Journal articles on the topic 'Hemilabile phosphine ligands'

To see the other types of publications on this topic, follow the link: Hemilabile phosphine ligands.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 49 journal articles for your research on the topic 'Hemilabile phosphine ligands.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Keim, Wilhelm, Heiko Maas, and Stefan Mecking. "Palladium Catalyzed Alternating Cooligomerization of Ethylene and Carbon Monoxide to Unsaturated Ketones." Zeitschrift für Naturforschung B 50, no. 3 (March 1, 1995): 430–38. http://dx.doi.org/10.1515/znb-1995-0318.

Full text
Abstract:
Cationic palladium catalysts have been used to cooligomerize ethylene and carbon monoxide. At high ethylene/CO ratios (m /m = 10:1) in methylene chloride as a solvent, unsaturated alternating cooligomers of the general structure R[C(O)CH2CH2]mH ( m ≥ 1 ; R ≡CH2=CH-, CH2=CHCH2CH2- and CH3CH = CHCH2-) were obtained for the first time. Single component catalyst precursors [(allyl)Pd(P^X )]+Y- (P^X = Ph2P(CH2)nC(= O )OR, Ph2P(CH2)2P(=O)Ph2, Ph2P(CH2)nPh2P(CH2)2S (=O )Ph, n = 1 - 3 , R = Me, Et; Y- = BF4-, SbF6- ) with bidentate P,O- and P,S-ligands as well as in situ catalysts with unfunctionalized phosphine ligands were used. With P"Bu3 as a ligand, selectivities for ethylvinylketone of 40% based on the CO converted were obtained. The hemilabile phosphino-ester and phosphinothiophene ligands behave like monodentate phosphines under catalytic conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Sharma, Anuja, and Ryan J. Trovitch. "Phosphorous-substituted redox-active ligands in base metal hydrosilylation catalysis." Dalton Transactions 50, no. 44 (2021): 15973–77. http://dx.doi.org/10.1039/d1dt02879k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gushchin, Artem L., Nikita Y. Shmelev, Svetlana F. Malysheva, Alexander V. Artem’ev, Nataliya A. Belogorlova, Pavel A. Abramov, Nikolay B. Kompan’kov, et al. "Hemilability of phosphine-thioether ligands coordinated to trinuclear Mo3S4 cluster and its effect on hydrogenation catalysis." New Journal of Chemistry 42, no. 21 (2018): 17708–17. http://dx.doi.org/10.1039/c8nj03720e.

Full text
Abstract:
Phosphine-thioether ligands were coordinated to the Mo3S4 cluster to afford [Mo3S4Cl3(PS)3]+ complexes. Their catalytic activity in nitrobenzene reduction reflects the different hemilabile behaviours of PS1, PS2 and PS3.
APA, Harvard, Vancouver, ISO, and other styles
4

Jung, Stefan, Carsten D. Brandt, and Helmut Werner. "A cationic allenylideneruthenium(II) complex with two bulky hemilabile phosphine ligands." New Journal of Chemistry 25, no. 9 (2001): 1101–3. http://dx.doi.org/10.1039/b104787f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Clot, Olivier, Michael O. Wolf, Glenn P. A. Yap, and Brian O. Patrick. "Synthesis and reactivity of ruthenium(II) complexes containing hemilabile phosphine–thiophene ligands." Journal of the Chemical Society, Dalton Transactions, no. 16 (2000): 2729–37. http://dx.doi.org/10.1039/b001898h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Angell, Sarah E., Yan Zhang, Cerrie W. Rogers, Michael O. Wolf, and Wayne E. Jones. "Photophysical Properties of Ru(II) Bipyridyl Complexes Containing Hemilabile Phosphine−Ether Ligands." Inorganic Chemistry 44, no. 21 (October 2005): 7377–84. http://dx.doi.org/10.1021/ic050436l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tole, Tegene T., Johannes H. L. Jordaan, and Hermanus C. M. Vosloo. "α-Pyridinyl Alcohols, α,α’-Pyridine Diols, α-Bipyridinyl Alcohols, and α,α’-Bipyridine Diols as Structure Motifs Towards Important Organic Molecules and Transition Metal Complexes." Current Organic Synthesis 17, no. 5 (July 27, 2020): 344–66. http://dx.doi.org/10.2174/1570179417666200212111049.

Full text
Abstract:
Background: The preparation and use of pyridinyl alcohols as ligands showed incredible increment in the past three decades. Important property of pyridinyl alcoholato ligands is their strong basicity, which is mainly due to the lack of resonance stabilization of the corresponding anion. This strongly basic anionic nature gives them high ability to make bridges between metal centers rather than to bind to only one metal center in a terminal fashion. They are needed as ligands due to their ability to interact with transition metals both covalently (with oxygen) and hemilabile coordination (through nitrogen). Objective: The review focuses on the wide application of α-pyridinyl alcohols, α,α’-pyridine diols, α- bipyridinyl alcohols, and α,α’-bipyridine diols as structure motifs in the preparation of important organic molecules which is due to their strongly basic anionic nature. Conclusion: It is clear from the review that in addition to their synthetic utility in the homogeneous and asymmetric catalytic reactions, the preparation of the crown ethers, cyclic and acyclic ethers, coordinated borates (boronic esters), pyridinyl-phosphine ligands, pyridinyl-phosphite ligands, and pyridinyl-phosphinite ligands is the other broad area of application of pyridinyl alcohols. In addition to the aforementioned applications they are used for modeling mode of action of enzymes and some therapeutic agents. Their strongly basic anionic nature gives them high ability to make bridges between metal centers rather than to bind to only one metal center in a terminal fashion in the synthesis of transition metal cluster complexes. Not least numbers of single molecule magnets that can be used as storage of high density information were the result of transition metal complexes of pyridinyl alcoholato ligands.
APA, Harvard, Vancouver, ISO, and other styles
8

Grushin, Vladimir V. "Synthesis of Hemilabile Phosphine−Phosphine Oxide Ligands via the Highly Selective Pd-Catalyzed Mono-oxidation of Bidentate Phosphines: Scope, Limitations, and Mechanism." Organometallics 20, no. 18 (September 2001): 3950–61. http://dx.doi.org/10.1021/om010454k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cadierno, Victorio, Josefina Díez, Sergio E. García-Garrido, Santiago García-Granda, and José Gimeno. "Ruthenium(ii) and ruthenium(iv) complexes containing hemilabile heterodifunctional iminophosphorane-phosphine ligands Ph2PCH2P(NR)Ph2." Journal of the Chemical Society, Dalton Transactions, no. 7 (2002): 1465. http://dx.doi.org/10.1039/b110442j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Caballero, Agustín, Félix A. Jalón, Blanca R. Manzano, Gustavo Espino, Mercedes Pérez-Manrique, Antonio Mucientes, Francisco J. Poblete, and Miguel Maestro. "Ruthenium Arene Derivatives with PN Hemilabile Ligands. P−C Cleavage and Phosphine to Phosphinite Transformation." Organometallics 23, no. 24 (November 2004): 5694–706. http://dx.doi.org/10.1021/om049438o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Werner, Helmut, Arthur Stark, Michael Schulz, and Justin Wolf. "Vinylidene transition-metal complexes. XIX. Preparation of vinylideneruthenium complexes promoted by hemilabile chelating phosphine ligands." Organometallics 11, no. 3 (March 1992): 1126–30. http://dx.doi.org/10.1021/om00039a018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Grushin, Vladimir V. "ChemInform Abstract: Synthesis of Hemilabile Phosphine-Phosphine Oxide Ligands via the Highly Selective Pd-Catalyzed Mono-oxidation of Bidentate Phosphines: Scope, Limitations, and Mechanism." ChemInform 33, no. 3 (May 23, 2010): no. http://dx.doi.org/10.1002/chin.200203172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Warad, Ismail, and Assem Barakat. "Synthesis, physicochemical analysis of two new hemilabile ether-phosphine ligands and their first stable bis-ether-phosphine/cobalt(II) tetrahedral complexes." Journal of Molecular Structure 1134 (April 2017): 17–24. http://dx.doi.org/10.1016/j.molstruc.2016.12.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rogers, Cerrie W., Yan Zhang, Brian O. Patrick, Wayne E. Jones,, and Michael O. Wolf. "Photophysical Effect of the Coordination of Water by Ruthenium(II) Bipyridyl Complexes Containing Hemilabile Phosphine−Ether Ligands." Inorganic Chemistry 41, no. 5 (March 2002): 1162–69. http://dx.doi.org/10.1021/ic010827+.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jiménez, M. Victoria, Jesús J. Pérez-Torrente, M. Isabel Bartolomé, Eugenio Vispe, Fernando J. Lahoz, and Luis A. Oro. "Cationic Rhodium Complexes with Hemilabile Phosphine Ligands as Polymerization Catalyst for High Molecular Weight Stereoregular Poly(phenylacetylene)." Macromolecules 42, no. 21 (November 10, 2009): 8146–56. http://dx.doi.org/10.1021/ma901549g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lindner, Ekkehard, Michael Gepraegs, Karlheinz Gierling, Riad Fawzi, and Manfred Steimann. "Synthesis, Reactivity, and Structural Characterization of Octahedral Ruthenium(II) Complexes with Small Molecules Containing Hemilabile Ether-Phosphine Ligands." Inorganic Chemistry 34, no. 24 (November 1995): 6106–17. http://dx.doi.org/10.1021/ic00128a023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Jiménez, M. Victoria, I. Idalia Rangel-Salas, Fernando J. Lahoz, and Luis A. Oro. "C−C Formation and C−O Cleavage Reactions on Hemilabile Arene−Phosphine Ligands in Route to η5-Cyclohexadienyl Iridium Compounds§." Organometallics 27, no. 16 (August 2008): 4229–37. http://dx.doi.org/10.1021/om800402n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bonnaventure, Isabelle, and André B. Charette. "Probing the Importance of the Hemilabile Site of Bis(phosphine) Monoxide Ligands in the Copper-Catalyzed Addition of Diethylzinc toN-Phosphinoylimines: Discovery of New Effective Chiral Ligands." Journal of Organic Chemistry 73, no. 16 (August 2008): 6330–40. http://dx.doi.org/10.1021/jo800969x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rowley, Christopher N., and Tom K. Woo. "Computational design of ruthenium hydride olefin-hydrogenation catalysts containing hemilabile ligands,." Canadian Journal of Chemistry 87, no. 7 (July 2009): 1030–38. http://dx.doi.org/10.1139/v09-077.

Full text
Abstract:
Three ruthenium hydridocarbonyl complexes containing bidentate hemilabile ligands have been evaluated as possible catalysts for the H2 hydrogenation of olefins. Our previous investigations of the mainstay hydridoruthenium catalyst, RuHCl(CO)(PR3)2 (1), indicated that the rate-limiting olefin-insertion barrier was increased by the need for an H2 molecule to act as a stabilizing two-electron donor. Using density functional theory (DFT) calculations, we have determined that a P,N phosphane-oxazoline would be suitable for stabilizing the metal center of the complex RuHCl(CO)(PiPr3)(DZ), where DZ is a neutral bidentate hemilable ligand. In the reaction catalyzed by this complex, the olefin insertion occurs before the coordination of H2, avoiding the entropic penalty of coordinating H2. We predict that the phosphane-oxazoline containing catalyst will have higher activity than 1 and a different rate-law, zero-order in [H2]. The oxazoline increases the strength of coordination of the ethylene due to stronger back-donation from destabilized Ru d-orbitals to the ethylene π* molecular orbital.
APA, Harvard, Vancouver, ISO, and other styles
20

Braunstein, Pierre, Céline Frison, Xavier Morise, and Richard D. Adams. "Coordination properties of novel hemilabile acetamide-derived P,O phosphine ligands. Crystal structures of Ph2PNHC(O)Me and [PdMe{PPh2NHC(O)Me}{PPh2NHC(O)Me}][O3SCF3] †." Journal of the Chemical Society, Dalton Transactions, no. 13 (2000): 2205–14. http://dx.doi.org/10.1039/b002386h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Stampfl, Thomas, Rene Gutmann, Georg Czermak, Christoph Langes, Alexander Dumfort, Holger Kopacka, Karl-Hans Ongania, and Peter Brüggeller. "Regioselective versus complete chalcogen transfer reactions of the bis(bidentate) phosphine cis,trans,cis-1,2,3,4-tetrakis(diphenylphosphino)cyclobutane: full characterization of new, hemilabile ligands and their complexes with palladium(ii) and platinum(ii)." Dalton Trans., no. 17 (2003): 3425–35. http://dx.doi.org/10.1039/b305775e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dilsky, Stefan, and Wolfdieter�A Schenk. "Diastereomeric Halfsandwich Rhenium Complexes Containing Hemilabile Phosphane Ligands." European Journal of Inorganic Chemistry 2004, no. 24 (December 2004): 4859–70. http://dx.doi.org/10.1002/ejic.200400552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lindner, Ekkehard, and Berthold Karle. "Notizen: Neuartige basische Liganden für die homogenkatalytische Methanolcarbonylierung, XXVII [1] / Fluktuierendes Verhalten von Tris(Ether-Phosphan)-Ruthenium(II)-Komplexen / Novel Basic Ligands for the Homogenous Catalytic Carbonylation of Methanol, XXVII. Fluxional Behaviour of Tris(ether-phosphane) Ruthenium(II) Complexes." Zeitschrift für Naturforschung B 45, no. 7 (July 1, 1990): 1108–10. http://dx.doi.org/10.1515/znb-1990-0737.

Full text
Abstract:
Three equivalents of the ether-phosphane ligands 2a-c react with Cl2Ru(PPh3)3 (1) to give the complexes trans-Cl2Ru(P ̑O)(P∼O)2 (3a-c) (P∼O = η1-P-coordinated; P ̑O = η2-Ο,Ρ-coordinated). The hemilabile character of the P,O–ligands is becoming evident by the fluxional behaviour of 3 a-c. The coalescence temperatures in the AB part of their 31P{1H} NMR spectra are found at -10, 15 and -15 °C (AG* = 48, 53 and 47 kJ/mol). Because of steric effects, 3 a, in which the ether oxygen atom has the lowest basicity, and 3c, with the smallest ether substituent, show nearly the same dynamic properties.
APA, Harvard, Vancouver, ISO, and other styles
24

Köckritz, Angela, and Axel Weigt. "Aromatic and Chiral Phosphonate-Phosphanes - New Types of Hemilabile Ligands." Phosphorus, Sulfur, and Silicon and the Related Elements 111, no. 1 (April 1, 1996): 176. http://dx.doi.org/10.1080/10426509608054805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Richter, Birgit, and Helmut Werner. "Carbyne and Carbyne(hydrido) Osmium Complexes Containing Hemilabile Phosphines as Ligands†." Organometallics 28, no. 17 (September 14, 2009): 5137–41. http://dx.doi.org/10.1021/om900507f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Matkovich, Kristin M., Lisa M. Thorne, Michael O. Wolf, Tamara C. S. Pace, Cornelia Bohne, and Brian O. Patrick. "Luminescence of Ruthenium Halide Complexes Containing a Hemilabile Phosphine Pyrenyl Ether Ligand." Inorganic Chemistry 45, no. 12 (June 2006): 4610–18. http://dx.doi.org/10.1021/ic051795j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hsu, Sodio C. N., Shih-Chieh Hu, Zih-Shing Wu, Michael Y. Chiang, and Min-Yuan Hung. "Methyl–oxygen bond cleavage in hemilabile phosphine–ether ligand of ruthenium(II) complexes." Journal of Organometallic Chemistry 694, no. 12 (May 2009): 1912–17. http://dx.doi.org/10.1016/j.jorganchem.2009.01.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Machan, Charles W., Alexander M. Spokoyny, Matthew R. Jones, Amy A. Sarjeant, Charlotte L. Stern, and Chad A. Mirkin. "Plasticity of the Nickel(II) Coordination Environment in Complexes with Hemilabile Phosphino Thioether Ligands." Journal of the American Chemical Society 133, no. 9 (March 9, 2011): 3023–33. http://dx.doi.org/10.1021/ja109624m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Roch-Neirey, Caroline, Nathalie Le Bris, Pascale Laurent, Jean-Claude Clément, and Hervé des Abbayes. "Rhodium-catalyzed hydroformylation of styrene at low temperature using potentially hemilabile phosphite–phosphonate ligands." Tetrahedron Letters 42, no. 4 (January 2001): 643–45. http://dx.doi.org/10.1016/s0040-4039(00)02028-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gushchin, Artem L., Nikita Y. Shmelev, Svetlana F. Malysheva, Alexander V. Artem'ev, Nataliya A. Belogorlova, Pavel A. Abramov, Yuliya A. Laricheva, et al. "Trinuclear M3S4 cluster complexes with hemilabile phosphino-thioether ligands: Some experimental and theoretical aspects." Inorganica Chimica Acta 508 (August 2020): 119645. http://dx.doi.org/10.1016/j.ica.2020.119645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Shmelev, N. Yu, M. I. Gongola, S. F. Malysheva, N. A. Belogorlova, A. V. Artem’ev, Ya S. Fomenko, V. Yu Komarov, et al. "Synthesis and Characterization of the New Cluster Complex {Mo3S4} with the Hemilabile Phosphine-Selenoether Ligand." Russian Journal of Coordination Chemistry 47, no. 3 (March 2021): 209–18. http://dx.doi.org/10.1134/s1070328421030040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Meinholz, Margret M., Sushil K. Pandey, Stephan M. Deuerlein, and Dietmar Stalke. "Access to new Janus head ligands: linking sulfur diimides and phosphanes for hemilabile tripodal scorpionates." Dalton Transactions 40, no. 8 (2011): 1662. http://dx.doi.org/10.1039/c0dt00665c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Rosen, Mari S., Charlotte L. Stern, and Chad A. Mirkin. "Heteroligated PtII Weak-Link Approach complexes using hemilabile N-heterocyclic carbene–thioether and phosphino–thioether ligands." Chemical Science 4, no. 11 (2013): 4193. http://dx.doi.org/10.1039/c3sc51557e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Roch-Neirey, Caroline, Nathalie Le Bris, Pascale Laurent, Jean-Claude Clement, and Herve des Abbayes. "ChemInform Abstract: Rhodium-Catalyzed Hydroformylation of Styrene at Low Temperature Using Potentially Hemilabile Phosphite-Phosphonate Ligands." ChemInform 32, no. 18 (May 1, 2001): no. http://dx.doi.org/10.1002/chin.200118078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Budzelaar, Peter H. M. "Ethene trimerization at CrI/CrIII — A density functional theory (DFT) study." Canadian Journal of Chemistry 87, no. 7 (July 2009): 832–37. http://dx.doi.org/10.1139/v09-022.

Full text
Abstract:
Catalytic ethene trimerization at a chromium(I) indolate-AlR2Cl centre has been studied by density functional theory (DFT) methods. The reaction is found to follow the standard metallacycle mechanism. At most stages of the reaction, coordination of Cr to the pyrrole ring of the indolate is preferred. In all 13-e intermediates, coordination of the Al-bound chloride to Cr provides additional stabilization: the chloride behaves as a hemilabile ligand. Benzene is found to compete with ethene for coordination to CrI. The final hexene-forming step involves direct Cβ → Cα′ hydrogen transfer; reductive elimination from a possible (hydride)(hexenyl) intermediate is more difficult. The kinetic isotope effect calculated for the direct hydrogen transfer (4.1) agrees well with the experimental value for a bis(phosphino)amide chromium catalyst. Side products obtained in such systems (methylenecyclopentane, methylcyclopentane) can plausibly be explained through routes not involving any (hydride)(alkyl) reductive elimination. Our results indicate that a CrI/CrIII trimerization cycle is possible for some chromium trimerization catalysts, and also suggest that direct hydrogen transfer is most likely a general feature of trimerization at Cr centres.
APA, Harvard, Vancouver, ISO, and other styles
36

Singewald, Elizabeth T., Chad A. Mirkin, Allison D. Levy, and Charlotte L. Stern. "Novel RhI Piano-Stool Complexes with New Hemilabile Ligands Ligating through Phosphane and Arene Groups: Synthesis, Characterization, and Reactivity." Angewandte Chemie International Edition in English 33, no. 2324 (January 3, 1995): 2473–75. http://dx.doi.org/10.1002/anie.199424731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Andrieu, Jacques, Jean-Michel Camus, Philippe Richard, Rinaldo Poli, Luca Gonsalvi, Francesco Vizza, and Maurizio Peruzzini. "Amino-phosphanes in RhI-Catalyzed Hydroformylation: Hemilabile Behavior of P,N Ligands under High CO Pressure and Catalytic Properties." European Journal of Inorganic Chemistry 2006, no. 1 (January 2006): 51–61. http://dx.doi.org/10.1002/ejic.200500432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Merle, Nicolas, Christopher G. Frost, Gabriele Kociok-Köhn, Michael C. Willis, and Andrew S. Weller. "Chelating Phosphane–Boranes as Hemilabile Ligands – Synthesis of[Mn(CO)3(η2-H3B·dppm)][BArF4] and [Mn(CO)4(η1-H3B·dppm)][BArF4]." European Journal of Inorganic Chemistry 2006, no. 20 (October 2006): 4068–73. http://dx.doi.org/10.1002/ejic.200600526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kostas, Ioannis D. "Synthesis of new rhodium complexes with a hemilabile nitrogen-containing bis(phosphinite) or bis(phosphine) ligand. Application to hydroformylation of styrene." Journal of Organometallic Chemistry 626, no. 1-2 (April 2001): 221–26. http://dx.doi.org/10.1016/s0022-328x(01)00701-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Rülke, Richard E., Vincent E. Kaasjager, Petra Wehman, Cornelis J. Elsevier, Piet W. N. M. van Leeuwen, Kees Vrieze, Jan Fraanje, Kees Goubitz, and Anthony L. Spek. "Stable Palladium(0), Palladium(II), and Platinum(II) Complexes Containing a New, Multifunctional and Hemilabile Phosphino−Imino−Pyridyl Ligand: Synthesis, Characterization, and Reactivity." Organometallics 15, no. 13 (January 1996): 3022–31. http://dx.doi.org/10.1021/om9509047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Duraczyńska, Dorota, Ewa M. Serwicka, Alicja Drelinkiewicz, Dorota Rutkowska-Żbik, Małgorzata Witko, Robert Socha, Małgorzata Zimowska, and Zbigniew Olejniczak. "Nanospace constraints in mesoporous silica carriers—A factor of critical importance in promoting the catalytic activity of supported ruthenium (II) complex with hemilabile phosphine ligand." Applied Catalysis A: General 427-428 (June 2012): 16–23. http://dx.doi.org/10.1016/j.apcata.2012.03.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Valls, Esteve, Joan Suades, Bruno Donadieu, and René Mathieu. "Study of the complexing properties toward RuIIof new polydentate amphiphilic phosphines containing polyether chains. Unprecedented η3mode of bonding of the new ligand PPh[(CH2)3CHMe2][(CH2CH2O)3Me] and study of its hemilabile character." Chem. Commun., no. 6 (1996): 771–72. http://dx.doi.org/10.1039/cc9960000771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Peña, Deisy, Yomaira Otero, Alejandro Arce, Juan M. García, David S. Coll, Edgar Ocando-Mavarez, Rubén Machado, and Teresa González. "Synthesis, characterization and reactivity of dinuclear rhenium complexes containing hemilabile phosphines as ligands: X-ray structures of diax-[Re2(CO)8{κ1(P)-Ph2P(CH2)2CN}2], [Re2(CO)8{μ:κ3(P,C,C)-iPr2NP(CH2CHCH2)2}] and diax-[Re2(CO)8(PPh3){κ1(P)-p-MeOC6H4P(CH2CHCH2)2}]." Inorganica Chimica Acta 439 (January 2016): 178–85. http://dx.doi.org/10.1016/j.ica.2015.10.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Andrieu, Jacques, Pierre Braunstein, Antonio Tiripicchio, and Franco Ugozzoli. "Chemoselective Reactions of the Phosphino Enolate Li[Ph2PCH C( O)NPh2] with Ph2P−Cl and M−Cl Bonds (M = Pd, Pt). Coordination Properties of the New Functional Diphosphine Ligand (Ph2P)2CHC(O)NPh2. Hemilabile Behavior of [Cu2{(Ph2P)2CHC(O)NPh2-P,P,O}2](BF4)2. Reactivity and Molecular Structure of [(8-mq)Pd{Ph2PCH C( O)NPh2}]†." Inorganic Chemistry 35, no. 21 (January 1996): 5975–85. http://dx.doi.org/10.1021/ic951412p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Motswainyana, William, Martin Onani, Roger Lalancette, and Paul Tarus. "Hemilabile imino-phosphine palladium(II) complexes: synthesis, molecular structure, and evaluation in Heck reactions." Chemical Papers 68, no. 7 (January 1, 2014). http://dx.doi.org/10.2478/s11696-013-0530-6.

Full text
Abstract:
AbstractThe ligands 2-(diphenylphosphino)benzyl-(2-thiophene)methylimine (V) and 2-(diphenylphosphino) benzyl-(2-thiophene)ethylimine (VI) were prepared from 2-(diphenylphosphino)benzaldehyde and thiophene amines with very good yields. An equimolar reaction of V and VI with either PdCl2(cod) (cod = cyclooctadiene) or PdClMe(cod) afforded palladium(II) complexes I–IV. The molecular structure of II was confirmed by X-ray crystallography. The coordination geometry around the palladium atom exhibited distorted square planar geometry at the palladium centre. Complexes I, II, and IV were evaluated as catalysts for Heck coupling reactions of iodobenzene with methyl acrylate under mild reaction conditions; 0.1 mole % catalyst, Et3N base, MeCN reflux for 8 h, 80°C; isolated yield on a 10 mmol scale with catalyst I (64 %), II (68 %), and IV (58 %). They all exhibited significant activities.
APA, Harvard, Vancouver, ISO, and other styles
46

Borah, Malabika, Nabanita Saikia, and Pankaj Das. "A combined computational and experimental study of Fe(II) complexes with hemilabile phosphine-based P,O donor ligands." Journal of Molecular Structure, November 2020, 129661. http://dx.doi.org/10.1016/j.molstruc.2020.129661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Saikia, Nabanita, Malabika Borah, and Pankaj Das. "Synthesis and Structural Characterization of Fe(Ii) Complexes with Hemilabile Phosphine-Based P,O Donor Ligands: A Combined Experimental and Computational Study." SSRN Electronic Journal, 2020. http://dx.doi.org/10.2139/ssrn.3597980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lin, Lin, Xue-jun Zhang, Xinyu Xu, Yue Zhao, and Zhuangzhi Shi. "Ru3(CO)12‐Catalyzed Modular Assembly of Hemilabile Ligands by C–H Activation of Phosphines with Isocyanates." Angewandte Chemie, December 7, 2022. http://dx.doi.org/10.1002/ange.202214584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lin, Lin, Xue-jun Zhang, Xinyu Xu, Yue Zhao, and Zhuangzhi Shi. "Ru3(CO)12‐Catalyzed Modular Assembly of Hemilabile Ligands by C–H Activation of Phosphines with Isocyanates." Angewandte Chemie International Edition, December 7, 2022. http://dx.doi.org/10.1002/anie.202214584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography