Academic literature on the topic 'Herb-drug interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Herb-drug interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Herb-drug interaction"
Cheng, Tsung O. "Comment: Drug—Herb Interaction." Annals of Pharmacotherapy 35, no. 1 (January 2001): 124. http://dx.doi.org/10.1177/106002800103500101.
Full textShakeel, Faisal, Fang Fang, Kelley M. Kidwell, Lauren A. Marcath, and Daniel L. Hertz. "Comparison of eight screening tools to detect interactions between herbal supplements and oncology agents." Journal of Oncology Pharmacy Practice 26, no. 8 (February 19, 2020): 1843–49. http://dx.doi.org/10.1177/1078155220905009.
Full textParvez, Mohammad K., and Vikas Rishi. "Herb-Drug Interactions and Hepatotoxicity." Current Drug Metabolism 20, no. 4 (June 11, 2019): 275–82. http://dx.doi.org/10.2174/1389200220666190325141422.
Full textCui, Zhijie, Hong Kang, Kailin Tang, Qi Liu, Zhiwei Cao, and Ruixin Zhu. "Screening Ingredients from Herbs against Pregnane X Receptor in the Study of Inductive Herb-Drug Interactions: Combining Pharmacophore and Docking-Based Rank Aggregation." BioMed Research International 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/657159.
Full textBabos, Mary Beth, Michelle Heinan, Linda Redmond, Fareeha Moiz, Joao Victor Souza-Peres, Valerie Samuels, Tarun Masimukku, David Hamilton, Myra Khalid, and Paul Herscu. "Herb–Drug Interactions: Worlds Intersect with the Patient at the Center." Medicines 8, no. 8 (August 5, 2021): 44. http://dx.doi.org/10.3390/medicines8080044.
Full textLiu, Mou-Ze, Yue-Li Zhang, Mei-Zi Zeng, Fa-Zhong He, Zhi-Ying Luo, Jian-Quan Luo, Jia-Gen Wen, Xiao-Ping Chen, Hong-Hao Zhou, and Wei Zhang. "Pharmacogenomics and Herb-Drug Interactions: Merge of Future and Tradition." Evidence-Based Complementary and Alternative Medicine 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/321091.
Full textBarone, Gary W., Bill J. Gurley, Beverley L. Ketel, Meredith L. Lightfoot, and Sameh R. Abul-Ezz. "Comment: drug–herb interaction—AUTHOR'S REPLY." Annals of Pharmacotherapy 35 (January 2001): 124–25. http://dx.doi.org/10.1345/aph.10088b.
Full textSarvesh, Sabarathinam, Preethi L, Haripritha Meganathan, M. Arjun Gokulan, Dhivya Dhanasekaran, Nila Ganamurali, and Rahul Radhakrishnan. "HCIP: An Online database for prediction CYP450 Enzyme Inhibition potential of bioactive compounds." Journal of Drug Delivery and Therapeutics 11, no. 2 (April 1, 2021): 253–55. http://dx.doi.org/10.22270/jddt.v11i2.4637.
Full textHossain, Md Nazmul, Nishat Akther, Md Alauddin, Robiul Hasan Bhuiyan, Muhammad Mosaraf Hossain, and Md Abdur Rahaman. "In Vitro Interaction Between Oral Hypoglycemic Drug And Herbal Sex Stimulants: Drug Interactions." European Scientific Journal, ESJ 12, no. 9 (March 30, 2016): 238. http://dx.doi.org/10.19044/esj.2016.v12n9p238.
Full textFasinu, Pius S., Heike Gutmann, Hilmar Schiller, Patrick J. Bouic, and Bernd Rosenkranz. "The potential ofHypoxis hemerocallideafor herb–drug interaction." Pharmaceutical Biology 51, no. 12 (July 11, 2013): 1499–507. http://dx.doi.org/10.3109/13880209.2013.796393.
Full textDissertations / Theses on the topic "Herb-drug interaction"
Blackwelder, Reid B. "Drug-Herb Interactions." Digital Commons @ East Tennessee State University, 2005. https://dc.etsu.edu/etsu-works/6913.
Full textFasinu, Pius Sedowhe. "In vitro assessment of some traditional medications used in South Africa for pharmacokinetics drug interaction potential." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85850.
Full textENGLISH ABSTRACT: Introduction Earlier studies have shown the popularity of herbal products among people as traditional, complementary or alternative medication. One of the major clinical risks in the concomitant administration of herbal products and prescription medicine is pharmacokinetic herb-drug interaction (HDI). This is brought about by the ability of phytochemicals to inhibit or induce the activity of metabolic enzymes and transport proteins. The aim of this study was to investigate the potential of the crude extracts of popular medicinal herbs used in South Africa to inhibit major cytochrome P450 (CYP) enzymes and transport proteins through in vitro assessment. Methods Medicinal herbs were obtained from traditional medical practitioners and 15 were selected for this study. The selected herbal products were extracted and incubated with human liver microsomes to monitor the following reactions as markers for the metabolic activities of the respective CYP: phenacetin O-deethylation (CYP1A2), diclofenac 4‟-hydroxylation (CYP2C9), S-mephenytoin 4‟- hydroxylation (CYP2C19) and testosterone 6β-hydroxylation (CYP3A4). In addition, the influence of Lessertia frutescens (formerly Sutherlandia frutescens) and Hypoxis hemerocallidea was investigated on more isozymes: coumarin 7-hydroxylation (CYP2A6), bupropion hydroxylation (CYP2B6), paclitaxel 6α-hydroxylation (CYP2C8), bufuralol 1‟-hydroxylation (CYP2D6), chlorzoxazone 6- hydroxylation (CYP2E1) and midazolam 1‟-hydroxylation (CYP3A4/5). The generation of the CYPspecific substrates/metabolites were monitored and quantified with the aid of LC-MS/MS. The metabolic clearance of midazolam using cryopreserved hepatocytes was monitored in the presence of Lessertia frutescens and Hypoxis hemerocallidea. The potential of both to inhibit human ATP-binding cassette (ABC) transporter activity was assessed using recombinant MDCKII and LLC-PK1 cells overexpressing human breast cancer resistant protein (BCRP) and human P-glycoprotein (P-gp), respectively. Similarly, the potential for interactions with human organic anion transporting polypeptide (OATP1B1 and OATP1B3) was assessed using recombinant HEK293 cells over-expressing OATP1B1 and OATP1B3, respectively. Results Bowiea volubilis, Kedrostis Africana, Chenopodium album, Lessertia frutescens (methanolic extract), Hypoxis hemerocallidea, Spirostachys africana and Lessertia frutescens (aqueous extract), in ascending order of potency demonstrated strong inhibition of CYP1A2 activity (IC50 = 1-100 g/mL). Similarly, Emex australis, Alepidea amatymbica, Pachycarpus concolor, Lessertia frutescens, Capparis sepiaria, Kedrostis africana and Pentanisia prunelloides inhibited CYP2C9 with IC50 less than 100 g/mL. The following demonstrated strong inhibition of CYP2C19 with IC50 values less than 100 g/mL: Acacia karroo, Capparis sepiaria, Chenopodium album, Pachycarpus concolor, Ranunculus multifidus, Lessertia frutescens and Zantedeschia aethiopica. CYP3A4 was inhibited by Lessertia frutescens, Hypoxis hemerocallidea, Spirostachys Africana, Bowiea volubilis, Zantedeschia aethiopica, Chenopodium album, Kedrostis Africana, Acacia karroo, Emex australis, Pachycarpus concolor, Ranunculus multifidus, Capparis sepiaria and Pentanisia prunelloides. Time-dependent (irreversible) inhibition of CYP3A4/5 (KI = 296 μg/mL, kinact = 0.063 min-1) and delay in the production of midazolam metabolites in the human hepatocytes, leading to a 40% decreased midazolam upscaled in vivo clearance, was observed with Lessertia frutescens. Further, Lessertia frutescence inhibited the activity of P-gp (IC50 = 324.8 μg/mL), OATP1B1 (IC50 = 10.4 μg/mL) and OATP1B3 (IC50 = 6.6 μg/mL). Hypoxis hemerocallidea inhibited the activity of OATP1B1 (IC50 = 118.7 μg/mL) and OATP1B3 (IC50 = 290.1 μg/mL) with no potent inhibitory effects on P-gp. None of the two inhibited the activity of BCRP within the tested concentrations. Conclusion The result indicates the potential for HDI between the selected medicinal herbs and the substrates of the enzymes investigated in this study, if sufficient in vivo concentrations are achieved.
AFRIKAANSE OPSOMMING: Inleiding Vroeëre studies het aangedui dat die gebruik van plantaardige produkte as tradisionele, aanvullende en alternatiewe medikasie baie gewild is. Een van die grootste kliniese risiko‟s geassosieer met die gelyktydige gebruik van plantaardige produkte met voorskrifmedikasie is farmakokinetiese kruiegeneesmiddel interaksies (HDI). Hierdie interaksies word veroorsaak deur die vermoë van plantchemikalieë om die aktiwiteit van metaboliese ensieme en transportproteïene te inhibeer of te induseer. Die doel van hierdie studie is om ondersoek in te stel na die moontlikheid van onsuiwer ekstrakte van gewilde Suid-Afrikaanse medisinale kruie om die belangrikste sitochroom P450 (CYP)- ensieme en transportproteïene te inhibeer. Hierdie ondersoek sal plaasvind deur middel van in vitrostudies. Metodes Medisinale kruie is verkry vanaf tradisionele genesers, waaruit ʼn totaal van 15 kruie geselekteer is vir gebruik tydens hierdie studie. Die geselekteerde kruie is geëkstraheer en met menslike lewermikrosome geïnkubeer om die volgende reaksies as merkers vir die metaboliese aktiwiteit van die onderskeie CYP-ensieme te moniteer: fenasetien-O-deëtilasie (CYP1A2), diklofenak-4‟- hidroksilasie (CYP2C9), S-mefenitoïen-4‟-hidroksilasie (CYP2C19) en testosteroon-6β-hidroksilasie (CYP3A4). Afgesien van die voorafgaande, is ook die invloed van Lessertia frutescens en Hypoxis hemerocallidea op verskeie ander iso-ensieme ondersoek. Hierdie iso-ensieme is soos volg: koumarien-7-hidroksilasie (CYP2A6), bupropioonhidroksilasie (CYP2B6), paklitaksiel-6α-hidroksilasie (CYP2C8), bufuralol-1‟-hidroksilasie (CYP2D6), chloorsoksasoon-6-hidroksilasie (CYP2E1) en midasolaam-1‟- hidroksilasie (CYP3A4/5). Die produksie van CYP-spesifieke substrate/metaboliete is gemoniteer en deur middel van LC-MS/MS-analises gekwantifiseer. Die metaboliese opruiming van midasolaam deur middel van krio-gepreserveerde hepatosiete is gemoniteer in die teenwoordigheid van Lessertia frutescens en Hypoxis hemerocallidea. Die moontlikheid van beide om menslike ATPbindingskasset (ABC)-transporteerderaktiwiteit te inhibeer is bepaal deur die gebruik van rekombinante MDCKII- en LLC-PK1-selle wat onderskeidelik menslike borskanker-weerstandige proteïen (BCRP) en menslike P-glikoproteïen (P-gp) potensieel. Op ʼn soortgelyke wyse is die moontlikheid vir interaksies met menslike organiese anion-transportpolipeptiede (OATP1B1 en OATP1B3) bepaal deur rekombinante HEK293-selle te gebruik wat onderskeidelik OATP1B1 en OATP1B3 potensieel. Resultate Bowiea volubilis, Kedrostis Africana, Chenopodium album, Lessertia frutescens (metanol-ekstrak), Hypoxis hemerocallidea, Spirostachys africana en Lessertia frutescens (water-ekstrak), in toenemende potensie, het sterk inhibisie van CYP1A2-aktiwiteit (IC50 = 1-100 g/mL) getoon. In ooreenstemming met die voorafgaande resultate het Emex australis, Alepidea amatymbica, Pachycarpus concolor, Lessertia frutescens, Capparis sepiaria, Kedrostis africana en Pentanisia prunelloides CYP2C9 met IC50–waardes van minder as 100 g/mL geïnhibeer. Die volgende het sterk inhibisie van CYP2C19 met IC50-waardes van minder as 100 g/mL getoon: Acacia karroo, Capparis sepiaria, Chenopodium album, Pachycarpus concolor, Ranunculus multifidus, Lessertia frutescens en Zantedeschia aethiopica. CYP3A4 is deur Lessertia frutescens, Hypoxis hemerocallidea, Spirostachys Africana, Bowiea volubilis, Zantedeschia aethiopica, Chenopodium album, Kedrostis Africana, Acacia karroo, Emex australis, Pachycarpus concolor, Ranunculus multifidus, Capparis sepiaria en Pentanisia prunelloides geïnhibeer. Tydafhanklike (onomkeerbare) inhibisie van CYP3A4/5 (KI = 296 μg/mL, kinact = 0.063 min-1) en vertraging in die produksie van midasolaammetaboliete in menslike hepatosiete wat aanleiding gee tot ʼn 40% afname in midasolaam bepaal in vivo opruiming, is waargeneem met Lessertia frutescens. Lessertia frutescens het ook die aktiwiteit van P-gp (IC50 = 324.8 μg/mL), OATP1B1 (IC50 = 10.4 μg/mL) en OATP1B3 (IC50 = 6.6 μg/mL) geïnhibeer. Hypoxis hemerocallidea het die aktiwiteit van OATP1B1 (IC50 = 118.7 μg/mL) en OATP1B3 (IC50 = 290.1 μg/mL) geïnhibeer met geen betekenisvolle effekte op P-gp nie. Geen een van die twee het die aktiwiteit van BCRP geïnhibeer binne die konsentrasies waarin getoets is nie. Gevolgtrekking Die resultate van hierdie studie dui aan dat wanneer voldoende in vivo-konsentrasies bereik word, die moontlikheid vir kruie-geneesmiddel interaksies tussen die geselekteerde medisinale kruie en ensiemsubstrate ʼn werklikheid word.
Fang, Yuan Yuan. "In vitro drug-herb interaction potential of African medicinal plant products used by Type II diabetics." Thesis, Nelson Mandela Metropolitan University, 2011. http://hdl.handle.net/10948/1341.
Full textJiang, Xuemin. "Effect of herbal medicines on the pharmacokinetics and pharmacodynamics of Warfarin in healthy subjects." University of Sydney. Pharmacy, 2004. http://hdl.handle.net/2123/651.
Full textLiu, Rui. "Pharmacology and Toxiclogy of Echinacea, Souroubea and Platanus spp." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39309.
Full textAwortwe, Charles. "Pharmacokinetic herb-drug interaction study of selected traditional medicines used as complementary and alternative medicine (CAM) for HIV/AIDS." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96796.
Full textENGLISH ABSTRACT: Introduction The increasing intake of traditional medicines among HIV/AIDS patients in sub-Saharan Africa needs urgent consideration by clinicians and other healthcare providers since the safety of such medications are unknown. The pharmacokinetic parameters - Absorption, Distribution, Metabolism and Elimination (ADME) play important role in the safety evaluation of drugs, thus implicating drug metabolizing enzymes and transporters as critical indicators for herb-drug interactions. The objective of this study was to evaluate the risk potential of seven herbal medicines commonly consumed by HIV/AIDS patients for drug interactions applying in vitro models. In this study, inhibition and induction effects of the herbal medicines on cytochrome P450s (CYPs) 1A2, 2C9, 2C19, 2D6 and 3A4 as well as P-glycoprotein (P-gp) were investigated. Methods Herbal medicines – Lessertia frutescens, Hypoxis hemerocallidea, Kalanchoe integra and Taraxacum officinale were sourced from Medico Herbs, South Africa were identified by experts from Compton Herbarium, South African National Biodiversity Institute, Cape Town. Moringa oleifera, Echinacea purpurea and Kalanchoe crenata were obtained from the repository of the National Centre for Natural Product Research (NCNPR), University of Mississippi, USA. Reversible inhibitory effect of aqueous and methanol herbal extracts were evaluated in recombinant CYPs applying the fluorescent metabolites at specified excitation/emission wavelengths; CYP1A2 (3-cyano-7-hydroxycoumarin (CHC); 405/460 nm), CYP2C9, CYP2C19 and CYP3A4 (7-hydroxy-4-(trifluoromethyl)-coumarin (HFC); 405/535 nm) and CYP2D6 (7-hydroxy-4-(aminomethyl)-coumarin (HAMC); 390/460 nm). Comparative studies in human liver microsomes (HLM) and recombinant CYPs were conducted to investigate the inhibitory effect of methanol herbal extracts and fractions on 6β testosterone hydroxylation activity. Time dependent inhibitory (TDI) effect of the herbal extracts were evaluated applying the IC50 shift fold, normalized ratio and the NADPH-, time- and concentration-dependent approaches. Influence of herbal extracts on metabolic clearance of testosterone was assessed in both HLM and human hepatocytes. The effects of each herbal extract on expression of CYP1A2, CYP3A4 and MDR1 genes were evaluated in activated human pregnane X receptor (PXR) co-transfected HepG2 cells. Finally, the inhibitory effect of herbal extracts on P-gp was assessed using the calcein-acetoxymethyl ester (calcein-AM) uptake and the digoxin radiolabelled substrates in MDCKII-MDRI cells. Results The aqueous extracts of Moringa oleifera, Kalanchoe integra, Kalanchoe crenata, Echinacea purpurea and Lessertia frutescens demonstrated high risk of in vivo inhibition on CYPs 3A4 and 1A2 with Cmax/Ki >1.0. Methanol extracts of these herbal medicines also indicated potential risk of reversible drug interaction. The methanol extracts of M. oleifera, K. crenata and L. frutescens showed strong TDI effect on CYP3A4 with IC50 shift fold >1.5 and normalised ratio <0.7. Moringa oleifera intermediately reduced intrinsic clearance of testosterone in human hepatocytes (2 ≤ AUC ratio ≤ 5) when scaled up to humans. Methanol extracts of Echinacea purpurea up-regulated the expression of CYP1A2, CYP3A4 and MDR1 genes in activated PXR. Kalanchoe crenata and Echinacea purpurea indicated strong inhibition on P-gp by reducing transport of digoxin across hMDR1-MDCKII cell monolayer from basolateral to apical with IC50 values of 18.24 ± 2.52 μg/mL and 24.47 ± 4.97 μg/mL, respectively. Conclusion The herbal medicines especially M. oleifera, K. integra and E. purpurea have the potential to cause herb-drug interaction in vivo if sufficient hepatic concentration is achieved in humans.
AFRIKAANSE OPSOMMING: Inleiding Die verhoogde inname van tradisionele medisynes onder MIV/VIGS-pasiënte in sub-Sahara-Afrika verg dringend oorweging deur klinici en ander gesondheidsorgverskaffers, aangesien die veiligheid van sodanige medikasies onbekend is. Die farmakokinetiese parameters – Absorpsie, Distribusie, Metabolisme en Eliminasie (ADME) – speel ’n belangrike rol by die veiligheidsevaluering van geneesmiddels, en impliseer gevolglik geneesmiddel-metaboliserende ensieme en vervoerders as kritiese indikators vir krui-geneesmiddel-interaksies (HDI). Die oogmerk van hierdie studie is om die risikopotensiaal van sewe kruiemedisynes wat algemeen deur MIV/VIGS-pasiënte geneem word, vir geneesmiddel-interaksies te evalueer deur in vitro-modelle te gebruik. In hierdie studie is die inhiberings- en induseringsuitwerkings van die kruiemedisynes op sitochroom P450’s (verkort na CYP’s) 1A2, 2C9, 2C19, 2D6 en 3A4, sowel as P-glikoproteïen (P-gp), ondersoek. Metodes Kruiemedisynes – Lessertia frutescens, Hypoxis hemerocallidea, Kalanchoe integra en Taraxacum officinale – is van Medico Herbs, Suid-Afrika, bekom en deur kundiges van die Compton-herbarium, by die Suid-Afrikaanse Nasionale Biodiversiteitsinstituut, Kaapstad, geïdentifiseer. Moringa oleifera, Echinacea purpurea en Kalanchoe crenata is van die bewaarplek van die Nasionale Sentrum vir Natuurlike Produknavorsing (NCNPR) aan die Universiteit van Mississippi in die VSA verkry. Die omkeerbare inhiberende uitwerking van kruie-ekstrakte in water en metanol is in rekombinante CYP’s geëvalueer deur die gebruik van die fluoresserende metaboliete op gespesifiseerde opwekkings-/emissiegolflengtes; CYP1A2 (3-siaan-7-hidroksikumarien (CHC); 405/460 nm), CYP2C9, CYP2C19 en CYP3A4 (7-hidroksi-4-(trifluoormetiel)-kumarien (HFC); 405/535 nm) en CYP2D6 (7-hidroksi-4-(aminometiel)-kumarien (HAMC); 390/460 nm). Vergelykende studies van menslikelewermikrosome (HLM) en rekombinante CYP’s is uitgevoer om die inhiberende uitwerking van metanolkruie-ekstrakte en -fraksies op 6β-testosteroonhidroksileringsaktiwiteit te ondersoek. Die tydafhanklike inhiberende uitwerking (TDI) van die kruie-ekstrakte is geëvalueer deur gebruikmaking van die IC50-verskuiwingsvou-, die genormaliseerdeverhoudings- en die NADPH-, tyd- en konsentrasieafhanklike benaderings. Die invloed van kruie-ekstrakte op metaboliese testosteroonverheldering is in beide HLM en menslike hepatosiete geëvalueer. Die uitwerkings van elke kruie-ekstrak op die uitdrukking van CYP1A2-, CYP3A4- en MDR1-gene is in geaktiveerde menslike pregnaan-X-reseptor(PXR)-, ko-getransfekteerde HepG2-selle geëvalueer. Laastens is die inhiberende uitwerking van kruie-ekstrakte op P-gp geëvalueer, met gebruikmaking van die kalsien-asetoksimetiel-ester (kalsien-AM)-opname en die digoksien- radiogemerkte substrate in MDCKII-MDRI-selle. Resultate Die ekstrakte in water van M. oleifera, K. integra, K. crenata, E. purpurea en L. frutescens het ’n hoë risiko van in vivo-inhibering op CYP’s 3A4 en 1A2 met Cmaks/Ki >1.0 getoon. Ekstrakte van hierdie kruiemedisynes in metanol het verder potensiële risiko van omkeerbare geneesmiddelinteraksie getoon. Die ekstrakte van M. oleifera, K. crenata en L. frutescens in metanol het sterk TDI-uitwerking op CYP3A4 met IC50-verskuiwingsvou >1.5 en genormaliseerde verhouding <0.7 getoon. M. oleifera het intermediêre vermindering van intrinsieke testosteroonverheldering in menslike hepatosiete (2 ≤ AUC verhouding ≤ 5) tot gevolg wanneer die skaal na mense verhoog word. Ekstrakte van E. purpurea in metanol het die uitdrukking van CYP1A2-, CYP3A4- en MDR1-gene in geaktiveerde PXR opgereguleer. K. crenata en E. purpurea het sterk inhibering van P-gp getoon deur die vervoer van digoksien deur die hMDR1-MDCKII-selmonolaag van basolateraal tot apikaal met IC50-waardes van onderskeidelik 18.24 ± 2.52 μg/mL en 24.47 ± 4.97 μg/mL te verminder. Gevolgtrekking Kruiemedisynes, veral M. oleifera, K. integra en E. purpurea, het die potensiaal om HDI in vivo te veroorsaak indien voldoende hepatiese konsentrasie by mense bereik word.
Nensén, Nord Maria. "Användandet av naturmedel som egenvård och kommunikationen mellan vårdgivare och patient : En litteraturstudie." Thesis, Uppsala universitet, Vårdvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-347214.
Full textBackground: Natural remedies have mostly been used on the initiative of the patient without contact with healthcare staff in Sweden. Many people believe that natural remedies are a safe and natural supplement to healthy living and not a medicine. Just like ordinary drugs, natural remedies can cause side effect and interactions with other medicines. There are few reported adverse effects of herbal medicine and traditional medicine. Aim: The aim of this study was to examine the use of natural remedies as a selfcare treatment, to study the communication between healthcare staff and patients and to study the knowledge of natural remedies among healthcare staff. Method: The study is in form of a literature review based on quantitative studies. Results: The result indicates a range of uses of natural remedies. It is predominantly women and especially highly educated people who use natural remedies. Only a few choose to discuss their use of natural remedies with their doctor or healthcare staff. Healthcare staff do not tend to ask the patients about their use of natural remedies. Conclusion: Healthcare staff rate their knowledge about natural remedies as being low or insignificant, but many would like to learn more about them to avoid adverse effect or interactions, the use of natural remedies needs to be highlighted within the health service.
Corte, Cristiane Lenz Dalla. "Avaliação dos efeitos do tratamento crônico com neurolépticos e sua interação com substâncias potencialmente antioxidantes sobre parâmetros de estresse oxidativo no fígado e rim de ratos." Universidade Federal de Santa Maria, 2008. http://repositorio.ufsm.br/handle/1/11086.
Full textTreatment with neuroleptic drugs has been associated to side effects like tardive diskynesia and hepatic damage. In spite of the several reports of hepatotoxicity after neuroleptic administration, few data are available in the literature about these effects and the precise mechanisms by which neuroleptics induce hepatotoxicity remain unclear. In the same way, there are few studies about the effects of neuroleptics on kidney. In this way, the first aim of the present work was to assess the effects of chronic exposure to fluphenazine in liver and kidney of rats, as well as the protective effect of diphenyl diselenide on the fluphenazine-induced damage (article 1). Long-term treatment with fluphenazine caused an increase in lipid peroxidation levels in liver and kidney homogenates, a decrease in hepatic SOD activity, and an increase in hepatic CAT activity. Diphenyl diselenide was able to protect liver and kidney from lipid peroxidation, ameliorate SOD activity in liver, and prevent the increase in hepatic CAT activity. Diphenyl diselenide treatment did not affect δ-ALA-D activity, but fluphenazine and/or in combination with diphenyl diselenide showed an inhibitory effect on δ-ALA-D activity in liver and kidney. The second objective of this study was to determine whether the treatment with haloperidol (HP), valerian or both in association impairs liver or kidney functions (article 2). Valerian did not affect oxidative stress parameters in the liver or kidney of rats. HP only increased glutathione (GSH) depletion in liver, but not in kidney. However, when HP was associated with valerian, an increase in lipid peroxidation levels and reactive species production was observed in the hepatic tissue. HP and valerian when administered independently did not affect the activity of hepatic and renal δ-ALA-D, however, these drugs administered concomitantly provoked an inhibition of hepatic δ-ALA-D activity. Serum aspartate aminotransferase (AST) activity was not altered by any treatment. However, serum alanine aminotransferase (ALT) activity was higher in the HP group and HP plus valerian group. Taken together, these results indicate the relationship between the treatment with flufenazine and the oxidative stress, and also point to the protective role of diphenyl diselenide on the oxidative damage induced by fluphenazine in liver. Our data also suggest adverse interactions between haloperidol and valerian treatments causing hepatic damage related to oxidative stress.
O tratamento com drogas neurolépticas tem sido associado a efeitos colaterais como a discinesia tardia (DT) e o dano hepático. Apesar dos inúmeros casos de hepatotoxicidade após a administração de neurolépticos, são escassos os dados na literatura a respeito desses efeitos e o mecanismo exato pelo qual neurolépticos induzem hepatotoxicidade permanece incerto. Da mesma forma, existem poucos estudos relatando os efeitos dos neurolépticos sobre o rim. Dessa forma, o primeiro objetivo deste trabalho foi avaliar os efeitos da exposição crônica à flufenazina em fígado e rim de ratos bem como o efeito protetor do disseleneto de difenila sobre o dano induzido por flufenazina (artigo 1). O tratamento prolongado com flufenazina causou um aumento na peroxidação lipídica no fígado e no rim, uma diminuição na atividade da SOD hepática, e um aumento na atividade da CAT hepática. O disseleneto de difenila foi capaz de proteger o fígado e o rim da peroxidação lipídica, melhorou a atividade da SOD no fígado, e preveniu o aumento na atividade da CAT no fígado. O tratamento com disseleneto de difenila não afetou a atividade da δ-ALA-D, mas a flufenazina e/ou em combinação com disseleneto de difenila demonstrou ter efeito inibitório sobre a atividade da δ-ALA-D no fígado e no rim. O segundo objetivo deste estudo foi determinar se o tratamento com haloperidol (HP), valeriana ou a associação de ambas as drogas pode alterar as funções hepáticas e renais (artigo 2). A valeriana não afetou nenhum parâmetro de estresse oxidativo no fígado e no rim dos ratos. O HP apenas aumentou a depleção de glutationa (GSH) no fígado, mas não no rim. Entretanto, quando o HP foi associado com a valeriana, um aumento na peroxidação lipídica e produção de espécies reativas foram observados no tecido hepático. HP e valeriana quando administrados independentemente não afetaram a atividade da δ-ALA-D hepática e renal, contudo, quando estas drogas foram administradas concomitantemente provocaram uma inibição da atividade da δ-ALA-D hepática. A atividade da aspartato aminotransferase (AST) do soro não foi alterada por nenhum dos tratamentos. No entanto, a atividade da alanina aminotransferase (ALT) do soro estava aumentada nos grupos tratados com HP e HP mais flufenazina. Juntos estes resultados indicam uma relação entre o tratamento com flufenazina e o estresse oxidativo, e também apontam para o papel protetor do disseleneto de difenila no dano oxidativo induzido por flufenazina no fígado. Nossos dados também sugerem interações adversas no tratamento com haloperidol e valeriana, ocasionando dano hepático associado ao estresse oxidativo.
Sachdeva, Karuna. "Regulation of cytochrome P450-3A (CYP3A) and pregnane X receptor (PXR) : implications to drug-drug interactions /." View online ; access limited to URI, 2005. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/dlnow/3186919.
Full textEzuruike, U. F. "Evaluation of herb-drug interactions in Nigeria with a focus on medicinal plants used in diabetes management." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1465961/.
Full textBooks on the topic "Herb-drug interaction"
Herr, Sharon M. Herb-drug interaction handbook. Nassau, NY: Church Street Books, 2000.
Find full textHerr, Sharon M. Herb-drug interaction handbook. Edited by Ernst E and Young Veronica S. L. 2nd ed. Nassau, NY: Church Street Books, 2002.
Find full textDanielle, Ruel, and Locong Alice, eds. Guide des interactions médicaments, nutriments et produits naturels. Québec, Qué: Presses de l'Université Laval, 2003.
Find full textCassileth, Barrie R. Herb-drug interactions in oncology. 2nd ed. Shelton, Conn: People's Medical Pub. House-USA, 2010.
Find full textMeletis, Chris D. Instant guide to drug-herb interactions. Edited by Buff Sheila. New York, N.Y: Dorling Kindersley Pub., 2001.
Find full textHarkness, Richard. Mosby's handbook of drug-herb and drug-supplement interactions. St. Louis, Mo: Mosby, 2002.
Find full textHarkness, Richard. Mosby's handbook of drug-herb and drug-supplement interactions. St. Louis: Mosby, 2003.
Find full textJennes, Fred. Herb toxicities & drug interactions: A formula approach. Boulder, CO: Blue Poppy Press, 2004.
Find full textHarkness, Richard. The natural pharmacist: Drug-herb-vitamin interactions bible. Roseville, Calif: Prima, 2000.
Find full textStargrove, Mitchell Bebel. Herb, nutrient, and drug interactions: Clinical implications and therapeutic strategies. St. Louis, Mo: Mosby, 2008.
Find full textBook chapters on the topic "Herb-drug interaction"
Feng, Lingyun, Jui-Le Chen, Li-Chai Chen, and Shih-Pang Tseng. "Cloud Service and APP for Drug–Herb Interaction." In Advances in Intelligent Systems and Computing, 131–36. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5841-8_14.
Full textVimalavathini, R., R. Shri Hari Subhashri, and S. Kavimani. "Herb-Drug Interactions." In Evidence Based Validation of Traditional Medicines, 649–58. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8127-4_31.
Full textDasgupta, Amitava. "Drug–Herb and Drug–Food Interactions." In Handbook of Drug Monitoring Methods, 235–61. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-031-7_13.
Full textD’souza, Myrene Roselyn. "Traditional Indian Herbs for the Management of Diabetes Mellitus and their Herb–Drug Interaction Potentials: An Evidence-Based Review." In Structure and Health Effects of Natural Products on Diabetes Mellitus, 279–96. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8791-7_16.
Full textRakhmanina, Natella Y., and John N. van den Anker. "Drug-Herb Interactions in Patients with HIV/AIDS." In Herbal Supplements, 291–303. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470910108.ch13.
Full textZhou, Shu-Feng. "Toxicology, Safety and Herb–drug Interactions in Cancer Therapy." In Supportive Cancer Care with Chinese Medicine, 293–340. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3555-4_12.
Full textAsokkumar, Kuppusamy, and Subramaniam Ramachandran. "Herb-Drug Interactions: Focus on Adverse Drug Reactions and Pharmacovigilance of Herbal Medicines." In Herbal Medicine in India, 547–71. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7248-3_33.
Full textSurendran, Shruti, Pooja Dhurjad, and Satheeshkumar Nanjappan. "Phytotherapeutics: The Rising Role of Drug Transporters in Herb-Drug Interactions with Botanical Supplements." In Evidence Based Validation of Traditional Medicines, 469–94. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8127-4_23.
Full textGurley, Bill. "Chapter 12. Clinically-relevant Herb–Drug Interactions: Current Status and Practical Considerations." In Food Chemistry, Function and Analysis, 204–31. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781839160578-00204.
Full textLuu, Alice, Brian C. Foster, Kristina L. McIntyre, Teresa W. Tam, and John T. Arnason. "Pharmacogenetics in Potential Herb–Drug Interactions: Effects of Ginseng on CYP3A4 and CYP2C9 Allelic Variants." In The Biological Activity of Phytochemicals, 59–65. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7299-6_5.
Full textConference papers on the topic "Herb-drug interaction"
Nakamura, Carlos, Qing Zeng, and Lou Ann Scarton. "CAM documentation in clinical notes Towards an automated surveillance system for drug-herb interactions." In 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services (Healthcom 2011). IEEE, 2011. http://dx.doi.org/10.1109/health.2011.6026736.
Full textKhan, S. "Activation of pregnane X receptor (PXR) by herbal supplements and risk of Herb-Drug Interactions." In GA 2017 – Book of Abstracts. Georg Thieme Verlag KG, 2017. http://dx.doi.org/10.1055/s-0037-1608590.
Full textTrinh, Khang, Duy Pham, and Ly Le. "Semantic Relation Extraction for Herb-Drug Interactions from the Biomedical Literature Using an Unsupervised Learning Approach." In 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 2018. http://dx.doi.org/10.1109/bibe.2018.00072.
Full textMazhar, H., P. Robaey, BC Foster, C. Necyk, and CS Harris. "An Assessment for the Risk of Herb-drug Interactions in Adverse Event Reports (AERs) Related to Natural Health Products and Medications Used for Attention Deficit Hyperactivity Disorder." In Abstracts of the NHPRS – The 15th Annual Meeting of the Natural Health Products Research Society of Canada (NHPRS). Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1644934.
Full text