Academic literature on the topic 'Hemodynamické parametry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hemodynamické parametry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hemodynamické parametry"
Rzheutskaya, Ryta E. "Characteristics of Hemodynamic Disorders in Patients with Severe Traumatic Brain Injury." Critical Care Research and Practice 2012 (2012): 1–11. http://dx.doi.org/10.1155/2012/606179.
Full textFranceschi, Claude. "Definition of the venous hemodynamics parameters and concepts." Veins and Lymphatics 2, no. 4 (April 15, 2013): 1. http://dx.doi.org/10.4081/hemodynamics.2013.1.
Full textOgilvie, Leslie M., Brittany A. Edgett, Jason S. Huber, Mathew J. Platt, Hermann J. Eberl, Sohrab Lutchmedial, Keith R. Brunt, and Jeremy A. Simpson. "Hemodynamic assessment of diastolic function for experimental models." American Journal of Physiology-Heart and Circulatory Physiology 318, no. 5 (May 1, 2020): H1139—H1158. http://dx.doi.org/10.1152/ajpheart.00705.2019.
Full textARYNOV, A. A., N. Z. SHAPATOVA, and I. М. SMAGINA. "Diagnostics and treatment of hemodynamic disorders in cancer patients: current trends and own experience." Oncologia i radiologia Kazakhstana 55, no. 1 (March 31, 2020): 28–29. http://dx.doi.org/10.52532/2663-4864-2020-1-55-28-29.
Full textUedono, Hideki, Akihiro Tsuda, Eiji Ishimura, Shinya Nakatani, Masafumi Kurajoh, Katsuhito Mori, Junji Uchida, Masanori Emoto, Tatsuya Nakatani, and Masaaki Inaba. "U-shaped relationship between serum uric acid levels and intrarenal hemodynamic parameters in healthy subjects." American Journal of Physiology-Renal Physiology 312, no. 6 (June 1, 2017): F992—F997. http://dx.doi.org/10.1152/ajprenal.00645.2016.
Full textArynov, A. A., N. Z. Shapatova, and I. M. Smagina. "Diagnostics and treatment of hemodynamic disorders in cancer patients: current trends and own experience." Oncologia i radiologia Kazakhstana 55, no. 1 (March 31, 2020): 32–34. http://dx.doi.org/10.52532/2521-6414-2020-1-55-32-34.
Full textBlissitt, Patricia A. "Hemodynamic Monitoring in the Care of the Critically Ill Neuroscience Patient." AACN Advanced Critical Care 17, no. 3 (July 1, 2006): 327–40. http://dx.doi.org/10.4037/15597768-2006-3010.
Full textKhokonova, Tamara Muratovna, Sofiat Khasenovna Sizhazheva, Zhaneta Huseynovna Sabanchieva, Marina Tembulatovna Nalchikova, Jannet Anvarovna Elmurzayeva, Dzhanneta Magometovna Urusbieva, Inara Aslanovna Khakuasheva, and Svetlana Sergeevna Solyanik. "Analysis of hemodynamic parameters and quality of life in patients with chronic kidney disease and arterial hypertension." Revista de la Universidad del Zulia 12, no. 33 (May 8, 2021): 274–87. http://dx.doi.org/10.46925//rdluz.33.19.
Full textDarowski, M., G. Ferrari, F. Clemente, M. Guaragno, and De Lazzari. "Computer Simulation of Hemodynamic Parameter Changes by Mechanical Ventilation and Biventricular Circulatory Support." Methods of Information in Medicine 39, no. 04/05 (2000): 332–38. http://dx.doi.org/10.1055/s-0038-1634451.
Full textTang, Hong, Ziyin Dai, Miao Wang, Binbin Guo, Shunyu Wang, Jiabin Wen, and Ting Li. "Lumped-Parameter Circuit Platform for Simulating Typical Cases of Pulmonary Hypertensions from Point of Hemodynamics." Journal of Cardiovascular Translational Research 13, no. 5 (January 13, 2020): 826–52. http://dx.doi.org/10.1007/s12265-020-09953-y.
Full textDissertations / Theses on the topic "Hemodynamické parametry"
Hemzalová, Zuzana. "Evoluční algoritmy pro ultrazvukovou perfúzní analýzu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442504.
Full textUrquhart, Gayle. "Timing of hemodynamic pressure measurements and thermodilutional cardiac outputs on derived hemodynamic parameters." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ40155.pdf.
Full textDowning, Joey Micah. "Flow through a compliant stenotic artery : a parametric evaluation." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/17865.
Full textHavlíček, Martin. "Zkoumání konektivity mozkových sítí pomocí hemodynamického modelování." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-233576.
Full textShi, Jun. "Constructing FHNNs to detect CVDs through hemodynamic parameters derived from sphygmogram." Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2493321.
Full textFaik, Isam. "3D characterization of the hemodynamic parameters in a stented coronary artery." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82485.
Full textHeyman, Patrick. "Hemodynamic parameters of patients with treated hypertension and coronary artery disease." [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0000701.
Full textRajabi, Jaghargh Ehsan. "Effects of hemodynamic stresses on the remodeling parameters in arteriovenous fistula." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1427962400.
Full textAzadan, Niaz. "Den diagnostiska säkerheten i arbetsprov på kvinnor med angina pectoris : Slutversion." Thesis, Hälsohögskolan, Jönköping University, HHJ, Avd. för naturvetenskap och biomedicin, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-49238.
Full textAngina pectoris is chest pain and myocardial ischemia due to Coronary Artery Disease (CAD) or Non-Coronary Artery Disease (non-CAD). Exercise stress test (EST) is the most common diagnostic procedure for angina pectoris. Non-CAD, low sensitivity for exercise electrocardiography (ex-ECG) and diffuse symptoms lower the diagnostic accuracy for females. This review’s aim was to study whether haemodynamic parameters and risk stratifications with Pre-test probability (PTP) or Duke Treadmill Score (DTS) improves the diagnostic accuracy of EST for females. Inclusion criterions were English peer reviewed, clinical studies with mentioned ethical approval or consent. Snowballing, PUBMED, MEDLINE and CINAHL were used. Articles that were included in the results, were reviewed once again, and compared to one another. Hemodynamic parameters, PTP and DTS increase the diagnostic accuracy of EST in women. This diagnostic accuracy depends on PTP method, risk group, ethnicity, and angina pectoris variant. Further research regarding ethnic specific PTP methods, mechanism behind the blood pressure reaction, DTS for diagnosis of non-CAD and methods for differentiation of subtypes of non-CAD, would be valuable. Without studies about the Systematic Coronary Risk Evaluation (SCORE), Diamond Forrester Score (DFS), and their impact on ex-ECG, the result of this review cannot be generalized to ex-ECG in Sweden.
Audebert, Chloé. "Mathematical liver modeling : hemodynamics and function in hepatectomy." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066077/document.
Full textMajor liver resection is being performed to treat liver lesions or for adult-to-adult living donor liver transplantation. Complications of these surgeries are related to a poor liver function. The links between liver hemodynamics, liver volume and liver function remain unclear and are important to better understand these complications. The surgery increases the resistance to blood flow in the organ, therefore it modifies liver hemodynamics. Large modifications of the portal vein hemodynamics have been associated with poor liver regeneration. Moreover the liver receives 25% of the cardiac outflow, therefore liver surgery may impact the whole blood circulation. In this context, the first goal is to investigate with mathematical models the impact of liver surgery on liver hemodynamics. The second goal is to study the liver perfusion and function with mathematical models. The first part describes the experimental conditions and reports the measurements recorded. Then, the second part focuses on the liver hemodynamics during partial hepatectomy. On one hand, the hemodynamics during several surgeries is quantitatively reproduced and explained by a closed-loop model based on ODE. On the other hand, the change of waveforms observed after different levels of liver resection is reproduced with a model of the global circulation, including 0D and 1D equations. This may contribute to a better understanding of the change of liver architecture induced by hepatectomy. Next, the transport in blood of a compound is studied. And a pharmacokinetics model and its parameter identification are developed to quantitatively analyze indocyanine green fluorescence dynamics in the liver tissue
Books on the topic "Hemodynamické parametry"
Seth, Runjan. Inotropic and lusitropic response to gbs-adrenergic stimulation, hemodynamics, and metabolic parameters in early experimental heart failure. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1993.
Find full textTorrance, Shona Margaret. The effect of varying levels of acute hypoxia on neonatal acid-base homeostasis, hemodynamic parameters, myocardial metabolism and tolerance to global ischemia. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Find full textGoldberg, Harry, Sing San Yang, Lamberto G. Bentivoglio, and Vladir Maranhao. From Cardiac Catheterization to Hymodynamic Parameters. 3rd ed. Oxford University Press, USA, 1988.
Find full textSan, Yang Sing, ed. From cardiac catheterization data to hemodynamic parameters. 3rd ed. Philadelphia: Davis, 1988.
Find full textLadner, Travis R., Nishant Ganesh Kumar, Lucy He, and J. Mocco. Neuroprotection for Vascular and Endovascular Neurosurgery. Edited by David L. Reich, Stephan Mayer, and Suzan Uysal. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190280253.003.0019.
Full textDvorak, Roman. The effect of a calcium channel blocker on exercise induced muscle damage and hemodynamic parameters in young, healthy adults. 1996.
Find full textChappell, Michael, Bradley MacIntosh, and Thomas Okell. Kinetic Modeling. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198793816.003.0004.
Full textMaquet, Pierre, and Julien Fanielle. Neuroimaging in normal sleep and sleep disorders. Edited by Sudhansu Chokroverty, Luigi Ferini-Strambi, and Christopher Kennard. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199682003.003.0011.
Full textYarlagadda, Vamsi V., and Ravi R. Thiagarajan. Cardiac Disease in Pediatric Intensive Care. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199918027.003.0007.
Full textChappell, Michael, Bradley MacIntosh, and Thomas Okell. Introduction to Perfusion Quantification using Arterial Spin Labelling. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198793816.001.0001.
Full textBook chapters on the topic "Hemodynamické parametry"
Gabriel, Edmo Atique, and Tomas Salerno. "Determining Hemodynamic Parameters." In Principles of Pulmonary Protection in Heart Surgery, 271–77. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-308-4_29.
Full textPayen, D. "Physiological Determinants of Hemodynamic Parameters." In Update in Intensive Care and Emergency Medicine, 28–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84167-5_3.
Full textKuzkov, Vsevolod V. "Volumetric Parameters: A Physiological Background." In Advanced Hemodynamic Monitoring: Basics and New Horizons, 109–17. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71752-0_12.
Full textIshida, Fujimaro, Masanori Tsuji, Satoru Tanioka, Katsuhiro Tanaka, Shinichi Yoshimura, and Hidenori Suzuki. "Computational Fluid Dynamics for Cerebral Aneurysms in Clinical Settings." In Acta Neurochirurgica Supplement, 27–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63453-7_4.
Full textMaurits, Natasha. "Cerebrovascular Disease, Ultrasound, and Hemodynamical Flow Parameters." In From Neurology to Methodology and Back, 231–55. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1132-1_10.
Full textMihalef, Viorel, Lucian Itu, Tommaso Mansi, and Puneet Sharma. "Lumped Parameter Whole Body Circulation Modelling." In Patient-specific Hemodynamic Computations: Application to Personalized Diagnosis of Cardiovascular Pathologies, 111–52. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56853-9_5.
Full textHavlik, J., J. Dvorak, and V. Fabian. "Design and Realization of Hardware for Measurement of Hemodynamic Parameters." In IFMBE Proceedings, 1420–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_373.
Full textGrabovskis, A., E. Kviesis-Kipge, Z. Marcinkevics, V. Lusa, K. Volceka, and M. Greve. "Reliability of Hemodynamic Parameters Measured by a Novel Photoplethysmography Device." In IFMBE Proceedings, 199–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21683-1_50.
Full textItu, Lucian, Puneet Sharma, Tiziano Passerini, Ali Kamen, and Constantin Suciu. "A Parameter Estimation Framework for Patient-Specific Assessment of Aortic Coarctation." In Patient-specific Hemodynamic Computations: Application to Personalized Diagnosis of Cardiovascular Pathologies, 89–109. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56853-9_4.
Full textWolański, Wojciech, Bożena Gzik-Zroska, Kamil Joszko, Edyta Kawlewska, Marta Sobkowiak, Marek Gzik, and Wojciech Kaspera. "Impact of Vessel Mechanical Properties on Hemodynamic Parameters of Blood Flow." In Innovations in Biomedical Engineering, 271–78. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70063-2_29.
Full textConference papers on the topic "Hemodynamické parametry"
Xiang, Jianping, Sabareesh K. Natarajan, Markus Tremmel, Ding Ma, J. Mocco, Adnan Siddiqui, Elad I. Levy, and Hui Meng. "Hemodynamic Metrics Correlate With Intracranial Aneurysm Rupture Status Better Than Morphologic Metrics." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19664.
Full textAlmeida, Vania G., Luis F. Requicha Ferreira, and Carlos Correia. "Hemodynamic parameters assessment." In 2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG). IEEE, 2012. http://dx.doi.org/10.1109/enbeng.2012.6331379.
Full textPrince, Chekema, Mingyao Gu, and Sean D. Peterson. "Flow in the Vascular System Post Stent Implantation: Examining the Near-Stent Flow Physics." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80045.
Full textHavlík, Jan, Vratislav Fabián, David Macků, Lenka Lhotská, Jan Dvořák, and Lucie Kučerová. "Measurement of hemodynamic parameters." In the 4th International Symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2093698.2093740.
Full textXiang, Jianping, Nicole Varble, Adnan Siddiqui, Luca Antiga, and Hui Meng. "AView: A Clinical Tool for Hemodynamic and Morphological Analysis of Intracranial Aneurysms." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14770.
Full textGundert, Timothy J., Paul Hayden, Raymond Q. Migrino, and John F. LaDisa. "Visualization of CFD Results in a Virtual Reality Environment." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-205067.
Full textVaz, Pedro G., Anne Humeau-Heurtier, Edite Figueiras, and João Cardoso. "Laser based sensors for hemodynamic parameters measurement." In Optical Sensors. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/sensors.2017.sem3e.3.
Full textKhiabani, Reza H., Sulisay Phonekeo, Harish Srinimukesh, Elaine Tang, Mark Fogel, and Ajit P. Yoganathan. "Effect of Flow Pulsatility and Wall Compliance on the Energy Loss in the Total Cavopulmonary Connection." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14811.
Full textBernad, Sandor I., and Elena S. Bernad. "Coronary Venous Bypass Graft Failure, Hemodynamic Parameters Investigation." In Biomedical Engineering. Calgary,AB,Canada: ACTAPRESS, 2012. http://dx.doi.org/10.2316/p.2012.764-161.
Full textGriofa, Marc O., Rebecca Blue, Robert Friedman, Kenneth Cohen, Philip Hamski, Andrew Pal, Robert Rinehart, and Tom Merrick. "Radio Frequency Impedance Interrogation monitoring of hemodynamic parameters." In 2011 Biomedical Sciences and Engineering Conference (BSEC). IEEE, 2011. http://dx.doi.org/10.1109/bsec.2011.5872326.
Full text