction is expensive and higher time-consuming. Several computer-aided techniques have been proposed in recent years to predict drug interactions. However, most of the methods cannot predict herb-drug interactions effectively. Methods: Canonical SMILES of bioactive compounds was gathered from the PubChem online database, and its inhibition details were gathered PKCSM from the webserver. Results: By searching the bioactive compound name in the search bar of “The Herb-CYP450 Enzyme Inhibition Predictor online database” (HCIP- http://hcip.in/), it will provide the liver enzyme inhibition profile of the selected bioactive compound. For example; Guggulsterone: CYP3A4 inhibitor. Conclusion: The Herb-CYP450 Enzyme Inhibition Predictor online database is very peculiar and easy to determine the inhibition profile of the targeted bioactive compound. Keywords: CYP450; Enzyme inhibition; Bioactive Compounds; Online database; Herb-Drug Interaction
APA, Harvard, Vancouver, ISO, and other styles
9

Hossain, Md Nazmul, Nishat Akther, Md Alauddin, Robiul Hasan Bhuiyan, Muhammad Mosaraf Hossain, and Md Abdur Rahaman. "In Vitro Interaction Between Oral Hypoglycemic Drug And Herbal Sex Stimulants: Drug Interactions." European Scientific Journal, ESJ 12, no. 9 (March 30, 2016): 238. http://dx.doi.org/10.19044/esj.2016.v12n9p238.

Full text
Abstract:
Sexual dysfunction is a common, underappreciated complication of diabetes. Male sexual dysfunction among diabetic patients can include disorders of libido, ejaculatory problems, and erectile dysfunction (ED). All three forms of male dysfunction can cause significant bother for diabetic patients and can affect their quality of life. Diabetic patients take oral hypoglycemic drug to control their diabetic as well as take herbal sex stimulants to control to increase the libido. The combined use of herbs and drugs has increased the possibility of herb-drug interactions. The study was undertaken to explore the herb-drug interactions. To investigate the herbdrug interactions an in vitro dissolution study in different simulated pH medium were performed. In this study gliclazide containing tablet of 80mg as oral hypoglycemic drug and different herbal sex stimulants available in local market were used. The release mechanism was explored and explained with zero order, first order and Higuchi equations to identify drug interaction. Higher percentage release of gliclazide was found at simulated phosphate buffer of pH 7.4 compared to gastric medium of pH 1.2 and also in presence of herbal sex stimulants. Increased release pattern of gliclazide by concomitant administration of herbal sex stimulants gives slightly higher absorption, which gives the indication of herb-drug interactions.
APA, Harvard, Vancouver, ISO, and other styles
10

Fasinu, Pius S., Heike Gutmann, Hilmar Schiller, Patrick J. Bouic, and Bernd Rosenkranz. "The potential ofHypoxis hemerocallideafor herb–drug interaction." Pharmaceutical Biology 51, no. 12 (July 11, 2013): 1499–507. http://dx.doi.org/10.3109/13880209.2013.796393.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Herb-drug interaction"

1

Blackwelder, Reid B. "Drug-Herb Interactions." Digital Commons @ East Tennessee State University, 2005. https://dc.etsu.edu/etsu-works/6913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fasinu, Pius Sedowhe. "In vitro assessment of some traditional medications used in South Africa for pharmacokinetics drug interaction potential." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85850.

Full text
Abstract:
Thesis (PhD)--Stellenbosch University, 2013.
ENGLISH ABSTRACT: Introduction Earlier studies have shown the popularity of herbal products among people as traditional, complementary or alternative medication. One of the major clinical risks in the concomitant administration of herbal products and prescription medicine is pharmacokinetic herb-drug interaction (HDI). This is brought about by the ability of phytochemicals to inhibit or induce the activity of metabolic enzymes and transport proteins. The aim of this study was to investigate the potential of the crude extracts of popular medicinal herbs used in South Africa to inhibit major cytochrome P450 (CYP) enzymes and transport proteins through in vitro assessment. Methods Medicinal herbs were obtained from traditional medical practitioners and 15 were selected for this study. The selected herbal products were extracted and incubated with human liver microsomes to monitor the following reactions as markers for the metabolic activities of the respective CYP: phenacetin O-deethylation (CYP1A2), diclofenac 4‟-hydroxylation (CYP2C9), S-mephenytoin 4‟- hydroxylation (CYP2C19) and testosterone 6β-hydroxylation (CYP3A4). In addition, the influence of Lessertia frutescens (formerly Sutherlandia frutescens) and Hypoxis hemerocallidea was investigated on more isozymes: coumarin 7-hydroxylation (CYP2A6), bupropion hydroxylation (CYP2B6), paclitaxel 6α-hydroxylation (CYP2C8), bufuralol 1‟-hydroxylation (CYP2D6), chlorzoxazone 6- hydroxylation (CYP2E1) and midazolam 1‟-hydroxylation (CYP3A4/5). The generation of the CYPspecific substrates/metabolites were monitored and quantified with the aid of LC-MS/MS. The metabolic clearance of midazolam using cryopreserved hepatocytes was monitored in the presence of Lessertia frutescens and Hypoxis hemerocallidea. The potential of both to inhibit human ATP-binding cassette (ABC) transporter activity was assessed using recombinant MDCKII and LLC-PK1 cells overexpressing human breast cancer resistant protein (BCRP) and human P-glycoprotein (P-gp), respectively. Similarly, the potential for interactions with human organic anion transporting polypeptide (OATP1B1 and OATP1B3) was assessed using recombinant HEK293 cells over-expressing OATP1B1 and OATP1B3, respectively. Results Bowiea volubilis, Kedrostis Africana, Chenopodium album, Lessertia frutescens (methanolic extract), Hypoxis hemerocallidea, Spirostachys africana and Lessertia frutescens (aqueous extract), in ascending order of potency demonstrated strong inhibition of CYP1A2 activity (IC50 = 1-100 g/mL). Similarly, Emex australis, Alepidea amatymbica, Pachycarpus concolor, Lessertia frutescens, Capparis sepiaria, Kedrostis africana and Pentanisia prunelloides inhibited CYP2C9 with IC50 less than 100 g/mL. The following demonstrated strong inhibition of CYP2C19 with IC50 values less than 100 g/mL: Acacia karroo, Capparis sepiaria, Chenopodium album, Pachycarpus concolor, Ranunculus multifidus, Lessertia frutescens and Zantedeschia aethiopica. CYP3A4 was inhibited by Lessertia frutescens, Hypoxis hemerocallidea, Spirostachys Africana, Bowiea volubilis, Zantedeschia aethiopica, Chenopodium album, Kedrostis Africana, Acacia karroo, Emex australis, Pachycarpus concolor, Ranunculus multifidus, Capparis sepiaria and Pentanisia prunelloides. Time-dependent (irreversible) inhibition of CYP3A4/5 (KI = 296 μg/mL, kinact = 0.063 min-1) and delay in the production of midazolam metabolites in the human hepatocytes, leading to a 40% decreased midazolam upscaled in vivo clearance, was observed with Lessertia frutescens. Further, Lessertia frutescence inhibited the activity of P-gp (IC50 = 324.8 μg/mL), OATP1B1 (IC50 = 10.4 μg/mL) and OATP1B3 (IC50 = 6.6 μg/mL). Hypoxis hemerocallidea inhibited the activity of OATP1B1 (IC50 = 118.7 μg/mL) and OATP1B3 (IC50 = 290.1 μg/mL) with no potent inhibitory effects on P-gp. None of the two inhibited the activity of BCRP within the tested concentrations. Conclusion The result indicates the potential for HDI between the selected medicinal herbs and the substrates of the enzymes investigated in this study, if sufficient in vivo concentrations are achieved.
AFRIKAANSE OPSOMMING: Inleiding Vroeëre studies het aangedui dat die gebruik van plantaardige produkte as tradisionele, aanvullende en alternatiewe medikasie baie gewild is. Een van die grootste kliniese risiko‟s geassosieer met die gelyktydige gebruik van plantaardige produkte met voorskrifmedikasie is farmakokinetiese kruiegeneesmiddel interaksies (HDI). Hierdie interaksies word veroorsaak deur die vermoë van plantchemikalieë om die aktiwiteit van metaboliese ensieme en transportproteïene te inhibeer of te induseer. Die doel van hierdie studie is om ondersoek in te stel na die moontlikheid van onsuiwer ekstrakte van gewilde Suid-Afrikaanse medisinale kruie om die belangrikste sitochroom P450 (CYP)- ensieme en transportproteïene te inhibeer. Hierdie ondersoek sal plaasvind deur middel van in vitrostudies. Metodes Medisinale kruie is verkry vanaf tradisionele genesers, waaruit ʼn totaal van 15 kruie geselekteer is vir gebruik tydens hierdie studie. Die geselekteerde kruie is geëkstraheer en met menslike lewermikrosome geïnkubeer om die volgende reaksies as merkers vir die metaboliese aktiwiteit van die onderskeie CYP-ensieme te moniteer: fenasetien-O-deëtilasie (CYP1A2), diklofenak-4‟- hidroksilasie (CYP2C9), S-mefenitoïen-4‟-hidroksilasie (CYP2C19) en testosteroon-6β-hidroksilasie (CYP3A4). Afgesien van die voorafgaande, is ook die invloed van Lessertia frutescens en Hypoxis hemerocallidea op verskeie ander iso-ensieme ondersoek. Hierdie iso-ensieme is soos volg: koumarien-7-hidroksilasie (CYP2A6), bupropioonhidroksilasie (CYP2B6), paklitaksiel-6α-hidroksilasie (CYP2C8), bufuralol-1‟-hidroksilasie (CYP2D6), chloorsoksasoon-6-hidroksilasie (CYP2E1) en midasolaam-1‟- hidroksilasie (CYP3A4/5). Die produksie van CYP-spesifieke substrate/metaboliete is gemoniteer en deur middel van LC-MS/MS-analises gekwantifiseer. Die metaboliese opruiming van midasolaam deur middel van krio-gepreserveerde hepatosiete is gemoniteer in die teenwoordigheid van Lessertia frutescens en Hypoxis hemerocallidea. Die moontlikheid van beide om menslike ATPbindingskasset (ABC)-transporteerderaktiwiteit te inhibeer is bepaal deur die gebruik van rekombinante MDCKII- en LLC-PK1-selle wat onderskeidelik menslike borskanker-weerstandige proteïen (BCRP) en menslike P-glikoproteïen (P-gp) potensieel. Op ʼn soortgelyke wyse is die moontlikheid vir interaksies met menslike organiese anion-transportpolipeptiede (OATP1B1 en OATP1B3) bepaal deur rekombinante HEK293-selle te gebruik wat onderskeidelik OATP1B1 en OATP1B3 potensieel. Resultate Bowiea volubilis, Kedrostis Africana, Chenopodium album, Lessertia frutescens (metanol-ekstrak), Hypoxis hemerocallidea, Spirostachys africana en Lessertia frutescens (water-ekstrak), in toenemende potensie, het sterk inhibisie van CYP1A2-aktiwiteit (IC50 = 1-100 g/mL) getoon. In ooreenstemming met die voorafgaande resultate het Emex australis, Alepidea amatymbica, Pachycarpus concolor, Lessertia frutescens, Capparis sepiaria, Kedrostis africana en Pentanisia prunelloides CYP2C9 met IC50–waardes van minder as 100 g/mL geïnhibeer. Die volgende het sterk inhibisie van CYP2C19 met IC50-waardes van minder as 100 g/mL getoon: Acacia karroo, Capparis sepiaria, Chenopodium album, Pachycarpus concolor, Ranunculus multifidus, Lessertia frutescens en Zantedeschia aethiopica. CYP3A4 is deur Lessertia frutescens, Hypoxis hemerocallidea, Spirostachys Africana, Bowiea volubilis, Zantedeschia aethiopica, Chenopodium album, Kedrostis Africana, Acacia karroo, Emex australis, Pachycarpus concolor, Ranunculus multifidus, Capparis sepiaria en Pentanisia prunelloides geïnhibeer. Tydafhanklike (onomkeerbare) inhibisie van CYP3A4/5 (KI = 296 μg/mL, kinact = 0.063 min-1) en vertraging in die produksie van midasolaammetaboliete in menslike hepatosiete wat aanleiding gee tot ʼn 40% afname in midasolaam bepaal in vivo opruiming, is waargeneem met Lessertia frutescens. Lessertia frutescens het ook die aktiwiteit van P-gp (IC50 = 324.8 μg/mL), OATP1B1 (IC50 = 10.4 μg/mL) en OATP1B3 (IC50 = 6.6 μg/mL) geïnhibeer. Hypoxis hemerocallidea het die aktiwiteit van OATP1B1 (IC50 = 118.7 μg/mL) en OATP1B3 (IC50 = 290.1 μg/mL) geïnhibeer met geen betekenisvolle effekte op P-gp nie. Geen een van die twee het die aktiwiteit van BCRP geïnhibeer binne die konsentrasies waarin getoets is nie. Gevolgtrekking Die resultate van hierdie studie dui aan dat wanneer voldoende in vivo-konsentrasies bereik word, die moontlikheid vir kruie-geneesmiddel interaksies tussen die geselekteerde medisinale kruie en ensiemsubstrate ʼn werklikheid word.
APA, Harvard, Vancouver, ISO, and other styles
3

Fang, Yuan Yuan. "In vitro drug-herb interaction potential of African medicinal plant products used by Type II diabetics." Thesis, Nelson Mandela Metropolitan University, 2011. http://hdl.handle.net/10948/1341.

Full text
Abstract:
In Africa, use of medicinal plants for the treatment of diabetes is very common. However, efficacy on co-administering of medicinal plants with therapeutic drugs hasn't been fully determined, especially for African medicinal plants. The current study focused on assessing the in vitro modulation effects of three popular African medicinal plants, namely: Aloe ferox, Sutherlandia frutescens and Prunus africana (including five commercial preparations containing these medicinal plants) on two of the most important anti-diabetic drug metabolising enzymes, Cytochrome P450 (CYP450) 2C9 and CYP3A4 and a key drug efflux transporter, P-glycoprotein (P-gp). Vivid® microsome-based screening kits were used to assess inhibitory potency of plants preparations on CYP2C9 and CYP3A4 enzymes activities. The study showed that P. africana was a more potent inhibitor of CYP2C9 and CYP3A4 activity than the corresponding positive controls Ginkgo biloba and St. John's wort, which are known to cause clinically significant drug-herb interactions. S. frutescens leaf extract demonstrated potent to moderate inhibition on both the tested CYP activities, while its commercial products (Promune® and Probetix®) possessed moderate to mild inhibitory effects on the activities of both CYPs. Potent inhibitory effect on CYP2C9 and CYP3A4 was seen with Aloe Ferox®. Prosit® and Aloes powder® showed potent to moderate inhibition on CYP2C9 activity and moderate to mild inhibition on CYP3A4 activity. In addition to CYP450 activity, the present study also investigated the effects of the selected medicinal plant products on the activity of the main drug efflux protein, P-gp. A screening assay was specifically developed to assess the potential for herbal remedies to interact with P-gp mediated drug absorption. The assay is based on the principle of the reversal of drug resistance in modified Caco-2 cells specifically altered to express high iv efflux protein activity. These cells display a multidrug resistance phenotype and the addition of a plant extract containing a P-gp inhibitor or substrate will inhibit or compete with any cytotoxic drug and consequently reverse the drug resistance. The suitability of the assay was confirmed using a known P-gp inhibitor. The study observed that the anti-proliferation effect of vinblastine was significantly enhanced in vinblastine-resistant Caco-2 cells, which have high P-gp expression, when they were exposed to the selected African herbal preparations. This observation indicates that the studied plant preparations may alter P-gp functionality and therefore lead to interference with the absorption of co-administered drugs. The outcomes of this study provide useful information on whether there are any potential drug-herb interactions between the commonly used African medicinal plants and oral anti-diabetic drugs, at the level of CYP and P-gp drug metabolism and could contribute to better therapeutic management of Type II diabetics. However these predicted interactions will need to be verified in a clinical setting.
APA, Harvard, Vancouver, ISO, and other styles
4

Jiang, Xuemin. "Effect of herbal medicines on the pharmacokinetics and pharmacodynamics of Warfarin in healthy subjects." University of Sydney. Pharmacy, 2004. http://hdl.handle.net/2123/651.

Full text
Abstract:
Herbal medicines are widely used in our community. A survey of Australian consumers indicated that 60% had used complementary and/or alternative medicines in the past year with the majority not informing their doctor that they were using herbal medicines. Little is known about the potentially serious consequences of interactions between herbal and conventional medicines. Warfarin has an important role in treating people with heart disease, yet it has a narrow therapeutic range, is highly bound to plasma proteins, and is metabolised by cytochrome P450. This creates the potential for life-threatening interactions with other drugs and foods leading to excessive bleeding. Hence, warfarin is one of the most frequently investigated drugs for interaction studies. Early clinical reports suggest that there exists the potential for an interaction between warfarin and four herbal medicines: St John�s wort, ginseng, ginkgo and ginger. However, these herb-drug combinations have never been conclusively studied. The two clinical studies conducted as part of this research had an identical study design. Twenty-four healthy male subjects were recruited into the two separate studies. This was an open label, three-way crossover randomised study in twelve healthy male subjects, who received a single 25 mg dose of warfarin alone or after 14 days pre-treatment with St John�s wort, or 7 days pre-treatment with ginseng. Dosing with St John�s wort or ginseng was continued for 7 days after administration of the warfarin dose in study I or who received a single 25 mg dose of warfarin alone or after 7 days pre-treatment with recommended doses of ginkgo or ginger from single ingredient products of known quality. Dosing with ginkgo or ginger was continued for 7 days after administration of the warfarin dose in study II. Platelet aggregation, international normalised ratio (INR) of prothrombin time, warfarin enantiomer protein binding, warfarin enantiomer concentrations in plasma and S-7-hydroxywarfarin concentration in urine were measured in both studies. Statistical comparisons were made using ANOVA and 95% confidence interval (CI) for mean value and 90% CI for geometric mean ratio value are reported. n study I, the mean (95% CI) apparent clearance of S-warfarin after warfarin alone or with St John�s wort or ginseng were, respectively, 198 (174 � 223) ml/h, 269 (241 � 297) ml/h and 220 (201 � 238) ml/h. The respective apparent clearances of R-warfarin were 110 (94 � 126) ml/h, 142 (123 � 161) ml/h and 119 (106 � 131) ml/h. The mean ratio of apparent clearance for S-warfarin was 1.29 (1.16-1.46) and for R-warfarin was 1.23 (1.11-1.37) when St John�s wort was co-administered. The mean ratio of AUC0-168 of INR was 0.79 (0.70 - 0.95) when St John�s wort was co-administered. The urinary excretion ratio of S-7-hydroxywarfarin after administration of warfarin alone was 0.04 (0.03 � 0.06) mg/h and there was no significant difference following treatment with either St John�s wort 0.03 (0.02 � 0.04) mg/h or ginseng 0.03 (0.02 � 0.04) mg/h. The ratio of geometric means for S-7-hydroxywarfarin UER was 0.82 (0.61-1.12) for St John�s wort, and 0.68 (0.50-0.91) for ginseng. St John�s wort and ginseng did not affect the apparent volumes of distribution or protein binding of warfarin enantiomers. In study II, the mean (95% CI) apparent clearance of S-warfarin after warfarin alone, with ginkgo or ginger were 189 (167 � 210) ml/h, 200 (173 � 227) ml/h and 201 (171 � 231) ml/h, respectively. The respective apparent clearances of R-warfarin were 127 (106 � 149) ml/h, 126 (111 � 141) ml/h and 131 (106 � 156) ml/h. The mean ratio of apparent clearance for S-warfarin was 1.05 (0.98 -1.12) and for R-warfarin was 1.00 (0.93 -1.08) when co-administered with ginkgo. The mean ratio of AUC0-168 of INR was 0.93 (0.81 -1.05) when co-administered with ginkgo. The mean ratio of apparent clearance for S-warfarin was 1.05 (0.97 -1.13) and for R-warfarin was 1.02 (0.95 -1.10) when co-administered with ginger. The mean ratio of AUC0-168 of INR was 1.01 (0.93 -1.15) when co-administered with ginger. The urinary excretion ratio (UER) of S-7-hydroxywarfarin after administration of warfarin alone was 0.04 (0.03 � 0.05) mg/h and there was no significant difference following treatment with either ginkgo 0.04 (0.03 � 0.04) mg/h or ginger 0.03 (0.02 � 0.04) mg/h. The ratio of geometric means for S-7-hydroxywarfarin UER was 1.07 (0.69-1.67) for ginkgo, and 1.00 (0.64-1.56) for ginger. Ginkgo and ginger did not affect the apparent volumes of distribution or protein binding of either S-warfarin or R-warfarin. In conclusion, St John�s wort significantly induced the apparent clearance of both S-warfarin and R-warfarin, which in turn resulted in a significant reduction in the pharmacological effect of rac-warfarin. Ginseng, ginkgo and ginger at recommended doses affect neither clotting status, nor the pharmacokinetics or pharmacodynamics of either S-warfarin or R-warfarin in healthy subjects.
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Rui. "Pharmacology and Toxiclogy of Echinacea, Souroubea and Platanus spp." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39309.

Full text
Abstract:
The research presented in this thesis addressed knowledge gaps for three medicinal plant taxa, Souroubea spp. (Marcgraviaceae) and Platanus (Platanaceae) as well as Echinacea spp. (Asteraceae). The primary pharmacological mechanism of Souroubea sympetala and Platanus occidentalis were well established, with pentacyclic triterpenes identified as major active principles. My results indicate that major triterpenoids, and crude plant extracts, selectively inhibited monoacyglycerol lipase (MAGL) activity but not fatty acid amide hydrolase (FAAH) activity. These data suggest a possible secondary anxiolytic mechanism of action through the endocannabinoid system (ECS). My study of herb-drug interactions of Souroubea and Plantanus products showed some potential risk when combined with a classic benzodiazepine class drug, diazepam, and I proposed a mechanism through in vitro CYP450 enzyme inhibition. The pharmacokinetic study revealed the difficulty of detecting betulinic acid in animal blood. To support the development a commercial botanical composed of these medicinal plants, an extraction method and a highly sensitive and selectivity HPLC-APCI-MS based quantification method was successfully developed and validated. Part II of this thesis focused on the impact of phytochemical variation and hepatic metabolism on the ECS activity of Echinacea spp. and explored the potential for new applications of Echinacea spp. as a natural health product. My research indicated that considerable variability in the content of phenolic and alkylamide (AKA) compounds reflected similar variability in in vitro bioactivity at ECS-related pharmacological targets. Following biochemometric analysis, several phenolic compounds and AKAs in Echinacea spp. were found to be significant independent variables determining FAAH inhibition and CB receptor activation. Hepatic metabolism was also found to affect the FAAH inhibition of AKA, as increased FAAH inhibitory effects were observed after CYP450-mediated metabolism of both individual AKAs and crude extracts of E angustifolia and E. purpurea, suggesting a “pro-drug” mechanism. Dose dependent activities were observed with oral administration of both E angustifolia and E. purpurea root extract in rat paw model of inflammation and pain. Further tests indicated these activities can be partially blocked by co-administration of CB1 and CB2 receptor antagonists AM251 and AM630, respectively. This evidence suggests activity for peripheral pain was at least partially mediated through the ECS.
APA, Harvard, Vancouver, ISO, and other styles
6

Awortwe, Charles. "Pharmacokinetic herb-drug interaction study of selected traditional medicines used as complementary and alternative medicine (CAM) for HIV/AIDS." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96796.

Full text
Abstract:
Thesis (DMed)--Stellenbosch University, 2015
ENGLISH ABSTRACT: Introduction The increasing intake of traditional medicines among HIV/AIDS patients in sub-Saharan Africa needs urgent consideration by clinicians and other healthcare providers since the safety of such medications are unknown. The pharmacokinetic parameters - Absorption, Distribution, Metabolism and Elimination (ADME) play important role in the safety evaluation of drugs, thus implicating drug metabolizing enzymes and transporters as critical indicators for herb-drug interactions. The objective of this study was to evaluate the risk potential of seven herbal medicines commonly consumed by HIV/AIDS patients for drug interactions applying in vitro models. In this study, inhibition and induction effects of the herbal medicines on cytochrome P450s (CYPs) 1A2, 2C9, 2C19, 2D6 and 3A4 as well as P-glycoprotein (P-gp) were investigated. Methods Herbal medicines – Lessertia frutescens, Hypoxis hemerocallidea, Kalanchoe integra and Taraxacum officinale were sourced from Medico Herbs, South Africa were identified by experts from Compton Herbarium, South African National Biodiversity Institute, Cape Town. Moringa oleifera, Echinacea purpurea and Kalanchoe crenata were obtained from the repository of the National Centre for Natural Product Research (NCNPR), University of Mississippi, USA. Reversible inhibitory effect of aqueous and methanol herbal extracts were evaluated in recombinant CYPs applying the fluorescent metabolites at specified excitation/emission wavelengths; CYP1A2 (3-cyano-7-hydroxycoumarin (CHC); 405/460 nm), CYP2C9, CYP2C19 and CYP3A4 (7-hydroxy-4-(trifluoromethyl)-coumarin (HFC); 405/535 nm) and CYP2D6 (7-hydroxy-4-(aminomethyl)-coumarin (HAMC); 390/460 nm). Comparative studies in human liver microsomes (HLM) and recombinant CYPs were conducted to investigate the inhibitory effect of methanol herbal extracts and fractions on 6β testosterone hydroxylation activity. Time dependent inhibitory (TDI) effect of the herbal extracts were evaluated applying the IC50 shift fold, normalized ratio and the NADPH-, time- and concentration-dependent approaches. Influence of herbal extracts on metabolic clearance of testosterone was assessed in both HLM and human hepatocytes. The effects of each herbal extract on expression of CYP1A2, CYP3A4 and MDR1 genes were evaluated in activated human pregnane X receptor (PXR) co-transfected HepG2 cells. Finally, the inhibitory effect of herbal extracts on P-gp was assessed using the calcein-acetoxymethyl ester (calcein-AM) uptake and the digoxin radiolabelled substrates in MDCKII-MDRI cells. Results The aqueous extracts of Moringa oleifera, Kalanchoe integra, Kalanchoe crenata, Echinacea purpurea and Lessertia frutescens demonstrated high risk of in vivo inhibition on CYPs 3A4 and 1A2 with Cmax/Ki >1.0. Methanol extracts of these herbal medicines also indicated potential risk of reversible drug interaction. The methanol extracts of M. oleifera, K. crenata and L. frutescens showed strong TDI effect on CYP3A4 with IC50 shift fold >1.5 and normalised ratio <0.7. Moringa oleifera intermediately reduced intrinsic clearance of testosterone in human hepatocytes (2 ≤ AUC ratio ≤ 5) when scaled up to humans. Methanol extracts of Echinacea purpurea up-regulated the expression of CYP1A2, CYP3A4 and MDR1 genes in activated PXR. Kalanchoe crenata and Echinacea purpurea indicated strong inhibition on P-gp by reducing transport of digoxin across hMDR1-MDCKII cell monolayer from basolateral to apical with IC50 values of 18.24 ± 2.52 μg/mL and 24.47 ± 4.97 μg/mL, respectively. Conclusion The herbal medicines especially M. oleifera, K. integra and E. purpurea have the potential to cause herb-drug interaction in vivo if sufficient hepatic concentration is achieved in humans.
AFRIKAANSE OPSOMMING: Inleiding Die verhoogde inname van tradisionele medisynes onder MIV/VIGS-pasiënte in sub-Sahara-Afrika verg dringend oorweging deur klinici en ander gesondheidsorgverskaffers, aangesien die veiligheid van sodanige medikasies onbekend is. Die farmakokinetiese parameters – Absorpsie, Distribusie, Metabolisme en Eliminasie (ADME) – speel ’n belangrike rol by die veiligheidsevaluering van geneesmiddels, en impliseer gevolglik geneesmiddel-metaboliserende ensieme en vervoerders as kritiese indikators vir krui-geneesmiddel-interaksies (HDI). Die oogmerk van hierdie studie is om die risikopotensiaal van sewe kruiemedisynes wat algemeen deur MIV/VIGS-pasiënte geneem word, vir geneesmiddel-interaksies te evalueer deur in vitro-modelle te gebruik. In hierdie studie is die inhiberings- en induseringsuitwerkings van die kruiemedisynes op sitochroom P450’s (verkort na CYP’s) 1A2, 2C9, 2C19, 2D6 en 3A4, sowel as P-glikoproteïen (P-gp), ondersoek. Metodes Kruiemedisynes – Lessertia frutescens, Hypoxis hemerocallidea, Kalanchoe integra en Taraxacum officinale – is van Medico Herbs, Suid-Afrika, bekom en deur kundiges van die Compton-herbarium, by die Suid-Afrikaanse Nasionale Biodiversiteitsinstituut, Kaapstad, geïdentifiseer. Moringa oleifera, Echinacea purpurea en Kalanchoe crenata is van die bewaarplek van die Nasionale Sentrum vir Natuurlike Produknavorsing (NCNPR) aan die Universiteit van Mississippi in die VSA verkry. Die omkeerbare inhiberende uitwerking van kruie-ekstrakte in water en metanol is in rekombinante CYP’s geëvalueer deur die gebruik van die fluoresserende metaboliete op gespesifiseerde opwekkings-/emissiegolflengtes; CYP1A2 (3-siaan-7-hidroksikumarien (CHC); 405/460 nm), CYP2C9, CYP2C19 en CYP3A4 (7-hidroksi-4-(trifluoormetiel)-kumarien (HFC); 405/535 nm) en CYP2D6 (7-hidroksi-4-(aminometiel)-kumarien (HAMC); 390/460 nm). Vergelykende studies van menslikelewermikrosome (HLM) en rekombinante CYP’s is uitgevoer om die inhiberende uitwerking van metanolkruie-ekstrakte en -fraksies op 6β-testosteroonhidroksileringsaktiwiteit te ondersoek. Die tydafhanklike inhiberende uitwerking (TDI) van die kruie-ekstrakte is geëvalueer deur gebruikmaking van die IC50-verskuiwingsvou-, die genormaliseerdeverhoudings- en die NADPH-, tyd- en konsentrasieafhanklike benaderings. Die invloed van kruie-ekstrakte op metaboliese testosteroonverheldering is in beide HLM en menslike hepatosiete geëvalueer. Die uitwerkings van elke kruie-ekstrak op die uitdrukking van CYP1A2-, CYP3A4- en MDR1-gene is in geaktiveerde menslike pregnaan-X-reseptor(PXR)-, ko-getransfekteerde HepG2-selle geëvalueer. Laastens is die inhiberende uitwerking van kruie-ekstrakte op P-gp geëvalueer, met gebruikmaking van die kalsien-asetoksimetiel-ester (kalsien-AM)-opname en die digoksien- radiogemerkte substrate in MDCKII-MDRI-selle. Resultate Die ekstrakte in water van M. oleifera, K. integra, K. crenata, E. purpurea en L. frutescens het ’n hoë risiko van in vivo-inhibering op CYP’s 3A4 en 1A2 met Cmaks/Ki >1.0 getoon. Ekstrakte van hierdie kruiemedisynes in metanol het verder potensiële risiko van omkeerbare geneesmiddelinteraksie getoon. Die ekstrakte van M. oleifera, K. crenata en L. frutescens in metanol het sterk TDI-uitwerking op CYP3A4 met IC50-verskuiwingsvou >1.5 en genormaliseerde verhouding <0.7 getoon. M. oleifera het intermediêre vermindering van intrinsieke testosteroonverheldering in menslike hepatosiete (2 ≤ AUC verhouding ≤ 5) tot gevolg wanneer die skaal na mense verhoog word. Ekstrakte van E. purpurea in metanol het die uitdrukking van CYP1A2-, CYP3A4- en MDR1-gene in geaktiveerde PXR opgereguleer. K. crenata en E. purpurea het sterk inhibering van P-gp getoon deur die vervoer van digoksien deur die hMDR1-MDCKII-selmonolaag van basolateraal tot apikaal met IC50-waardes van onderskeidelik 18.24 ± 2.52 μg/mL en 24.47 ± 4.97 μg/mL te verminder. Gevolgtrekking Kruiemedisynes, veral M. oleifera, K. integra en E. purpurea, het die potensiaal om HDI in vivo te veroorsaak indien voldoende hepatiese konsentrasie by mense bereik word.
APA, Harvard, Vancouver, ISO, and other styles
7

Nensén, Nord Maria. "Användandet av naturmedel som egenvård och kommunikationen mellan vårdgivare och patient : En litteraturstudie." Thesis, Uppsala universitet, Vårdvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-347214.

Full text
Abstract:
Bakgrund: I Sverige har naturläkemedel huvudsakligen använts på patienters eget initiativ och utan kontakt med vårdgivare. Många tror att naturmedel inte är mediciner utan säkra och naturliga i tillägg till en hälsosam diet. Precis som konventionella läkemedel kan naturmedel ge upphov till både biverkningar och interaktioner. Det finns få rapporterade biverkningar av godkända naturläkemedel och växtbaserade läkemedel. Syfte: Syftet med studien är att undersöka användandet av naturmedel som egenvård, hur vårdgivare och patienter kommunicerar om naturmedel som egenvård samt kunskapen om naturmedel hos vårdpersonal. Metod: Litteraturstudie baserad på kvantitativa studier. Resultat: Resultatet i denna studie visar på ett varierat användande av naturmedel. Det som framkommer är att det är mer kvinnor och framförallt högutbildade personer som använder det i högre utsträckning. Det är få som väljer att diskutera sin användning av naturmedel med läkare eller annan vårdpersonal. Vårdpersonal frågar å sin sida heller inte om patienter använder sig av naturmedel. Slutsats: Vårdpersonal skattar sin kunskap om naturmedel som låg eller obetydlig men att många ville lära sig mer om naturmedel. För att undvika biverkningar och interaktioner bör användandet av naturmedel uppmärksammas inom vården.
Background: Natural remedies have mostly been used on the initiative of the patient without contact with healthcare staff in Sweden. Many people believe that natural remedies are a safe and natural supplement to healthy living and not a medicine. Just like ordinary drugs, natural remedies can cause side effect and interactions with other medicines. There are few reported adverse effects of herbal medicine and traditional medicine. Aim: The aim of this study was to examine the use of natural remedies as a selfcare treatment, to study the communication between healthcare staff and patients and to study the knowledge of natural remedies among healthcare staff. Method: The study is in form of a literature review based on quantitative studies. Results: The result indicates a range of uses of natural remedies. It is predominantly women and especially highly educated people who use natural remedies. Only a few choose to discuss their use of natural remedies with their doctor or healthcare staff. Healthcare staff do not tend to ask the patients about their use of natural remedies. Conclusion: Healthcare staff rate their knowledge about natural remedies as being low or insignificant, but many would like to learn more about them to avoid adverse effect or interactions, the use of natural remedies needs to be highlighted within the health service.
APA, Harvard, Vancouver, ISO, and other styles
8

Corte, Cristiane Lenz Dalla. "Avaliação dos efeitos do tratamento crônico com neurolépticos e sua interação com substâncias potencialmente antioxidantes sobre parâmetros de estresse oxidativo no fígado e rim de ratos." Universidade Federal de Santa Maria, 2008. http://repositorio.ufsm.br/handle/1/11086.

Full text
Abstract:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Treatment with neuroleptic drugs has been associated to side effects like tardive diskynesia and hepatic damage. In spite of the several reports of hepatotoxicity after neuroleptic administration, few data are available in the literature about these effects and the precise mechanisms by which neuroleptics induce hepatotoxicity remain unclear. In the same way, there are few studies about the effects of neuroleptics on kidney. In this way, the first aim of the present work was to assess the effects of chronic exposure to fluphenazine in liver and kidney of rats, as well as the protective effect of diphenyl diselenide on the fluphenazine-induced damage (article 1). Long-term treatment with fluphenazine caused an increase in lipid peroxidation levels in liver and kidney homogenates, a decrease in hepatic SOD activity, and an increase in hepatic CAT activity. Diphenyl diselenide was able to protect liver and kidney from lipid peroxidation, ameliorate SOD activity in liver, and prevent the increase in hepatic CAT activity. Diphenyl diselenide treatment did not affect δ-ALA-D activity, but fluphenazine and/or in combination with diphenyl diselenide showed an inhibitory effect on δ-ALA-D activity in liver and kidney. The second objective of this study was to determine whether the treatment with haloperidol (HP), valerian or both in association impairs liver or kidney functions (article 2). Valerian did not affect oxidative stress parameters in the liver or kidney of rats. HP only increased glutathione (GSH) depletion in liver, but not in kidney. However, when HP was associated with valerian, an increase in lipid peroxidation levels and reactive species production was observed in the hepatic tissue. HP and valerian when administered independently did not affect the activity of hepatic and renal δ-ALA-D, however, these drugs administered concomitantly provoked an inhibition of hepatic δ-ALA-D activity. Serum aspartate aminotransferase (AST) activity was not altered by any treatment. However, serum alanine aminotransferase (ALT) activity was higher in the HP group and HP plus valerian group. Taken together, these results indicate the relationship between the treatment with flufenazine and the oxidative stress, and also point to the protective role of diphenyl diselenide on the oxidative damage induced by fluphenazine in liver. Our data also suggest adverse interactions between haloperidol and valerian treatments causing hepatic damage related to oxidative stress.
O tratamento com drogas neurolépticas tem sido associado a efeitos colaterais como a discinesia tardia (DT) e o dano hepático. Apesar dos inúmeros casos de hepatotoxicidade após a administração de neurolépticos, são escassos os dados na literatura a respeito desses efeitos e o mecanismo exato pelo qual neurolépticos induzem hepatotoxicidade permanece incerto. Da mesma forma, existem poucos estudos relatando os efeitos dos neurolépticos sobre o rim. Dessa forma, o primeiro objetivo deste trabalho foi avaliar os efeitos da exposição crônica à flufenazina em fígado e rim de ratos bem como o efeito protetor do disseleneto de difenila sobre o dano induzido por flufenazina (artigo 1). O tratamento prolongado com flufenazina causou um aumento na peroxidação lipídica no fígado e no rim, uma diminuição na atividade da SOD hepática, e um aumento na atividade da CAT hepática. O disseleneto de difenila foi capaz de proteger o fígado e o rim da peroxidação lipídica, melhorou a atividade da SOD no fígado, e preveniu o aumento na atividade da CAT no fígado. O tratamento com disseleneto de difenila não afetou a atividade da δ-ALA-D, mas a flufenazina e/ou em combinação com disseleneto de difenila demonstrou ter efeito inibitório sobre a atividade da δ-ALA-D no fígado e no rim. O segundo objetivo deste estudo foi determinar se o tratamento com haloperidol (HP), valeriana ou a associação de ambas as drogas pode alterar as funções hepáticas e renais (artigo 2). A valeriana não afetou nenhum parâmetro de estresse oxidativo no fígado e no rim dos ratos. O HP apenas aumentou a depleção de glutationa (GSH) no fígado, mas não no rim. Entretanto, quando o HP foi associado com a valeriana, um aumento na peroxidação lipídica e produção de espécies reativas foram observados no tecido hepático. HP e valeriana quando administrados independentemente não afetaram a atividade da δ-ALA-D hepática e renal, contudo, quando estas drogas foram administradas concomitantemente provocaram uma inibição da atividade da δ-ALA-D hepática. A atividade da aspartato aminotransferase (AST) do soro não foi alterada por nenhum dos tratamentos. No entanto, a atividade da alanina aminotransferase (ALT) do soro estava aumentada nos grupos tratados com HP e HP mais flufenazina. Juntos estes resultados indicam uma relação entre o tratamento com flufenazina e o estresse oxidativo, e também apontam para o papel protetor do disseleneto de difenila no dano oxidativo induzido por flufenazina no fígado. Nossos dados também sugerem interações adversas no tratamento com haloperidol e valeriana, ocasionando dano hepático associado ao estresse oxidativo.
APA, Harvard, Vancouver, ISO, and other styles
9

Sachdeva, Karuna. "Regulation of cytochrome P450-3A (CYP3A) and pregnane X receptor (PXR) : implications to drug-drug interactions /." View online ; access limited to URI, 2005. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3186919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ezuruike, U. F. "Evaluation of herb-drug interactions in Nigeria with a focus on medicinal plants used in diabetes management." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1465961/.

Full text
Abstract:
Studies have shown an increasing use of herbal medicines alongside conventional drugs by patients in their disease management especially for chronic diseases, with the attendant risks of herb-drug interactions. In order to forestall this, adequate information about the pharmacological and toxicological profile of herbal medicines and how these would in turn affect the bioavailability of the co-administered drug is required. To evaluate potential herb-drug interactions that could occur in diabetes management in Nigeria- (a) An assessment of available data on the pharmacological and toxicological effects of plants used in diabetes management was conducted as a means of mapping those with identified potential risks for herb-drug interactions; (b) A field work study was carried out in different localities in Nigeria to identify potential pharmacokinetic interactions based on the prescription drugs and herbal medicines co-administered by diabetic patients; and (c) Experimental analysis of plant samples collected during the field work was done to assess their effects on known cell detoxification mechanisms and pharmacokinetic parameters. The results of the research have confirmed the continued use of a wide range of medicinal plants in diabetes management, many of which have not been thoroughly investigated. In addition, 50% of diabetic patients visiting healthcare facilities in Nigeria routinely manage their diabetes or existing co-morbidities with herbal medicines alongside prescription drugs. Even more worrying is the frequent use of unlabeled herbal preparations which would constitute a huge challenge in the proper identification of herb-drug interactions when they occur. Based on previously available data and the experimental results of this research, a number of these herbal medicines have been identified as having overlapping interactions with prescription drugs. There is therefore a need for better regulation of herbal medicine use alongside pharmacovigilance monitoring in Nigeria in order to forestall the occurrence of clinically relevant untoward herb-drug interactions.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Herb-drug interaction"

1

Herr, Sharon M. Herb-drug interaction handbook. Nassau, NY: Church Street Books, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Herr, Sharon M. Herb-drug interaction handbook. Edited by Ernst E and Young Veronica S. L. 2nd ed. Nassau, NY: Church Street Books, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Danielle, Ruel, and Locong Alice, eds. Guide des interactions médicaments, nutriments et produits naturels. Québec, Qué: Presses de l'Université Laval, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cassileth, Barrie R. Herb-drug interactions in oncology. 2nd ed. Shelton, Conn: People's Medical Pub. House-USA, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Meletis, Chris D. Instant guide to drug-herb interactions. Edited by Buff Sheila. New York, N.Y: Dorling Kindersley Pub., 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Harkness, Richard. Mosby's handbook of drug-herb and drug-supplement interactions. St. Louis, Mo: Mosby, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harkness, Richard. Mosby's handbook of drug-herb and drug-supplement interactions. St. Louis: Mosby, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jennes, Fred. Herb toxicities & drug interactions: A formula approach. Boulder, CO: Blue Poppy Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Harkness, Richard. The natural pharmacist: Drug-herb-vitamin interactions bible. Roseville, Calif: Prima, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stargrove, Mitchell Bebel. Herb, nutrient, and drug interactions: Clinical implications and therapeutic strategies. St. Louis, Mo: Mosby, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Herb-drug interaction"

1

Feng, Lingyun, Jui-Le Chen, Li-Chai Chen, and Shih-Pang Tseng. "Cloud Service and APP for Drug–Herb Interaction." In Advances in Intelligent Systems and Computing, 131–36. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5841-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vimalavathini, R., R. Shri Hari Subhashri, and S. Kavimani. "Herb-Drug Interactions." In Evidence Based Validation of Traditional Medicines, 649–58. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8127-4_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dasgupta, Amitava. "Drug–Herb and Drug–Food Interactions." In Handbook of Drug Monitoring Methods, 235–61. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-031-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

D’souza, Myrene Roselyn. "Traditional Indian Herbs for the Management of Diabetes Mellitus and their Herb–Drug Interaction Potentials: An Evidence-Based Review." In Structure and Health Effects of Natural Products on Diabetes Mellitus, 279–96. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8791-7_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rakhmanina, Natella Y., and John N. van den Anker. "Drug-Herb Interactions in Patients with HIV/AIDS." In Herbal Supplements, 291–303. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470910108.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Shu-Feng. "Toxicology, Safety and Herb–drug Interactions in Cancer Therapy." In Supportive Cancer Care with Chinese Medicine, 293–340. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3555-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Asokkumar, Kuppusamy, and Subramaniam Ramachandran. "Herb-Drug Interactions: Focus on Adverse Drug Reactions and Pharmacovigilance of Herbal Medicines." In Herbal Medicine in India, 547–71. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7248-3_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Surendran, Shruti, Pooja Dhurjad, and Satheeshkumar Nanjappan. "Phytotherapeutics: The Rising Role of Drug Transporters in Herb-Drug Interactions with Botanical Supplements." In Evidence Based Validation of Traditional Medicines, 469–94. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8127-4_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gurley, Bill. "Chapter 12. Clinically-relevant Herb–Drug Interactions: Current Status and Practical Considerations." In Food Chemistry, Function and Analysis, 204–31. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781839160578-00204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Luu, Alice, Brian C. Foster, Kristina L. McIntyre, Teresa W. Tam, and John T. Arnason. "Pharmacogenetics in Potential Herb–Drug Interactions: Effects of Ginseng on CYP3A4 and CYP2C9 Allelic Variants." In The Biological Activity of Phytochemicals, 59–65. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7299-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Herb-drug interaction"

1

Nakamura, Carlos, Qing Zeng, and Lou Ann Scarton. "CAM documentation in clinical notes Towards an automated surveillance system for drug-herb interactions." In 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services (Healthcom 2011). IEEE, 2011. http://dx.doi.org/10.1109/health.2011.6026736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khan, S. "Activation of pregnane X receptor (PXR) by herbal supplements and risk of Herb-Drug Interactions." In GA 2017 – Book of Abstracts. Georg Thieme Verlag KG, 2017. http://dx.doi.org/10.1055/s-0037-1608590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trinh, Khang, Duy Pham, and Ly Le. "Semantic Relation Extraction for Herb-Drug Interactions from the Biomedical Literature Using an Unsupervised Learning Approach." In 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 2018. http://dx.doi.org/10.1109/bibe.2018.00072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mazhar, H., P. Robaey, BC Foster, C. Necyk, and CS Harris. "An Assessment for the Risk of Herb-drug Interactions in Adverse Event Reports (AERs) Related to Natural Health Products and Medications Used for Attention Deficit Hyperactivity Disorder." In Abstracts of the NHPRS – The 15th Annual Meeting of the Natural Health Products Research Society of Canada (NHPRS). Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1644934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography