Academic literature on the topic 'Hemodynamic Simulations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hemodynamic Simulations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hemodynamic Simulations":

1

Friedman, Morton H., Heather A. Himburg, and Jeffrey A. LaMack. "Statistical Hemodynamics: A Tool for Evaluating the Effect of Fluid Dynamic Forces on Vascular Biology In Vivo." Journal of Biomechanical Engineering 128, no. 6 (May 16, 2006): 965–68. http://dx.doi.org/10.1115/1.2354212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Background. In vivo experimentation is the most realistic approach for exploring the vascular biological response to the hemodynamic stresses that are present in life. Post-mortem vascular casting has been used to define the in vivo geometry for hemodynamic simulation; however, this procedure damages or destroys the tissue and cells on which biological assays are to be performed. Method of Approach. Two statistical approaches, regional (RSH) and linear (LSH) statistical hemodynamics, are proposed and illustrated, in which flow simulations from one series of experiments are used to define a best estimate of the hemodynamic environment in a second series. As an illustration of the technique, RSH is used to compare the gene expression profiles of regions of the proximal external iliac arteries of swine exposed to different levels of time-average shear stress. Results. The results indicate that higher shears promote a more atheroprotective expression phenotype in porcine arterial endothelium. Conclusion. Statistical hemodynamics provides a realistic estimate of the hemodynamic stress on vascular tissue that can be correlated against biological response.
2

Stahl, Janneck, Anna Bernovskis, Daniel Behme, Sylvia Saalfeld, and Philipp Berg. "Impact of patient-specific inflow boundary conditions on intracranial aneurysm hemodynamics." Current Directions in Biomedical Engineering 8, no. 1 (July 1, 2022): 125–28. http://dx.doi.org/10.1515/cdbme-2022-0032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract For hemodynamic simulations of intracranial aneurysms boundary conditions (BC) are required. In most cases, these are not patient-specific and thus do not reflect the real flow conditions in the patient. This study investigates the influence of patient-specific inflow BC on intra-aneurysmal hemodynamics. The focus lies on gender and age variations of the patients. To asses the impact, four different inflow curves representing the velocity profile of the inflow over one cardiac cycle is modeled. These four inflow BC are varied in the simulations of each aneurysm from selected subgroups. From the results of the simulations, the hemodynamic parameters are determined for each inflow BC and the percent differences between inflow BC are determined. The results show that the hemodynamic parameters are not robust to varying inflow BC. It can be seen that age has more influence on the hemodynamic parameters than gender. This study demonstrates the dependence of valid hemodynamic parameters on realistic inflow BC. Thus, if available, patient-specific inflow curves are recommended.
3

Grygoryan, R. D., and T. V. Aksenova. "Simulations of hypertrophied heart’s hemodynamics." PROBLEMS IN PROGRAMMING, no. 2-3 (June 2016): 254–63. http://dx.doi.org/10.15407/pp2016.02-03.254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The paper describes the modeling technology and the main results of the simulation of hemodynamic effects of cardiac hypertrophy (HH), conducted using previously published mathematical model (MM) [9]. The dynamics of hemodynamic abnormalities are not modeled. MM simulates changes in the central hemodynamics at different degrees and forms of myocardial hypertrophy (MH). Software technology provides a simulation of three types of HH: a) adaptive HH arising in response to the chronic lack of the systemic circulation; b) abnormal HH, which is at the extreme stage of adaptive HH; c) abnormal MH of left ventricle. The first two versions of HH have been simulated by increasing of myocardium’s stiffness, while the third version of HH is simulated via additional decrease of the unstressed volume of the left ventricle. For each version of HH a compensatory potential of self-regulation mechanisms (model uncontrolled cardiovascular system) is studied, and then similar opportunities of baroreflex regulators of hemodynamics have been evaluated. HM satisfactorily reproduces the main changes in blood pressure, cardiac output, and heart rate. The likely role of cell energy mechanisms in the cardiovascular system adaptation to high loads is discussed. The simulator is an autonomous program which can be both a tool to support the medical-physiological research and an educational means for demonstrating causal relationships to medical students. An implementation of the program in a more general program-modeling complex focused on the identification of patterns of functioning of super-human energy is planned.
4

Popović, Zoran B., Umesh N. Khot, Gian M. Novaro, Fernando Casas, Neil L. Greenberg, Mario J. Garcia, Gary S. Francis, and James D. Thomas. "Effects of sodium nitroprusside in aortic stenosis associated with severe heart failure: pressure-volume loop analysis using a numerical model." American Journal of Physiology-Heart and Circulatory Physiology 288, no. 1 (January 2005): H416—H423. http://dx.doi.org/10.1152/ajpheart.00615.2004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In the recently published clinical study [Use of Nitroprusside in Left Ventricular Dysfunction and Obstructive Aortic Valve Disease (UNLOAD)], sodium nitroprusside (SNP) improved cardiac function in patients with severe aortic stenosis (AS) and left ventricular (LV) systolic dysfunction. We explored the possible mechanisms of these findings using a series of numerical simulations. A closed-loop lumped parameters model that consists of 24 differential equations relating pressure and flow throughout the circulation was used to analyze the effects of varying hemodynamic conditions in AS. Hemodynamic data from UNLOAD study subjects were used to construct the initial simulation. Systemic vascular resistance (SVR), heart rate, and aortic valve area were directly entered into the model while end-systolic and end-diastolic pressure-volume (P-V) relationships were adjusted using previously published data to match modeled and observed end-systolic and end-diastolic pressures and volumes. Initial simulation of SNP treatment by a reduction of SVR was not adequate. To obtain realistic model hemodynamics that reliably reproduce SNP treatment effects, we performed a series of simulations while simultaneously changing end-systolic elastance ( Ees), end-systolic volume at zero pressure (V0), and diastolic P-V shift. Our data indicate that either an Ees increase or V0 decrease is necessary to obtain realistic model hemodynamics. In five patients, we corroborated our findings by using the model to duplicate individual P-V loops obtained before and during SNP treatment. In conclusion, using a numerical model, we identified ventricular function parameters that are responsible for improved hemodynamics during SNP infusion in AS with LV dysfunction.
5

Jeken-Rico, Pablo, Aurèle Goetz, Philippe Meliga, Aurélien Larcher, Yigit Özpeynirci, and Elie Hachem. "Evaluating the Impact of Domain Boundaries on Hemodynamics in Intracranial Aneurysms within the Circle of Willis." Fluids 9, no. 1 (December 21, 2023): 1. http://dx.doi.org/10.3390/fluids9010001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Hemodynamic simulations are increasingly used to study vascular diseases such as Intracranial Aneurysms (IA) and to further develop treatment options. However, due to limited data, certain aspects must rely on heuristics, especially at the simulation’s distal ends. In the literature, Murray’s Law is often used to model the outflow split based on vessel cross-section area; however, this poses challenges for the communicating arteries in the Circle of Willis (CoW). In this study, we contribute by assessing the impact of Murray’s Law in patient-specific geometries featuring IA at the posterior communication. We simulate different domain extensions representing common modelling choices and establish Full CoW simulations as a baseline to evaluate the effect of these modelling assumptions on hemodynamic indicators, focusing on IA growth and rupture-related factors such as the Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI). Our findings reveal qualitative alterations in hemodynamics when not modeling posterior communication. Comparisons between computing the anterior circulation and computing the whole Circle of Willis reveal that quantitative changes in WSS may reach up to 80%, highlighting the significance of modelling choices in assessing IA risks and treatment strategies.
6

Niemann, Annika, Samuel Voß, Riikka Tulamo, Simon Weigand, Bernhard Preim, Philipp Berg, and Sylvia Saalfeld. "Complex wall modeling for hemodynamic simulations of intracranial aneurysms based on histologic images." International Journal of Computer Assisted Radiology and Surgery 16, no. 4 (March 14, 2021): 597–607. http://dx.doi.org/10.1007/s11548-021-02334-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Purpose For the evaluation and rupture risk assessment of intracranial aneurysms, clinical, morphological and hemodynamic parameters are analyzed. The reliability of intracranial hemodynamic simulations strongly depends on the underlying models. Due to the missing information about the intracranial vessel wall, the patient-specific wall thickness is often neglected as well as the specific physiological and pathological properties of the vessel wall. Methods In this work, we present a model for structural simulations with patient-specific wall thickness including different tissue types based on postmortem histologic image data. Images of histologic 2D slices from intracranial aneurysms were manually segmented in nine tissue classes. After virtual inflation, they were combined into 3D models. This approach yields multiple 3D models of the inner and outer wall and different tissue parts as a prerequisite for subsequent simulations. Result We presented a pipeline to generate 3D models of aneurysms with respect to the different tissue textures occurring in the wall. First experiments show that including the variance of the tissue in the structural simulation affect the simulation result. Especially at the interfaces between neighboring tissue classes, the larger influence of stiffer components on the stability equilibrium became obvious. Conclusion The presented approach enables the creation of a geometric model with differentiated wall tissue. This information can be used for different applications, like hemodynamic simulations, to increase the modeling accuracy.
7

Grygoryan, R. D., A. G. Degoda, T. V. Lyudovyk, and O. I. Yurchak. "Simulations of human hemodynamic responses to blood temperature and volume changes." PROBLEMS IN PROGRAMMING, no. 1 (January 2023): 19–29. http://dx.doi.org/10.15407/pp2023.01.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
An advanced version (AV) of special software based on modified quantitative models of mechanisms that provide the overall control of human circulation is proposed. AV essentially expands the range of tasks concerning the modeling of cardiovascular physiology, in particular, the range of mechanisms controlling cardiac function, vascular hemodynamics, and total blood volume under unstable internal/ external physiochemical environments. The models are verified on data representing hemodynamic responses to certain physical tests. In the publication, two test scenarios, namely blood temperature and volume dynamic alterations, have been simulated and analyzed in detail. The user-friendly interface provides all stages of preparation and analysis of computer simulation. The PC-based simulator can also be used for educational purposes.
8

Brambila-Solórzano, Alberto, Federico Méndez-Lavielle, Jorge Luis Naude, Gregorio Josué Martínez-Sánchez, Azael García-Rebolledo, Benjamín Hernández, and Carlos Escobar-del Pozo. "Influence of Blood Rheology and Turbulence Models in the Numerical Simulation of Aneurysms." Bioengineering 10, no. 10 (October 8, 2023): 1170. http://dx.doi.org/10.3390/bioengineering10101170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
An aneurysm is a vascular malformation that can be classified according to its location (cerebral, aortic) or shape (saccular, fusiform, and mycotic). Recently, the study of blood flow interaction with aneurysms has gained attention from physicians and engineers. Shear stresses, oscillatory shear index (OSI), gradient oscillatory number (GON), and residence time have been used as variables to describe the hemodynamics as well as the origin and evolution of aneurysms. However, the causes and hemodynamic conditions that promote their growth are still under debate. The present work presents numerical simulations of three types of aneurysms: two aortic and one cerebral. Simulation results showed that the blood rheology is not relevant for aortic aneurysms. However, for the cerebral aneurysm case, blood rheology could play a relevant role in the hemodynamics. The evaluated turbulence models showed equivalent results in both cases. Lastly, a simulation considering the fluid–structure interaction (FSI) showed that this phenomenon is the dominant factor for aneurysm simulation.
9

Korte, J., P. Groschopp, and P. Berg. "Resolution-based comparative analysis of 4D-phase-contrast magnetic resonance images and hemodynamic simulations of the aortic arch." Current Directions in Biomedical Engineering 9, no. 1 (September 1, 2023): 650–53. http://dx.doi.org/10.1515/cdbme-2023-1163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Introduction: In this study, phase-contrast magnetic resonance imaging (PC-MRI) 4D flow data for patients with bicuspid aortic valve (BAV) were analyzed based on the spatial resolution of the images. BAV is a congenital heart defect characterized by the presence of two cusps in the aortic valve, leading to various complications. PC-MRI is a noninvasive imaging technique used to assess the hemodynamics in patients. However, interpretation of PC-MRI data can be challenging due to complex hemodynamics, which makes numerical simulations necessary to complement the results. Methods:Within this study PC-MRI 4D flow data in the aortic arch (AA) were compared with hemodynamic numerical simulations based on the MRI resolution for six patient-specific AAs with BAV. First, the segmentations were reconstructed and divided into three groups based on the resolution. Second, the numerical simulations were performed and resulting hemodynamics compared to PC-MRI results at three time points in the cardiac cycle using velocity and wall shear stress. Results: Results from group 1 (highest resolution) show an overestimation of wall shear stress (WSS) values during peaksystole in the three arteries and along the AA and descending aorta (DAo). Nevertheless, velocity mean values show an overall good agreement. Group 2 shows higher velocity magnitudes in the simulation than in PC-MRI. Within group 3, velocity values differ from the measurements. Conclusion: The study shows that with a low resolution, flow patterns can already be evaluated based on PC-MRI, but to get an insight into the flow quantitatively a higher resolution is necessary.
10

Chen, Yan, Masaharu Kobayashi, Changyoung Yuhn, and Marie Oshima. "Development of a 3D Vascular Network Visualization Platform for One-Dimensional Hemodynamic Simulation." Bioengineering 11, no. 4 (March 26, 2024): 313. http://dx.doi.org/10.3390/bioengineering11040313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Recent advancements in computational performance and medical simulation technology have made significant strides, particularly in predictive diagnosis. This study focuses on the blood flow simulation reduced-order models, which provide swift and cost-effective solutions for complex vascular systems, positioning them as practical alternatives to 3D simulations in resource-limited medical settings. The paper introduces a visualization platform for patient-specific and image-based 1D–0D simulations. This platform covers the entire workflow, from modeling to dynamic 3D visualization of simulation results. Two case studies on, respectively, carotid stenosis and arterial remodeling demonstrate its utility in blood flow simulation applications.

Dissertations / Theses on the topic "Hemodynamic Simulations":

1

Boutsianis, Evangelos. "Anatomically accurate hemodynamic simulations in the aorta and the coronary arteries /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BOTTI, Lorenzo Alessio (ORCID:0000-0002-0511-9022). "Galerkin methods for incompressible fluid flow simulations: application to hemodynamics." Doctoral thesis, Università degli studi di Bergamo, 2010. http://hdl.handle.net/10446/610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This thesis addresses the solution of the steady and unsteady incompressible Navier-Stokes (INS) equations employing finite element discretizations based on Galerkin variational formulations. The goal is the simulation of blood flow (hemodynamics) in realistic geometries reconstructed in-vivo. Advection-dominated incompressible flows, occurring at physiologic conditions in large arteries, constitute a challenging class of problems both in terms of numerical stability and computational cost. In the context of unsteady incompressible fluid flow simulations a new formulation based on the pressure-correction algorithm featuring discontinuous velocity and continuous pressure a is proposed and validated with numerical experiments. In this configuration we are able exploit the ability of dG to deal with convection-dominated flows maintaining a less expensive Galerkin discretization for the pressure projection step and, therefore, obtaining an effective solution process. The ability to simulate the blood flow behaviour in complex geometries reconstructed in-vivo employing high-order finite element discretizations has been demonstrated. In this context, discontinuous Galerkin (dG) methods offer many advantages: LBB stable equal-order discretizations can be devised, the extension to arbitrary unstructured and nonconforming grids is straightforward, and the resulting discretization displays an increased stability in the high Reynolds regimes. Flexibility, however, comes at a price. In particular, memory requirements as well as the increased computational cost have discouraged wide adoption of these methods up to now. In this thesis we consider effective strategies to overcome these limitations and make available to CFD practioners the flexibility and the good properties previously described. Coupled variables dG discretization of the INS equations are combined with efficient pseudo-transient continuation methods in order to exploit fully implicit discretizations of the non-linear term in the achievement of steady state solutions. Trivial implementation of hp-adaptivity on non-conforming meshes is one of the most attractive and documented dG formulations pros. The benefits of future based adaptive mesh refinement are investigated on simple two-dimensional test cases.
3

Saccaro, Ludovica. "Vers l'évaluation du risque des anévrismes de l'aorte abdominale par modélisation géométrique et simulations hémodynamiques d'ordre réduit." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette thèse se concentre sur une pathologie spécifique affectant la section abdominale de l'aorte, connue sous le nom d'anévrisme de l'aorte abdominale (AAA). Un anévrisme implique un affaiblissement persistant et localisé de la paroi du vaisseau, entraînant des élargissements et des renflements, provoquant une recirculation et une turbulence du flux sanguin.Notre thèse expose une méthodologie pour la modélisation géométrique des anévrismes abdominaux. Le processus comprend l'acquisition d'images de scanners CT, la reconstruction de la géométrie 3D de l'aorte et l'isolation de l'anévrisme. La phase de modélisation commence par l'identification et l'approximation de la ligne médiane du vaisseau aortique à l'aide de fonctions B-spline. La paroi aortique est ensuite partitionnée et profilée à l'aide de séries de Fourier.Pour évaluer son efficacité, la technique développée est appliquée à un ensemble de données de scanners CT de patients. Les reconstructions obtenues à partir des scans sont également présentées comme des exemples détaillant chaque étape de la procédure. De plus, une évaluation quantitative et la logique derrière les paramètres de modélisation sont expliquées. Ensuite, en tant que première application, la modélisation est intégrée à un processus de registration pour le diagnostic clinique et le suivi.La procédure de modélisation géométrique développée est utilisée dans un pipeline pour des simulations hémodynamiques et une évaluation des risques, en utilisant une approche de modélisation d'ordre réduit pour construire un espace de solution. Des simulations, utilisant des géométries paramétrées, sont réalisées dans des conditions réalistes, et des indicateurs de risque sont calculés et liés à la représentation géométrique à l'aide d'une fonction interpolante à base radiale. Enfin, des prédictions sur les indicateurs de risque sont obtenues pour une géométrie inconnue. Les résultats, bien que prometteurs, pourront être améliorés en augmentant de manière appropriée l'ensemble de données initial.Pour remédier à la pénurie mentionnée de données cliniques, nous avons élaboré un flux de travail automatisé pour générer des géométries synthétiques. Cette approche permet l'identification de paramètres géométriques pertinents et implique l'apprentissage automatique pour générer une population virtuelle de patients cohérente avec les données d'origine. En plus d'améliorer la capacité prédictive des modèles réduits, la méthode peut également être appliquée de manière prospective pour des essais in silico et des études impliquant des populations virtuelles de patients
This thesis focuses on a specific pathology affecting the abdominal section of the aorta, known as abdominal aortic aneurysm (AAA). An aneurysm involves a persistent and localized weakening of the vessel wall, leading to enlargements and bulges, causing recirculation and turbulence of blood flow.Our thesis outlines a methodology for geometric modeling of abdominal aneurysms. The process involves acquiring CT images, reconstructing the aorta 3D geometry, and isolating the aneurysm. The modeling phase begins by identifying and approximating the centerline of the aortic vessel using B-spline functions. The aortic wall is then partitioned and profiled using Fourier series.To evaluate its effectiveness, the developed technique is applied to a dataset of CT scans from patients. Reconstructions obtained from the scans are also presented as examples to detail each step of the procedure. In addition, a quantitative evaluation and rationale behind modeling parameters are explained. Then, as a first application, the modeling is integrated into a registration process for clinical diagnosis and follow-up.The geometrical modeling procedure developed is used in a pipeline for hemodynamic simulations and risk assessment, employing a reduced-order modeling approach to construct a reduced solution space. Simulations, utilizing parameterized geometries, are conducted under realistic conditions, and risk indicators are computed and linked to the geometrical representation using Radial Basis Functions interpolant. Finally, predictions on risk indicators are obtained for an unknown geometry. The results, despite being promising, can be further improved by appropriately augmenting the initial dataset.To address the aforementioned scarcity of clinical data, we devised an automated workflow for generating synthetic geometries. This approach allows for the identification of relevant geometry parameters and involves machine learning to generate a virtual patient population consistent with the original data. In addition to improving the predictive capability of reduced models, the method can also be applied prospectively for in-silico trials and studies involving virtual patient populations
4

Davis, Timothy L. (Timothy Lloyd). "Teaching physiology through interactive simulation of hemodynamics." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/13823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zimny, Simon [Verfasser]. "Hemodynamic Flow Simulation in Patient Specific Cerebral Aneurysms / Simon Zimny." München : Verlag Dr. Hut, 2016. http://d-nb.info/1106592565/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aletti, Matteo Carlo Maria. "Mathematical modelling and simulations of the hemodynamics in the eye." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066031/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La structure de l’oeil permet d’observer la microcirculation, grâce aux caméras de fond d’oeil. Ces appareils sont bon marché et couramment utilisés dans la pratique clinique, permettant le dépistage de maladies oculaires. La capacité des vaisseaux à adapter leur diamètre (autorégulation) afin de réguler le débit sanguin est importante dans la microcirculation. L’hémodynamique de l’oeil est impactée par la pression à l’intérieur du globe oculaire (IOP), qui est à son tour influencée par le flux sanguin oculaire. Les altérations de l’autorégulation et l’IOP jouent un rôle dans les maladies oculaires. La modélisation mathématique peut aider à interpréter l’interaction entre ces phénomènes et à mieux exploiter les données médicales disponibles. Dans la première partie, nous présentons un modèle simplifié d’interaction fluidestructure qui inclut l’autorégulation, appliqué à un reseau 3D obtenu par imagerie médicale. Les cellules musculaires lisses regulant le diamètre du vaisseau sont modélisés dans la structure. Ensuite, nous utilisons des équations de poroélasticité pour décrire le flux sanguin dans la choroïde, dans un modèle multi-compartiments de l’oeil. Cette approche permet de rendre compte de la transmission de la pulsatilité de la choroïde à la chambre antérieure, où l’IOP est mesurée. Nous présentons des résultats préliminaires sur la choroïde, l’humeur aqueuse et sur la choroïde couplée avec la vitrée. Enfin, nous présentons un modèle d’ordre réduit pour accélérer des simulations multi-physique. Des modèles de haute précision sont utilisés pour les compartiments d’intérêt et une représentation réduite de l’opérateur de Steklov-Poincaré est utilisée pour les autres compartiments
The structure of the eye offers a unique opportunity to directly observe the microcirculation, by means, for instance, of fundus camera, which are cheap devices commonly used in the clinical practice. This can facilitate the screening of systemic deseases such as diabetes and hypertension, or eye diseases such as glaucoma. A key phenomenon in the microcirculation is the autoregulation, which is the ability of certain vessels to adapt their diameter to regulate the blood flow rate in response to changes in the systemic pressure or metabolic needs. Impairments in autoregulation are strongly correlated with pathological states. The hemodynamics in the eye is influenced by the intraocular pressure (IOP), the pressure inside the eye globe, which is in turn influenced by the ocular blood flow. The interest in the IOP stems from the fact that it plays a role in several eye-diseases, such as glaucoma. Mathematical modelling can help in interpreting the interplay between these phenomena and better exploit the available data. In the first part of the thesis we present a simplified fluid-structure interaction model that includes autoregulation. A layer of fibers in the vessel wall models the smooth muscle cells that regulate the diameter of the vessel. The model is applied to a 3D image-based network of retinal arterioles. In the second part, we propose a multi-compartments model of the eye. We use the equations of poroelasticity to model the blood flow in the choroid. The model includes other compartments that transmit the pulsatility from the choroid to the anterior chamber, where the measurements of the IOP are actually performed. We present some preliminary results on the choroid, the aqueous humor and on the choroid coupled with the vitreous. Finally, we present a reduced order modelling technique to speed up multiphysics simulations. We use high fidelity models for the compartments of particular interest from the modelling point of view. The other compartments are instead replaced by a reduced representation of the corresponding Steklov-Poincaré operator
7

Yu, Xiaohong, and 于曉紅. "Hemodynamic analysis of blood flows in carotid bifurcations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B3864700X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Audebert, Chloé. "Mathematical liver modeling : hemodynamics and function in hepatectomy." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066077/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L’ablation partielle du foie est une chirurgie qui intervient dans le traitement des lésions du foie et lors d’une transplantation partielle de foie. Les relations entre l’hémodynamique du foie, son volume et ses fonctions restent à élucider pour mieux comprendre les causes des complications de ces chirurgies. Lors de la chirurgie, l’hémodynamique du foie est altérée suite à l’augmentation de la résistance au flux sanguin de l’organe. La régénération du foie semble dépendante des changements de débit et de pression dans la veine porte. D’autre part, comme le foie reçoit 25% du débit cardiaque, la chirurgie impacte la circulation sanguine globale. Dans ce contexte, le premier objectif est de mieux comprendre, grâce à des modèles mathématiques, l’influence de l’hépatectomie sur l’hémodynamique. Le second objectif est l’analyse de la perfusion et de la fonction du foie. Premièrement, la procédure chirurgicale, les conditions expérimentales ainsi que les mesures obtenues sont détaillées. Ensuite, les valeurs moyennes mesurées lors de douze chirurgies sont reproduites par un modèle de circulation entière, basé sur des équations différentielles ordinaires. Lors des différentes hépatectomies, des changements de forme de courbe sont observés. Un modèle de circulation entière, basée sur des équations 1D et 0D est proposé pour analyser ces changements. Ce travail pourrait permettre une meilleure compréhension des changements d’architecture du foie induits par l’hépatectomie. Puis, le transport dans le sang d’un composé ainsi que son traitement par le foie sont modélisés. Un modèle pharmacocinétique est développé et grâce aux mesures, les paramètres du modèle sont estimés
Major liver resection is being performed to treat liver lesions or for adult-to-adult living donor liver transplantation. Complications of these surgeries are related to a poor liver function. The links between liver hemodynamics, liver volume and liver function remain unclear and are important to better understand these complications. The surgery increases the resistance to blood flow in the organ, therefore it modifies liver hemodynamics. Large modifications of the portal vein hemodynamics have been associated with poor liver regeneration. Moreover the liver receives 25% of the cardiac outflow, therefore liver surgery may impact the whole blood circulation. In this context, the first goal is to investigate with mathematical models the impact of liver surgery on liver hemodynamics. The second goal is to study the liver perfusion and function with mathematical models. The first part describes the experimental conditions and reports the measurements recorded. Then, the second part focuses on the liver hemodynamics during partial hepatectomy. On one hand, the hemodynamics during several surgeries is quantitatively reproduced and explained by a closed-loop model based on ODE. On the other hand, the change of waveforms observed after different levels of liver resection is reproduced with a model of the global circulation, including 0D and 1D equations. This may contribute to a better understanding of the change of liver architecture induced by hepatectomy. Next, the transport in blood of a compound is studied. And a pharmacokinetics model and its parameter identification are developed to quantitatively analyze indocyanine green fluorescence dynamics in the liver tissue
9

Lal, Rajnesh. "Data assimilation and uncertainty quantification in cardiovascular biomechanics." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS088/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les simulations numériques des écoulements sanguins cardiovasculaires peuvent combler d’importantes lacunes dans les capacités actuelles de traitement clinique. En effet, elles offrent des moyens non invasifs pour quantifier l’hémodynamique dans le cœur et les principaux vaisseaux sanguins chez les patients atteints de maladies cardiovasculaires. Ainsi, elles permettent de recouvrer les caractéristiques des écoulements sanguins qui ne peuvent pas être obtenues directement à partir de l’imagerie médicale. Dans ce sens, des simulations personnalisées utilisant des informations propres aux patients aideraient à une prévision individualisée des risques. Nous pourrions en effet, disposer des informations clés sur la progression éventuelle d’une maladie ou détecter de possibles anomalies physiologiques. Les modèles numériques peuvent fournir également des moyens pour concevoir et tester de nouveaux dispositifs médicaux et peuvent être utilisés comme outils prédictifs pour la planification de traitement chirurgical personnalisé. Ils aideront ainsi à la prise de décision clinique. Cependant, une difficulté dans cette approche est que, pour être fiables, les simulations prédictives spécifiques aux patients nécessitent une assimilation efficace de leurs données médicales. Ceci nécessite la solution d’un problème hémodynamique inverse, où les paramètres du modèle sont incertains et sont estimés à l’aide des techniques d’assimilation de données.Dans cette thèse, le problème inverse pour l’estimation des paramètres est résolu par une méthode d’assimilation de données basée sur un filtre de Kalman d’ensemble (EnKF). Connaissant les incertitudes sur les mesures, un tel filtre permet la quantification des incertitudes liées aux paramètres estimés. Un algorithme d’estimation de paramètres, basé sur un filtre de Kalman d’ensemble, est proposé dans cette thèse pour des calculs hémodynamiques spécifiques à un patient, dans un réseau artériel schématique et à partir de mesures cliniques incertaines. La méthodologie est validée à travers plusieurs scenarii in silico utilisant des données synthétiques. La performance de l’algorithme d’estimation de paramètres est également évaluée sur des données expérimentales pour plusieurs réseaux artériels et dans un cas provenant d’un banc d’essai in vitro et des données cliniques réelles d’un volontaire (cas spécifique du patient). Le but principal de cette thèse est l’analyse hémodynamique spécifique du patient dans le polygone de Willis, appelé aussi cercle artériel du cerveau. Les propriétés hémodynamiques communes, comme celles de la paroi artérielle (module de Young, épaisseur de la paroi et coefficient viscoélastique), et les paramètres des conditions aux limites (coefficients de réflexion et paramètres du modèle de Windkessel) sont estimés. Il est également démontré qu’un modèle appelé compartiment d’ordre réduit (ou modèle dimension zéro) permet une estimation simple et fiable des caractéristiques du flux sanguin dans le polygone de Willis. De plus, il est ressorti que les simulations avec les paramètres estimés capturent les formes attendues pour les ondes de pression et de débit aux emplacements prescrits par le clinicien
Cardiovascular blood flow simulations can fill several critical gaps in current clinical capabilities. They offer non-invasive ways to quantify hemodynamics in the heart and major blood vessels for patients with cardiovascular diseases, that cannot be directly obtained from medical imaging. Patient-specific simulations (incorporating data unique to the individual) enable individualised risk prediction, provide key insights into disease progression and/or abnormal physiologic detection. They also provide means to systematically design and test new medical devices, and are used as predictive tools to surgical and personalize treatment planning and, thus aid in clinical decision-making. Patient-specific predictive simulations require effective assimilation of medical data for reliable simulated predictions. This is usually achieved by the solution of an inverse hemodynamic problem, where uncertain model parameters are estimated using the techniques for merging data and numerical models known as data assimilation methods.In this thesis, the inverse problem is solved through a data assimilation method using an ensemble Kalman filter (EnKF) for parameter estimation. By using an ensemble Kalman filter, the solution also comes with a quantification of the uncertainties for the estimated parameters. An ensemble Kalman filter-based parameter estimation algorithm is proposed for patient-specific hemodynamic computations in a schematic arterial network from uncertain clinical measurements. Several in silico scenarii (using synthetic data) are considered to investigate the efficiency of the parameter estimation algorithm using EnKF. The usefulness of the parameter estimation algorithm is also assessed using experimental data from an in vitro test rig and actual real clinical data from a volunteer (patient-specific case). The proposed algorithm is evaluated on arterial networks which include single arteries, cases of bifurcation, a simple human arterial network and a complex arterial network including the circle of Willis.The ultimate aim is to perform patient-specific hemodynamic analysis in the network of the circle of Willis. Common hemodynamic properties (parameters), like arterial wall properties (Young’s modulus, wall thickness, and viscoelastic coefficient) and terminal boundary parameters (reflection coefficient and Windkessel model parameters) are estimated as the solution to an inverse problem using time series pressure values and blood flow rate as measurements. It is also demonstrated that a proper reduced order zero-dimensional compartment model can lead to a simple and reliable estimation of blood flow features in the circle of Willis. The simulations with the estimated parameters capture target pressure or flow rate waveforms at given specific locations
10

He, Xiaoyi. "Numerical simulations of blood flow in human coronary arteries." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/16685.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hemodynamic Simulations":

1

AACN. AACN Clinical Simulations: Hemodynamic Monitoring Institutional Version (AACN CLINICAL SIMULATIONS FOR CRITICAL CARE). Lippincott Williams & Wilkins, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rannacher, Rolf, Stefan Turek, Anne M. Robertson, and Giovanni P. Galdi. Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars Book 37). Birkhäuser, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rannacher, Rolf, Stefan Turek, Anne M. Robertson, and Giovanni P. Galdi. Hemodynamical Flows: Modeling, Analysis and Simulation (Oberwolfach Seminars). Birkhäuser Basel, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

(Editor), X. Y. Xu, and M. W. Collins (Editor), eds. Haemodynamics of Arterial Organs : Comparison of Computational Predictions with In Vitro and In Vivo Data (Advances in Computational Bioengineering Vol 1). WIT Press (UK), 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hemodynamic Simulations":

1

Fresiello, Libera, and Krzysztof Zieliński. "Hemodynamic Modelling and Simulations for Mechanical Circulatory Support." In Mechanical Support for Heart Failure, 429–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47809-4_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zeng, H., J. Luo, and X. Wu. "Computer Simulations of Hemodynamic Effects of Different CPR Techniques." In IFMBE Proceedings, 12–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vassilevski, Y. V., O. N. Bogdanov, X. V. Chesnokova, A. A. Danilov, T. K. Dobroserdova, D. D. Dobrovolsky, and A. V. Lozovskiy. "Non-FSI 3D Hemodynamic Simulations in Time-Dependent Domains." In Trends in Biomathematics: Chaos and Control in Epidemics, Ecosystems, and Cells, 261–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73241-7_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Garbey, Marc, and Mark G. Davies. "Remarks on Solution Verification and Model Validation of Hemodynamic Simulations." In Pumps and Pipes, 45–54. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6012-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Romano, Ernesto, Luísa C. Sousa, Carlos C. António, Catarina F. Castro, and Sónia Isabel Silva Pinto. "Non-Linear or Quasi-Linear Viscoelastic Property of Blood for Hemodynamic Simulations." In Advanced Structured Materials, 127–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50464-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boccadifuoco, Alessandro, Alessandro Mariotti, Katia Capellini, Simona Celi, and Maria Vittoria Salvetti. "Uncertainty Quantification Applied to Hemodynamic Simulations of Thoracic Aorta Aneurysms: Sensitivity to Inlet Conditions." In Lecture Notes in Computational Science and Engineering, 171–92. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48721-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nozaleda, Guillermo L., Sofia Poloni, Luca Soliveri, and Kristian Valen-Sendstad. "Impact of Modeling Assumptions on Hemodynamic Stresses in Predicting Cerebral Aneurysm Rupture Status." In Computational Physiology, 99–110. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53145-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractApproximately 3% of the population is estimated to have cerebral aneurysms, which are the leading cause of subarachnoid haemorrhage. Convincing evidences suggest that wall shear stresses (WSS) play a role in vessel remodeling and in the development of vascular diseases. SinceWSS cannot be directly measured, researchers have resorted to using medical images available in routine clinical practice to simulate computational fluid dynamics (CFD) and investigate patient-specific vascular conditions. They retrospectively analyse the correlation between WSS and disease outcomes to find potential clinical tools for future use. However, most of these models are based on assumptions that introduce variability and error. In this work we investigated the effects of a non-Newtonian viscosity model and inflow uncertainty on the prediction of commonly computed hemodynamic metrics. Our results show a substantial influence of the non-Newtonian model and blood flow rate on CFD outcomes, highlighting the need of incorporating non-Newtonian rheology and patient-specific blood flow measurements in CFD simulations.
8

Matias, Luís, Catarina Ferreira de Castro, Carlos Conceição António, Luísa Costa Sousa, and Sónia Isabel Silva Pinto. "Semi-automatic Method of Stent Development for Hemodynamic Simulations in Patient Coronary Arteries with Disease." In Advanced Structured Materials, 443–58. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04548-6_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fernandes, Maria Carolina, Luísa Costa Sousa, Catarina Ferreira de Castro, José Manuel Laginha Mestre da Palma, Carlos Conceição António, and Sónia Isabel Silva Pinto. "Implementation and Comparison of Non-Newtonian Viscosity Models in Hemodynamic Simulations of Patient Coronary Arteries." In Advanced Structured Materials, 403–28. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04548-6_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bäumler, Kathrin, Judith Zimmermann, Daniel B. Ennis, Alison L. Marsden, and Dominik Fleischmann. "Hemodynamic Effects of Entry Versus Exit Tear Size and Tissue Stiffness in Simulations of Aortic Dissection." In Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering II, 143–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10015-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hemodynamic Simulations":

1

Chitneedi, B., and C. Karliampas. "Hemodynamic evaluation of aortic aneurysms using FSI simulations." In 10th edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering. CIMNE, 2023. http://dx.doi.org/10.23967/c.coupled.2023.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aliabadi, Ardavan, and Klaus A. Hoffmann. "Three-Dimensional Fluid-Structure-Interaction Simulation of Tilting Disk Mechanical Heart Valve." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The current computational effort will focus on the numerical analysis of current tiling disk MHVs. In this work an implicit fluid-structure-interaction (FSI) simulation of the Bjork-Shiley design was carried out using in-house codes implemented in the commercial code software FLUENT™. In-house codes in the form of journal files, schemes, and user-defined functions (UDFs) were integrated to automate the inner iterations and enable communication between the fluid and the moving disk at the interfaces. Based on the investigations of the current simulations, a new design aiming at improving the hemodynamic performance is suggested. Hemodynamics of the flow in current tilting-disk valves is compared with the suggested design and it is concluded that the suggested design has a better hemodynamic performance in terms of shear stress values and residence times.
3

Dholakia, R. J., C. Sadasivan, D. J. Fiorella, H. H. Woo, and B. B. Lieber. "Flow Diverted Aneurysmal Hemodynamic Simulations and Validation With Experiments." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Brain aneurysms occur due to abnormal ballooning of cerebral arteries. Rupture of the cerebral aneurysms can result in subarachnoid hemorrhage and may prove fatal for patients [1]. Surgical clipping is a highly invasive option for treatment of aneurysms. Endovascular flow diverting stents have recently emerged as a less invasive treatment for cerebral aneurysms. Flow diverters for intracranial aneurysms, are porous metallic mesh tubes deployed across the neck of the aneurysm to exclude the aneurysm from the circulation [2–4]. By producing a substantial reduction of flow inside the aneurysm and by promoting activation of platelets that cross the device into the aneurysm, intra-aneurysmal thrombus is generated and the aneurysm is eventually excluded from the circulation.
4

He, Xing, Prem Venugopal, Juan R. Cebral, Holger Schmitt, and Daniel J. Valentino. "Reproducibility of brain hemodynamic simulations: an inter-solver comparison." In Medical Imaging, edited by Armando Manduca and Amir A. Amini. SPIE, 2006. http://dx.doi.org/10.1117/12.653970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Luo, Junqing, Xiaoming Wu, Huangcun Zeng, and Hengxin Yuan. "Computer Simulations of Hemodynamic Effects of EECP During AEI-CPR." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5517599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Martin, Aristotle, Geng Liu, William Ladd, Seyong Lee, John Gounley, Jeffrey Vetter, Saumil Patel, et al. "Performance Evaluation of Heterogeneous GPU Programming Frameworks for Hemodynamic Simulations." In SC-W 2023: Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3624062.3624188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Berger, Stanley A., Jennifer S. Stroud, and Vitaliy Rayz. "Hemodynamic Simulations of Flow in Normal and Stenotic Carotid Arteries." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/bed-23136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Much of the recent work attempting to simulate arterial flows has been motivated by attempts to elucidate the relationship between flow in the arteries and atherogenesis, and the focalization of plaque development. The aspect of the flow of most interest in this context was wall shear stresses, there being substantial evidence that the most susceptible sites are where shear stresses are low, or change rapidly in time or space [1]. These conditions are most likely to occur where there are sudden changes in flow geometry, and/or when the flow is unsteady. (For a recent review see [2].) We have studied flow in the carotid arterial bifurcation. Carrying out extensive simulations of the fully three-dimensional unsteady flow in realistic normal carotid bifurcation geometries allows us to identify the more dangerous sites for plaque development according to the above criteria. In the later stages of progression of atherosclerotic disease the relevant issues become vessel occlusion, embolic events, or plaque rupture, especially since recent clinical investigations have suggested that the danger posed by a particular plaque depends not only on the degree of occlusion but also on the so-called “vulnerability” of the plaque, the tendency of the plaque, depending on its composition, to fracture and rupture. To address these issues we have simulated flow in realistic severely stenotic carotid bifurcations toward the end of identifying critical features of plaque geometry and “risk factors” for plaque fracture and rupture.
8

He, Yong, Christi M. Terry, Scott A. Berceli, Alfred K. Cheung, and Yan-Ting E. Shiu. "A Longitudinal Study of Hemodynamics in a Functional Human Hemodialysis Fistula Using 3T Magnetic Resonance Imaging-Based Computational Fluid Dynamics Analysis." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
An arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis in end-stage renal disease. However, 60% of AVFs fail to achieve sufficient lumen dilation to allow adequate blood flow for chronic dialysis [1]. Although hemodynamics is likely an important modulator of AVF maturation and remodeling, the AVF hemodynamic spatial distribution profiles and their relationship with AVF maturation and remodeling are unclear [2]. Based on data collected from magnetic resonance imaging (MRI) of an AVF and computational fluid dynamics (CFD) simulations, we developed a protocol for longitudinal (over time) and noninvasive monitoring of geometry and hemodynamics of human AVF.
9

Metzger, Thomas A., Santanu Chandra, and Philippe Sucosky. "Hemodynamic Abnormalities in Stented Carotid Artery: A Fluid Structure Interaction Study." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-93091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Balloon-stented angioplasty is a common treatment for carotid arterial atherosclerosis. Clinical studies have shown that within 6 months of the initial procedure, 25% of stented-angioplasty patients develop restenosis, a postoperative narrowing of the artery due to plaque accumulation onto the stent. While hemodynamics and more specifically low oscillatory wall-shear stress have been identified as key factors promoting atherogenesis, their role in restenosis following stent implantation remains unclear. We hypothesize that the implantation of a stent generates hemodynamic abnormalities consisting of low wall shear stresses in the vicinity of arterial wall regions prone to restenosis. The objective of this study was to compare computationally the hemodynamics in normal (healthy), stenosed (atherosclerotic) and stented carotid artery bifurcation models and to investigate potential correlations between regions presenting high hemodynamic abnormalities and regions prone to postoperative stent angioplasty restenosis. Realistic, three-dimensional models of normal, stenosed and stented human carotid bifurcations consisting of the common (CCA), external (ECA) and internal (ICA) carotid arteries were developed using the computer-assisted design software Solid Edge. The characteristic dimensions of the normal and stenosed models were obtained from previously published human data. The stented model was designed by modeling the inner surface of the ICA bulb region as a rigid cylindrical surface mimicking the presence of a stent. Fluid-structure interaction (FSI) simulations were carried out using the adaptive arbitrary Lagrangian Eulerian (ALE) approach of ANSYS 14 to simulate flow and arterial wall dynamics in each model subjected to physiologic pressure and flow rate. As expected, the atherosclerotic model resulted in higher velocity and wall shear stress (WSS) levels than the normal model due to the reduced ICA lumen. In addition, while stent implantation restored the hemodynamic performance of the vessel, it generated lower WSS than in the normal model, which may contribute to restenosis. This study provides new insights into the possible hemodynamic roots of postoperative stent angioplasty restenosis.
10

Radovic, Milos D., Nenad D. Filipovic, Zoran Bosnic, Petar Vracar, and Igor Kononenko. "Mining data from hemodynamic simulations for generating prediction and explanation models." In 2010 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB 2010). IEEE, 2010. http://dx.doi.org/10.1109/itab.2010.5687679.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography